
Dvipdfm User’s Manual Mark A. Wicks
Version 0.7.4 December 3, 1998

1. Introduction
This package is a DVI (TEX) to PDF conversion utility, having the following

features:

• Support for outline entries (also called bookmarks), named destina-
tions, and annotations (including hyperlinks, forms and widgets).
Nearly every Acrobat Distiller pdfmark is approximated.

• Support for arbitrary, nested linear transformations of typeset mate-
rial. Any material on the page, including TEX text, may be scaled
and rotated.

• Ability to include the first page of a PDF file as an encapsulated ob-
ject along with its embedded resources such as fonts. Note: Currently,
this doesn’t work if the contents stream has multiple segments.

• Ability to include a JPEG image as an encapsulated object.
• A color stack. A color stack allows you to change the current color,

pushing the current color onto a stack. At any time, the original
color can be popped from the stack. This is useful, for example, in
headlines, that may have a different color from the current text. The
headline macro can restore the current color without knowing what
it is.

The electronic version of the document exercises some of the hypertext fea-
tures and serves as a sample input file for dvipdfm. It assumes the reader has
some familiarity with the basic features of the Portable Document Format. The
PDF specification is distributed by Adobe Systems[1]. An excellent source for in-
formation about PDF documents in general is [2]. Information about using TEX to
construct PDF documents (mainly using Distiller) is the AcroTeX home page[3].

Currently, the widely accepted method to generate PDF file from TEX is to use
Adobe’s Acrobat Distiller on a PostScript file produced by dvips. The hyperlink
features are accessed by using TEX special primitives to embed pdfmarks in the
PostScript produced by dvips. Hàn Thé Thàn’s PDFTEX project is an alternative
method of generating PDF from TEX source. Although quite good and fairly
mature, the PDFTEX project modified TEX itself to add primitives that support
the PDF features. I prefer to work with TEX unmodified, as released by Donald
Knuth (call me a purist). There is an existing DVI to PDF driver called dvipdf
written by Sergey Lesenko. At present, it’s not widely available, so I haven’t used
it. I wrote dvipdfm mainly as an exercise to get at the features of PDF I was
trying to use. This dvipdfm project demonstrates that many features of PDF can

1

be accessed by using a DVI driver. The PDF features are activated in the driver
via TEX special primitives.

Even though Distiller is the best method of generating PDF (and probably
will remain so for some time) I have several reasons for seeking alternatives to
Distiller. First, Distiller isn’t available for my principle operating system—Linux.

My second objection is philosophical. TEX is a programming language. A
DVI file is a page description consisting of very simple program instructions that
have no branching or decision instructions. Similarly PostScript is a complete
programming language, while PDF is a page description language consisting of
simple program instructions without any branching or decision capabilities. TEX is
like PostScript (without the graphics) while DVI is like PDF (without the graphics
or the hyperlinks). Creating PDF from DVI using Distiller requires converting
a page description to a program, and converting that program back to a page
description. To continue this analogy, Pdfmarks are PostScript “escapes” and are
meant for the Distiller. TEX \special primitives are TEX “escapes” and are meant
for the DVI driver. It seems natural to go directly from DVI to PDF, where TEX
replaces PostScript, the DVI driver replaces Distiller, and TEX \special primitives
replace the pdfmarks.

Unfortunately, until graphics software begins to produce PDF content streams
or encapsulated PDF objects, PostScript will remain the easiest way to include
graphics in TEX documents. I would hope that in the future, graphics programs
will begin to produce PDF content streams or PDF objects that may be included
using a DVI to PDF translator. Either of these may be easily embedded using
dvipdfm or a similar driver.

2. General Concepts and Syntax
Each TEX \special represents a separate command to the dvipdfm driver.

Each special must begin with “pdf:” to identify that special as a command for
the dvipdfm driver. A \special beginning with any other characters is ignored
by the driver. Leading spaces are ignored. The characters “pdf:” are imme-
diately followed by a dvipdfm command. These commands are documented in
Sections 3–6.

2.1 PDF Object Syntax and Variable Expansion
With one exception, the syntax used for PDF objects within each \special

specials follows the PDF specification. The one exception is variable expansion.
In the syntax specifications that follow, PDF Object means that an arbitary PDF
object is expected. Similarly PDF Array indicates that a PDF array is expected,
PDF Dict inciates that a PDF dictionary is expected, etc. See the reference manual
for a complete list of PDF object types.

