
TEX DVI Driver Family Status

Nelson H.F. Beebe
Center for Scientific Computing

Department of Mathematics
220 South Physics Building

University of Utah
Salt Lake City, UT 84112

USA
Tel: (801) 581-5254

EMAIL: Beebe@Science.Utah.Edu (Internet)

Second Edition, 01 July 1989

1 Introduction

This document summarizes the status of the TEX DVI driver family distribution.
It describes

• the current versions of documentation and software;

• what operating systems, compilers, and output devices are supported;

• how to obtain the distribution from Utah and several other sources;

• the DVI electronic newsletter, and

• work in progress.

Since the informal announcement of this software at the 1986 TEX Users
Group meeting at Tufts University and the formal announcement in the April
1987 TUGboat, demand has exploded; the author estimates that over 1000 sites
in 28 countries are now running this software. Our initial attempts at providing
the software for free, or in return for a donation, proved economically infeasible
(we ran seriously in the red), and consequently, a fixed distribution charge was
instituted in the spring of 1988. The burden of exact cost accounting for each
order would be too great to manage; a fixed fee results in some being subsidized
at the expense of others, but not excessively so.

1

The distribution tapes contain not only the driver family, but also an ex-
tensive collection of Computer Modern fonts (itself requiring over 100 hr of
DEC-20/60 time to generate), additional TEX-related support software, and for
VAX VMS, the latest GNU Emacs release, so it remains a bargain.

Since the driver family is in the public domain, those who obtain distribu-
tions may freely re-distribute what they get. Local user groups are encouraged
to share the software; we are doing this on a national scale in Poland.

In the interests of the end users, however, it must be recognized that this is
an active software development project, and periodically returning to the source
at Utah, or one of the official redistribution channels, should be rewarding.

2 Documentation

Documentation for the TEX DVI driver family was last updated 15 April 1987
for Revision 2.07; it is now slightly out-of-date, and will be updated for release
3.0. It consists of

• a large manual entitled A TEX DVI Driver Family contained in source
files dvidriver.* intended for people who are installing the family on a
new operating system, or adding support for a new device; it need not be
read by people who just use the drivers;

• a UNIX manual page file, dvi.1l;

• a VAX VMS help file, dvi.vms;

• a GNU and TOPS-20 Emacs info file, dviman2;

• a GNU Emacs TEXinfo file, dviman2.texinfo, used to produce the pre-
vious info file; and

• a LaTEX document, dviman.ltx, that prints in a similar style to a UNIX
manual page.

The last five contain essentially the same information, but in different formats.
They are intended to provide end-user documentation, with details of what
drivers are available, how to run them, and what command-line options are
available.

3 DVI Driver Versions

The version history of the family is given in Table 1. Starting with 2.10.12, an
edit number will be appended to the major and minor version numbers; edit
number 12 reflects 12 edits applied since 2.10(.00) was released. Major versions
will appear at long intervals. Minor versions will appear every few months, and

2

will generally add new drivers or new operating system support. Edits fix small
bugs, or make small cosmetic changes that improve the user interface.

Table 1: Version history (reverse chronological order).

3.00 [??-???-89]
2.10.12 [01-Sep-88]
2.10 [01-Nov-87]
2.09 [23-Sep-87]
2.08 [15-Aug-87]
2.07 [15-Apr-87]
2.06 [1986-1987]

Note: Version 2.10 incorporated a major rewrite of dvialw
and dvijep, the two most popular drivers, to make much bet-
ter use of the limited memory on the laser printers, and to
permit arbitrary numbers and sizes of fonts. Users running
older versions are urged to update to 2.10 or later.

4 Host Operating Systems and Compilers

The operating systems supported are given in Table 2. The drivers will port
to almost any other UNIX system not listed in the table with relatively little
effort.

Table 2: Operating systems supported.