2

Table 1—List of driver defined variables

Variable Description

@catalog A reference to the document’s catalog.
@names A reference to the document’s /Names dictionary.
@pages A reference to the root of the document’s /Pages

tree.
@resources A reference to the current page resource dictio-

nary.
@thispage A reference to the current page.
@pagen A reference to page n.
@nextpage A reference to the page following @thispage.
@prevpage A reference to the page preceding @thispage.
@ypos A number representing the current vertical posi-

tion in units of PDF points.
@xpos A number representing the current horizontal po-

sition in units of PDF points.

The single extension implemented in this driver allows a symbol name of
the form @name whereever any PDF object is expected. The name may contain
any characters allowed in a PDF name. A user-defined symbol beginning with
@ expands to an indirect reference to the user-defined PDF object. This feature
replaces the {name} syntax used with pdfmarks. In addition to the user-defined
names, some names are defined by the driver. The driver defined variables are for
referencing objects such as the current page, future pages, or the current location
on the current page. The driver defined variables appear in Table 1.

In the syntax specifications that follow, several standard conventions are fol-
lowed. Terminal characters that appear in the command are typeset in the \tt
font, e.g., object. Nonterminal symbols are typeset in italics. Optional parame-
ters are surrounded by brackets, e.g., [optional argument]. An item followed by “*”
represents an item that may appear zero or more times. An item followed by “+”
represents a required item that may appear multiple times.

2.2 Dimensions and transformations
Interaction with the dvipdfm driver consists of short commands with a few

arguments delimited by white space. Typically the arguments are PDF objects.
Two exceptions are dimension specifications and transformations.

In the TEX style, a dimension specification consists of one of the keywords
width, height, or depth followed by a dimension consisting of a numerical value,
followed by a unit for the dimension. The unit will typically be pt (which represents
a TEX point, not a PDf point) but mm, cm and in are also allowed. If the document

3

is magnified, the “true” dimensions truept, truemm, truecm, and truein may
be used. The notation dimension in a syntax description means a dimension is
expected.

A transformation consists of one of the keywords scale, xscale, yscale, or
rotate followed by a numerical value. In the case of rotate the value is the
rotation angle in degrees. The notation transformation means a transformation is
expected.

3. Document Construction Commands
All commands are executed via TEX \special primitives prefixed with the

characters “pdf:”.

Example:

\special{ pdf: out 1 << /Title (Introduction)
/Dest [1 0 R /FitH 234] >>

3.1 Annotate

Syntax: annotate [@name] dimension+ PDF dictionary

Description: The annotate (annot or ann) command defines an annotation. An-
notations are typically used for notes, hyperlinks, forms, or widgets. The parameter
name is an optional alphanumeric identifier and PDF dictionary is a valid PDF
dictionary after variable expansion. If @name is specified, it may be used in other
PDF objects to refer to this annotation. One or more dimension parameters are
required and each consists of the keyword height, width, or depth followed by an
appropriate length, specified as per TEX. The width must be nonzero and either
the height or depth must be nonzero. Each length is a number followed by a unit,
such as pt, in, or cm. Since these values would typically be entered by TEX, a pt
is a TEX point, not a PDF point.

Example: The annotation in this subsection was typeset with

\special{pdf: ann width 3.0in height 36pt
<< /Type /Annot /Subtype /Text

/Contents (This is a /Text Annotation.
Aren’t these things ugly?.
It’s a good thing they don’t
print by default.) >>}

4

This is a /Text Annotation that looks like a sticky note.

3.2 Dest

Syntax: dest PDF String PDF Dest

Description: The dest command defines a named destination. The PDF String
is a PDF string naming the destination. This string may be used in the destination
fields of annotations and outline entries to refer to this destination. PDF Dest is
a PDF destination object (typically an array).

Example:

\special{pdf: dest (listofreferences) [@thispage /FitH @ypos]}

3.3 Docinfo

Syntax: docinfo PDF dictionary

Description: The docinfo command adds the keys in the specified dictionary to
the document’s /Info dictionary. All keys are optional, but may include the keys
/Author, /Title, /Keywords, /Subject, and /Creator.

Example:

\special{pdf: docinfo << /Author (Mark A. Wicks)
/Title (This Document) >>}

3.4 Docview

Syntax: docview PDF dictionary

Description: The docview command adds the keys in the specified dictionary to
the document’s /Catalog dictionary. All keys are optional, but may include the
keys /PageMode, /URI, /OpenAction, /AA and /ViewerPreferences. See the PDF
Reference Manual for documentation of these keys and additional keys.

Example:

\special{pdf: docview << /PageMode /UseThumbs >> }

3.5 Object

Syntax: object [@name] PDF Object

Description: The object (also obj) command creates a PDF object. The pa-
rameter PDF Object is any valid PDF object. The parameter name may be used
to provide an indirect reference to this object within other objects. It will be

5

expanded anywhere within a special where a PDF object is expected. Typically
object is an array or dictionary. It may be an empty array or dictionary that can
be constructed dynamically via the put command.

Example:

\special{pdf: object @mydict << /Firstpage @thispage >>}

3.6 Out

Syntax: out number PDF dictionary

Description: The out (also outline) command adds an outline (also called a
“bookmark”) entry to the document. The parameter level is an integer represent-
ing the level of the outline entry (beginning with 1) and PDF dictionary must
contain the two keys /Title and either /Dest or /A. It may also contain the /AA
key. These keys are documented in the PDF Reference Manual.

Example:

out 1 << /Title (Section 1) /Dest [@thispage /FitH @ypos] >>

which may be followed by

out 2 << /Title (Section 1.1) /Dest [@thispage /FitH @ypos] >>

Note: You may not skip levels. A level 2 outline entry must follow a level 1
outline entry. A level 3 outline entry must follow a level 2 outline and cannot
immediately follow a level 1 outline entry.

3.7 Pagesize

Syntax: pagesize dimension+

Description: The pagesize command specifies the document’s physical paper
size. The pagesize command must be specified on the first page and must precede
the first annotation or background color specification on the page. In other words,
it should occur as close to the beginning of the document as possible.

Example:

pagesize width 11.0truein height 8.5truein

3.8 Put

Syntax:

put @name PDF Object+

6

or

put @name PDF Dictionary

Description: The put command modifies an existing PDF object created with
obj, or one of the following internally defined objects: @catalog, @names, @pages,
@thispage, or @resources. The first form is used when @name is an array. The
second form is used when @name is a dictionary. More than one object may be
added to an array at once. All keys in PDF Dictionary are added to the dictionary
represented by @name.

Example:

\special{pdf: put @mydict << /Nextpage @thispage >>}

3.9 Thread

Syntax: thread @name dimension+ [PDF dictionary]

Description: The thread (or art) command adds a bead to an article. An article
is a collection of boxed regions in the document that should be read consecutively.
Each bead using the same name belongs to the same article. The name parameter
is required. The dimension parameter defined the rectangular area belonging to
the bead in the same manner as for annot. The optional PDF dictionary should
supplied on one of the beads. It keys are similar to the /Info dictionary accessed
via the docinfo command and would typically include the /Title and /Author
keys. Keys may only be written once. In other words, if the author and title
supplied on the first bead of an article differ from the article and title supplied on
the second bead, those specified on the first bead will be used.

Example:

\special {pdf: thread @somearticle << /Title (Some title)
/Author (Me) >>}

3.10 Close

Syntax: close @name

Description: The close writes the named PDF object created with obj to the
PDF file. No further put commands may be executed for this object. The object
may continue to be referenced using @name indefinitely. If the object is never
closed, it will be closed when dvipdfm finishes processing the document.

7

4. Form XObjects
The PDF specification allows an object to be stored once and displayed at

multiple locations throughout the document. The following commands give access
to this facility.

4.1 Beginxobj

Syntax: beginxobj @name dimension+

Description: The beginxobj (or bxobj) command begins the definition of a Form
XObject. All material typeset between the beginxobj and endxobj commands will
be captured into the XObject. The material can be displayed later at an arbitrary
location with the usexobj command. The name may be used to refer to the object
later, either via the usexobj command or as an indirect reference to the XObject
if name is used within the context of a PDF Object.. The required dimension
identifies the extent (i.e., bounding box) of the area to be captured. It is specified
in the same way as for annot.

The material will not display during the object definition. In other words, if
you are typsetting with TEX you should place the XObject in a box of dimension
0 so you don’t leave a white space hole where the object was defined.

Example:
bxobj @myform width 2.0in height 24pt

4.2 Endxobj

Syntax: endxobj

Description: The endxobj (or exobj) command ends the previous beginxobj
definition. Note that XObject definitions may not be nested. XObjects can be
used within other XObjects, however.

Example:
exobj

4.3 Usexobj

Syntax: usexobj @name

Description: The usexobj (or uxobj) command displays the form XObject pre-
viously defined and associated with name.

Example:
uxobj @myform

8

5. Text Transformation Commands
The commands in this section deal with transformation of arbitrary material,

which may include material typeset by TEX. These may also be used on included
graphics images if the commands in Section 8 won’t do the job.