Operating System Compiler(s)
Gould UNIX cc
Sun UNIX cc, gcc
Hewlett-Packard UNIX cc
PC DOS Microsoft C 3, 4, 5 cl
TOPS-20 kcc-20, pcc-20
VAX UNIX cc, gcc
VAX VMS cc, gcc

On PC DOS, only the Microsoft C compilers have so far been found usable.
Microsoft C 5.1 has been tried and found unusable because it permanently
predefines the ANSI C macro __STDC__ to be 0 instead of 1. Borland Turbo C
1.5 is definitely not usable for the DVI drivers because of completely erroneous

3

floating-point code generation. Turbo C 2.0 resolves the floating-point problems,
and in November, 1988, I developed work-arounds for several new bugs in the
compiler and the library.

For programs that have no floating-point code, I have found Turbo C 1.5
quite usable; it compiles about 5–7 times faster than the Microsoft C 5.0 com-
piler. Version 2.0 remains as fast, but examination of the assembly code gener-
ated for the string primitives shows that, when optimization is selected in both
compilers, the Microsoft C compiler produces substantially better object code.
In the large memory model required for the DVI drivers, the inner loops for
strchr() and strrchr() have 11 instructions each with Turbo C 2.0 when the
-O option is chosen, and 5 and 7 respectively with Microsoft C 5.0 with -Oailt.

gcc is the GNU Project C compiler, which generates code for at least these
architectures:

• Alliant FX/8,

• Altos 3068,

• Convex C1 and C2,

• Intel 386 (Compaq 386, Sequent 386, Sun 386i),

• MIPS (MIPS and DECstation 3100),

• Motorola 68xxx (Sun 2 and 3, HP 9000/300 and 320, AT&T 3B1, Inte-
grated Solutions, Sony NEWS, NeXT),

• Motorola 88000 (in progress),

• National Semiconductor 32xxx (Sequent, Encore, NS Genix),

• Sun SPARC (Sun 4 and Solbourne), and

• VAX (UNIX and VMS).

That is a remarkable record surpassed only by pcc, but that was never available
for diverse systems from one set of master sources. gcc is also free. On the Sun
3, it produces code about 10% more compact, and 10% faster than the native
Sun cc compiler at Sun OS 3.x; Sun cc produces better floating-point code than
gcc at Sun OS 4.0. gcc is the standard C compiler on the NeXT workstation.

Due to code generation errors, neither Sun cc nor gcc compile the drivers
correctly on the Sun 386i under UNIX; under 386i DOS, the Microsoft and
Borland compilers produce working drivers.

Version 3.0 is expected to add support for the operating systems in Table 3.
These are not in the 2.10 distribution, but once 3.0 development has stabilized,
pre-releases from the development directories may be made available by special
arrangement on tape or for ANONYMOUS FTP; IBM PC floppy distributions
will not be offered. Contact the author for details and current status.

4

Table 3: New operating systems supported.

Vendor Operating System
Acorn Archimedes
IBM VM/CMS
Intel RMX
Prime Primos

5 Output Devices Supported

Devices supported by the TEX DVI driver family at version 2.10 are given in
Table 4. The dvitype program is not strictly part of the distribution; it should be
a standard part of every TEX distribution. Similarly, there are programs dvitty
and dvidoc which attempt to display DVI files on ASCII printers and terminals;
they are included in the tape and ANONYMOUS FTP distributions, but are
not members of the family.

Table 4: Supported output devices.

Program Output Device
dvialw PostScript (Apple LaserWriter)
dvibit Version 3.10 BBN BitGraph terminal
dvica2 Canon LBP-8 A2 laser printer (fast experimental

version)
dvican Canon LBP-8 A2 laser printer
dvidla DEC LA50 144 × 72dpi and LA75 144 dpi printers
dvieps Epson 9-pin family 60/72 and 240/216 dpi matrix

printer
dviimp Imagen imPRESS-language laser printer family
dvijep Hewlett-Packard LaserJet Plus
dvijet Hewlett-Packard LaserJet
dvil3p DEC LN03 Plus laser printer
dvimac Apple Imagewriter 72 and 144 dpi printer
dvimpi MPI Sprinter 72 dpi printer
dvioki OKIDATA Pacemark 2410 72 and 144 dpi printer
dviprx Printronix 60h × 72v dpi printer
dvitos Toshiba P-1351 180 dpi printer
dvityp or dvitype DVI Translator for human-readable output

New devices for which support should be available in 3.0 are given in Table 5.

5

Table 5: New device drivers scheduled for future release. Names are subject to
change before final release.

Program Output Device
dviadx Anadex Silent Scribe 72 and 144 dpi dot matrix

printer
dviapo Apollo screen display previewer
dvicon IBM RT 6150 and 6155 console previewer
dvidsk Hewlett-Packard DeskJet 300 dpi ink jet printer
dvielq Epson LQ 24-pin family 180 dpi dot matrix printer
dviep2 Epson 9-pin family 120/216 dpi dot matrix printer
dvifuj Fujitsu DL2400 24-pin 180 dpi dot matrix printer
dvigp Phillips GP 72 dpi and 144 dpi dot matrix printer
dvihl8 Brother HL-8 with brain-damaged Hewlett-

Packard LaserJet emulation
dviibm IBM 4202 120 dpi dot matrix printer
dvilzr Data Products laser printers (1230 and 1260)

with brain-damaged Hewlett-Packard LaserJet
emulation

dvio92 OKIDATA 192 72 and 144 dpi dot matrix printer
dvisun Sun Windows screen display previewer
dviupc AT&T UNIX PC screen display previewer
dvivga IBM PC VGA display previewer

In addition, the TOPS-20 PostScript spooler program, lw78.c, has now been
ported to UNIX.

6 DVI Driver Distribution

Distributions of the DVI driver family are available from a number of sources;
they are described in this section.

The master files reside on the author’s main host machine, science.utah.-
edu, a DEC-20/60 TOPS-20 system. ANONYMOUS FTP (any password) to
that machine can retrieve the file 00readme.txt which tells how to find the
DVI distribution, and much else, on local machines. Distribution formats of
individual files, compressed UNIX tar files, and IBM PC .arc files are available
on science.utah.edu. It is important to read the 00readme.txt file carefully and
follow its instructions about what files to retrieve, and how; otherwise you risk
getting corrupted, or incomplete, data.

VAX VMS backup save sets of the DVI family, Computer Modern fonts, a
PostScript printer spooler, and several TEX-related programs are available on

6

ctrsci.utah.edu, a VAX 8600 running VMS 4.4, where again a 00readme.txt file
gives retrieval details. The ANONYMOUS FTP password is GUEST ; no other
string will be accepted.

Distribution from Utah must be requested in writing, by postal mail to

TEX DVI Driver Distribution
Center for Scientific Computing
Department of Mathematics
220 South Physics Building
University of Utah
Salt Lake City, UT 84112
USA

or by electronic mail to dvi-request@science.utah.edu or the author, or by FAX to
the telephone number (801) 581-4801. A telephone number and street address
should be provided to facilitate resolution of questions, and delivery by express
freight companies (who cannot deliver to postal boxes). Telephone orders will
be accepted only in unusual circumstances.

Nine-track tape (1600 bpi, and for VMS only, 6250 bpi), Sun 1/4in cartridge
tape, and IBM PC floppy distributions are available from Utah for a fixed
US$100 charge, which includes documentation, media, and shipping. Shipping
is by UPS ground service within the lower 48 states, or airmail to Alaska, Hawaii,
and international destinations. Do not send tapes or floppies with your request.
Prepayment in checks drawn on a US bank, or international postal money orders,
is preferred because it reduces paperwork. Purchase orders will be accepted
when prepayment is not possible; an invoice will accompany the shipment.

Faster shipment by UPS, DHL, Federal Express or Airborne Express is pos-
sible by special arrangement, provided our local staff has the time to handle the
order. It carries a surcharge equal to the approximate freight charges; prepaid
or collect shipments should be used.

We try to fill orders within one to two weeks of receipt, but it sometimes
takes longer because of our local responsibilities, or because an order is miss-
ing information, like tape format and density, that we need before it can be
completed.

Distributions are available from the following other channels; allow up to 2
months after release of new versions for these to be available. All of these are
volunteers, and have full-time commitments elsewhere. They are updated by
net distribution where possible, but it still takes them some effort for them to
incorporate the changes in their local distribution mechanism.