5.1 BeginTransform

Syntax: begintransform transformation+

Description: The begintransform (btrans or bt) applies the specified transfor-
mation to all subsequent text. The scaling is applied first, followed by the rotation.
The reference point of a box following the \special remains fixed. Such transfor-
mations may be nested to perform rotations within rotated text, for exmaple.

Example:

\special{pdf: bt rotate 90 xscale 2.0 }

5.2 BeginTransform

Syntax: endtransform

Description: The endtransform (etrans or et) concludes the action of the imme-
diately preceding begintransform command. All transformations must be closed
on the same page. The driver will close any pending unclosed transformations at
the end of the page and issue a warning message. All material to be transformed
should probably be enclosed in a single box to prevent any break.

Example:

\special{pdf: et}

6. Color Commands
The commands in this section deal with manipulation of the color stack.

6.1 Begincolor

Syntax: begincolor PDF Number|PDF Array

Description: The begincolor (bcolor or bc) command uses its argument to set
the default color for future marking operators. The current color is pushed on
the color stack. The argument may be a single number, which is interpreted as a

9

grayscale value; a three element array, which is interpreted as an RGB color space
coordinate; or a four element array, which is interpreted as a CMYK color space
coordinate.

Example:

\special{ pdf: bc [1 0 0] }

6.2 Endcolor

Syntax: endcolor

Description: The endcolor (ecolor or ec) changes the default color to match
the color on the top of the stack. It removes the color from the stack.

Example:

\special{ pdf: ec }

6.3 Bgcolor

Syntax: bgcolor PDF Number|PDF Array

Description: The bgcolor (bbc or bgc) command uses the value of its argument
to set the default color for the page background. The interpretation fo the argu-
ment is the same as for the begincolor command. The stack is not involved here.
There is no way to go back to the previous background color.

Example:

\special{ pdf: bc [1 0 0] }

7. Image Commands
The commands in this section deal with embedding graphics into your PDF

document. The present driver supports PDF and JPEG graphics inclusion.

7.1 Epdf

Syntax: epdf [@name] [dimension|transformation]* PDF String

Description: The epdf command “encapsulates” the first page of a PDF file
named by PDF String into a PDF XObject. The resulting XObject is drawn
with the lower left corner at the current location of the page. The optional @name

10

parameter may be used to reference this object within other objects. If a dimen-
sion is supplied, the object will be scaled to fit that dimension. A transformation
consists of one of the keywords scale, xscale, yscale, or rotate followed by a
number representing the scaling factor or rotation angle in degrees. Both transfor-
mation and dimension parameters can be supplied as long as they are not logically
inconsistent.

Note: The object is stored as an XObject and can be redisplayed later by
using the usexobj function and specifying name.

Example:

\special{pdf:epdf yscale 0.50 width 4.0in
rotate 45 (circuit.pdf)}

7.2 Image

Syntax: image [@name] [dimension | transformation]* PDF String

Description: The image command “encapsulates” a JPEG image taken from the
file named by PDF String. Otherwise, this command functions just like epdf.

Note: The object is stored as an XObject and can be redisplayed later by
using the usexobj function and specifying name.

8. Raw Page Marking Commands
The commands in this section deal with embedding raw PDF graphics oper-

ators into your PDF document.

8.1 Bop

Syntax: bop stream

Description: The bop command specifies a marking stream to be generated at
the top of each page. The parameter stream is any sequence of marking operators
and is added to the page’s content stream. The stream is applied to all pages
regardless of where it appears in the document.

Example: The two horizontal lines appearing at the top of each page in this
document were set with

\special {pdf: bop q 0 w 0.8 0.5 0 RG
54 740 m 504 740 l 504 740.25 l 54 740.25 l b
36 760 m 504 760 l 504 760.25 l 36 760.25 l b Q }

11

8.2 Content

Syntax: content stream

Description: The content command specifies a marking stream to be added to
the current page at the current location. While it is possible to change the color
state, etc., with this command, it is not advised. Use the color management
commands to change colors.

8.3 Eop

Syntax:

eop stream

Description: The eop specifies a marking stream to be generated at the end of
each page. The parameter stream is any sequence of marking operators and is
added to the page’s content stream. The stream is applied to all pages regardless
of where it appears in the document.

9. Graphics Examples
The examples in this section illustrate some of the transformation and image

inclusion capabilities of dvipdfm.

9.1 Text Transformation
Tables with slanted entries are possible as shown in Table 2. This table was

achieved using various “bt rotate 35” commands.
The following line of text was done with nested combinations of “bt rotate

10” and “bt rotate -10”.
You can nest the text transformation capabilities to achieve effects like this.