Peter Abbott
Aston University
Computing Services
Aston Triangle
Birmingham B47 ET

7

England
Email: AbbottP%uk.ac.aston.mail%uk.ac.rl.gb@nss.cs.ucl.ac.uk

or
Email: PAbbott@nss.cs.ucl.ac.uk

[only net retrieval]

Massimo Calvani
Department of Astronomy
University of Padova
Vicolo dell’Osservatorio
35122 Padova
Italy
Email: Calvani%vaxfpd.infnet%iboinfn.bitnet@cunyvm.cuny.edu

[only net retrieval]

Lance Carnes
Personal TEX, Inc.
12 Madrona Ave
Mill Valley, CA 94941
Email: ”well!pti”@lll-lcc.arpa

[only IBM PC floppies]

Edgar M. Cooke
Software Research Assoc. Inc.
1-1-1 Hirakawa-cho
Chiyoda-ku
Tokyo 102
Japan
Email: kddlab!srava.sra.junet!cooke@uunet.uu.net

[only net retrieval]

Richard J. Kinch
Kinch Computer Co.
501 S Meadow St
Ithaca, NY 14850
Email: -unknown-

[only IBM PC floppies]

Mark Kosten
LaTrobe University

8

Bundoora, Victoria
Australia
Email: ”munnari!latvax8.lat.oz.au!ccmk”@uunet.uu.net

[net retrieval and tape distribution]

Joachim Lammarsch
Universität Heidelberg
Rechenzentrum - Im Neuenheimer Feld 293
Heidelberg 6900
West Germany
Email: $rz92%dhdurz1.bitnet@cunyvm.cuny.edu

[only net retrieval]

Jon Radel
P. O. Box 2276
Reston, VA 22090
U.S.A.
Email: jonradel%icecream.princeton.edu@princeton.edu

[only IBM PC floppies]

We would prefer that IBM PC floppy distributions be handled through Per-
sonal TEX or Jon Radel; their prices are also lower. Preparation of floppies
takes substantial personal time for the author which would be better spent on
other activities.

7 Electronic Newsletter

A network mailing list is maintained for the issuance of newsletters; there were
285 subscribers on 29 May 1989. Requests for addition or deletion should be
sent to the author at the address on the first page of this document. Users on
any network reachable from the Internet can be included; that includes at least
Arpanet, CSnet, MILnet, NSFnet, and SPAN (mainly US), Bitnet (US, Canada,
and Europe), NetNorth (Canada), EARNnet (Europe), JUNET (Japan), Janet
(Britain), Usenet (worldwide), and national university nets in Australia and
New Zealand. A total of 19 newsletter issues have so far appeared. Back issues
are included in all DVI distributions as the files 00mail.*.

Regrettably, local staffing and funding do not permit postal mailings of the
newsletter; if there is a demand for it, and subscribers are willing to pay for it,
it could be arranged in the future.

There is a smaller related electronic list for beta testing of a powerful LaTEX
editing mode in GNU Emacs; this will probably become part of the standard

9

GNU Emacs distribution in 1989. It contains many useful functions, and rec-
ognizes every macro in the LaTEX User’s Guide and Reference Manual. Send
requests for addition to the list to the author at the same address as for the
newsletter. The code is also included in the VAX VMS distribution tapes in the
file [.emacs-18-52.lisp]latex-mode.el.

8 Future Directions

NB: Anything discussed in this section is subject to possibly substan-
tial changes.

Source release of the 3.0 development is still many months off in the future;
changes are still frequent, and a premature release would open a horrendous bag
of worms that would make management of the development beyond my limited
resources. Every time I have attempted to predict when a piece of software
would be complete, I have been wrong, so I shall not attempt to set any date
for the version 3.0 release.

Here is a summary of new features in the 3.0 development:

• For devices which require page bitmaps, the bitmaps are constructed in
strips with multiple passes through the commands for the current page
in the DVI file. The amount of memory to be used for a bitmap strip is
set to a default value, but the value may be changed by a command-line
option. This removes the need to limit the printable page size that existed
in earlier versions on small machines, particularly the IBM PC.

• File search paths are supported for all supported operating systems. A
separate search path, DVIINPUTS, is provided for startup files, PostScript
header files, and files required by \special{} commands. It defaults to
the same value as TEXINPUTS, so normally, it need not be specified.

• Font file names are constructed from a format that may be set at run-time
in the FONTFMT environment variable, and that variable can specify several
name formats. This generalizes, and replaces, the FONTLIST variable used
in earlier versions.

• A new font file encoding, Group 4 FAX, implemented by Michael Ferguson
and colleagues at INRS Telecommunications in Montréal, has been added.
This is even more compact than PK format, and will be referred to as FX4
format. A utility for converting from GF or PK formats to FX4 format is
provided.

• \special{} strings of arbitrary length are supported. Although the TEX
input buffer size typically limits input strings to about 500 characters,
macro-generated strings can be larger.

10

• NUL characters in \special{} strings are supported. In C, such charac-
ters terminate strings by default, so extra processing is necessary to avoid
such truncations.

• Support for Wizard C on PC DOS has been replaced by support for its
descendant, Borland Turbo C 2.0 or later.

• On most systems, the operating system and compiler can now be deter-
mined automatically, eliminating the need to edit machdefs.h. This is
supported by a new header file, os.h.

• ANSI C is the standard programming language. Header files stdlib.h,
stddef.h, and unixlib.h, and several string utilities str*.c, support the
illusion of an ANSI environment on pre-ANSI C systems.

• Dependency lists in makefiles are now generated automatically by a UNIX
script, FIXMAKEFILES, which uses a script, fixmf, plus nawk (using files
include*.awk), and sed. This greatly facilitates makefile updating when
the source files are often changing, and ensures that dependencies are
always correct.

• Handling of font magnifications has been revised by elimination of the
floating-point mag_table[] array from gblvars.h, and its replacement by
an integer table, stdmag[], in stdmag.h. That file is automatically gener-
ated by genmag.c. The contents of stdmag[] can be replaced at compile-
time, or at run-time, by definitions of the environment variable FONTMAGS.
Revised code in openfont.h will now find the closest matching magnifi-
cation when font substitution is called for; previously, the mag_table[]
mechanism required an exact match, making it awkward to support mag-
nification families that were not already represented in the mag_table[]
array.

• Environment variable handling and naming has been standardized across
all operating systems, and the names are now set in the preprocessor
macros, ENV_xxx, in machdefs.h.

• FASTZERO and zerom() have been eliminated in favor of an implementation
of the ANSI library routine, memset(), where required.

• Paper dimensions no longer are fixed in the dvixxx.c files. Instead, a
general, programmable, and easily-extendable, mechanism for specifica-
tion of paper characteristics has been implemented in paper.c. A list of
all the standard paper sizes I could find is present in paper.dat, and the
more popular ones have been extracted and stored as initializing values
for stdform[] in gblvars.h. gensiz.c can be used to generate much of
paper.dat.

11

• A startup file, dvi.ini, is read in initglob.h and options found there
are parsed by fileargs() in filarg.c and then set by calls to option().
After processing that file, driver dvixxx then does the same thing with
dvixxx.ini. Both files are looked for in the DVIINPUTS search path;
neither file need exist. This makes it simple to have private values of
options that are used regularly, without having to specify them on the
command line. It also makes it possible to get around operating system
limitations on command line arguments, and environment variable syntax.
The reason for having two initialization files is that some things, like paper
types, can be defined for all drivers in one file, dvi.ini. The dvixxx.ini
file can then provide modifications specific to one output device.

• Private and library functions that are void are no longer typecast as
(void) when called; some compilers (e.g. Lattice C on IBM PC and
VM/CMS, and Prime compilers) erroneously flag this as an error.

• exit() is called with the ANSI standard arguments EXIT_SUCCESS and
EXIT_FAILURE, instead of 0 and 1. VAX VMS unnecessarily changed the
interpretation of exit()’s arguments, and the ANSI committee had to
support it. The private version, EXIT(), is no longer used in the DVI
drivers.

• All main() functions are declared of type int, and return EXIT_SUCCESS
or EXIT_FAILURE.

• texidx.c has been fixed to correctly handle out-of-core sorting.

• qsort() and qsort.c (used in texidx) has been renamed shsort() and
shsort.c, avoiding conflicts with library functions of the same name, and
more properly describing the underlying algorithm (shellsort, instead of
quicksort). Shellsort is stable, whereas quicksort is not, and a stable sort
is required for correct ordering of index subfields.