9.2 Image Inclusion
The image in Figure 1 was included from a JPEG file. The image shown in

Figure 2 comes from the same file, but is loaded at a 50% scale and a 45◦ rotation.

12

Table 2—Example of rotated text set in Computer Modern Roman

199
4

1995
1996

1997
1998

1999

Figure 1—A JPEG image of the author.

Figure 2—Image of the author scaled by 0.5 and rotated by 45◦.

By default, JPEG files are included at a resolution of 100dpi so if you know

13

v

R Ra

i

12 V

-12 V

v

RR R
b x

o

c

e

Figure 3—An embedded PDF object.

the pixel size of the image, you know how much space to reserve. Any TEX magni-
fication is applied to the image in addition to any scaling defined in the \special.
For example, this document sets \magnification=\magstephalf, so the images
are actually scaled by 1.095. The first image in this section has a printed width of
1.643in even though 1.50in was specified in the \special.

Several command line utilities exist that read the pixel dimensions of a JPEG
file. For PDF files, you can grep on /MediaBox to get an indication of the image
size. The /MediaBox dimensions are in PDF points.

The image in Figure 3 was produced by embedding a PDF file using epdf.
Notice that any resources required for the object are also embedded. In this

case, the Times Roman font resource was embedded along with the content stream.

10. Font Mapping
TEX font names can be mapped into arbitrary physical (PostScript) font names

via the map file named pdffonts.map. The file is similar to the psfonts.map
file used by dvips and other drivers. Each line in the file consists of four fields
delimited by white space. The first field is the TEX font name. The second field is
the encoding name (.enc will be appended to this name, if necessary to locate an
encofing file). The encoding files have the same format as those used for dvips.
The third field is the AFM file name, and the fourth field is the PFB file name.
None of the fields are required, however, the fields are positional. In other words,
to specify an entry in the fourth field, you must include entries in the first three

14

fields. If any field is unspecified, the default is as follows: the default encoding is
none, the AFM file name is taken to be the same as the TEX file name. The PFB
file name is taken to the be same as the AFM file name. They keywords default
and none are recognized in the encoding, AFM, and PFB fields. The keyword
default forces the default behavior. The keyword none in the PFB field name the
embedded font to be omitted. See the file for examples.

11. LaTeX Support and Ebb
Preliminary support for the LaTEX graphics bundle and hyperref are avail-

able. Until drivers for dvipdfm are included in the standard distributions of these
packages, I will include them in distributions of dvipdfm. The file required for the
LaTEX graphics is called dvipdfm.def and the file required for hyperref support
is called hdvipdfm.def.

To facilitate LaTEX support, I am including a companion program called ebb,
which extracts bounding boxes from graphics files. If you want to include JPEG or
PDF files in your document, you can run ebb on the JPEG and PDF file to create
the .bb files. The bounding box file will be similarly named with an extension of
.bb. For DOS 8+3 compatibility, an original file name extension of .jpg or .pdf
is removed before creating the name of the .bb file. An extension of .jpeg is also
recognized and similarly removed.

15

12. References

[1] Portable Document Format Reference Manual, Version 1.2, Adobe Systems
Incorporated, 1996. Available at the following URL: http://www.adobe.com.

[2] Thomas Merz, Web Publishing with Acrobat/PDF, Springer-Verlag, 1997,
ISBN 3-540-63762-1. Chapter 6 of this book is available at the URL:
http://http://www.ifconnection.de/~tm.

[3] D. P. Story, AcroTeX, The AcroTeX home page is located at the URL:
http://www.math.uakron.edu/~dpstory/acrotex.html.

16

	1. Introduction
	2. General Concepts and Syntax
	2.1 PDF Object Syntax and Variable Expansion
	2.2 Dimensions and transformations

	3. Document Construction Commands
	3.1 Annotate
	3.2 Dest
	3.3 Docinfo
	3.4 Docview
	3.5 Object
	3.6 Out
	3.7 Pagesize
	3.8 Put
	3.9 Thread
	3.10 Close

	4. Form XObjects
	4.1 Beginxobj
	4.2 Endxobj
	4.3 Usexobj

	5. Text Transformation Commands
	5.1 BeginTransform
	5.2 BeginTransform

	6. Color Commands
	6.1 Begincolor
	6.2 Endcolor
	6.3 Bgcolor

	7. Image Commands
	7.1 Epdf
	7.2 Image

	8. Raw Page Marking Commands
	8.1 Bop
	8.2 Content
	8.3 Eop

	9. Graphics Examples
	9.1 Text Transformation
	9.2 Image Inclusion

	10. Font Mapping
	11. LaTeX Support and Ebb
	12. References