• Memory allocation and freeing is now handled in the DVI driver code by
xalloc.c, which contains functions xmalloc(), xcalloc(), xmemused(),
xrealloc(), and xfree(). These provide work-arounds for some defi-
ciencies in existing malloc()/free() implementations, additionally keep
a record of memory utilitization, and provide for debug tracing of memory
usage. The x*alloc() functions do not return when memory is exhausted,
removing the necessity for checking function return values in their callers;
in the rare event that recovery is possible in such a case, malloc() can
still be called.

• A new preprocessor symbol, DVI, is defined at compile time; it is used in
a few routines that are separately compiled, and need to know whether
they are being used in the DVI drivers, or in other code.

12

• A new preprocessor symbol, TEST, is used in some files to bracket built-in
test code with a main() function. This avoids having to carry around
a second file that serves as a test program. filarg.c, paper.c, and
xalloc.c currently use this facility.

• When a font substitution is made, a Boolean flag, substitute, is now
set in the font_entry structure. In prtpage.h, when that flag is set,
setchar() is called instead of setstr(), so that single characters are
set at a time, rather than strings of characters. This will improve the
positioning of substituted characters.

• Ten new device drivers have been added: dviadx, dvidsk, dvielq, dviep2,
dvigp, dvihl8, dviibm, dvilzr, dvisun, and dviupc. One driver, dvigd, has
been deleted. The drivers dvi*72 have been dropped; they can be pro-
duced by compiling the corresponding high-resolution versions with HIRES
undefined. This change reduces the amount of code to be maintained; in
most cases, users will prefer the higher resolution version anyway, so that
is the default.

• Documentation files have been updated, and a new file, doc/dvistatus.-
ltx (whose output you are now reading), will be kept up-to-date as a
record of the current status of the DVI family.

• The definition of PIXROUND() in gendef.h has been corrected; it was
wrong for negative arguments, and would result in one-dot positioning
errors.

• Support for the IBM VM/CMS operating system has been added, using
the Waterloo C compiler. Since the character set is EBCDIC, rather than
ASCII, this entailed a redesign of how character string output is handled.
The output files created always contain ASCII text, so this means that all
text characters, but not binary data, must go through EBCDIC to ASCII
translation. This has been done in such a way as to avoid any extra
overhead on a native ASCII host. The non-ASCII support also serves on
Prime Primos, which uses an ASCII character set biased by 128.

• References to the preprocessor symbols FIRSTPXLCHAR and LASTPXLCHAR
everywhere except in charpxl.h, gendefs.h, and readpxl.h have been
replaced by FIRSTFONTCHAR and LASTFONTCHAR, which correctly reflect
the range 0. . . 255; PXL format fonts remain restricted by their design to
0. . . 127.

• All uses of C type float have been replaced by type double. For dvialw
in particular, this tends to ensure that identical coordinates are generated
on different machines, at least to the precision they are output in.

13

• The PostScript header file, dvialw.ps, has been extensively rewritten
to remove device resolution dependence, and operators that conflict with
the Adobe Encapsulated PostScript File (EPSF) guidelines. Uses of the
bind operator have also been removed in order to make it possible for
\special{} code to redefine operators at print time.

I have made substantial progress in enhancing the support for \special{}.
This work is currently being done with dvialw, but in such a way that it will be
easy to generalize it to all other drivers.

The first step needed in this direction is to define a grammar for what the
\special{} string looks like. Previously, most DVI drivers have defined this
syntax completely ad hoc, with no thought to rigorous parsing, or to future
extensions.

Most of the following description is extracted from the comments in dvialw.
The contents of the TEX \special{} command is expected to conform to a

minilanguage in the same grammar as for paper specifications. The argument
string should contain a series of assignment statements for one or more of the
keywords given in Table 6.

Table 6: \special{} keywords.

Keyword Value Action
graphics string execute the generic graphics primitives

in string (not yet defined)
include filename insert file contents with relative page

positioning
literal string insert literal PostScript
options string not yet defined
overlay filename insert file contents with absolute page

positioning

The order of these is not significant, except that if duplicate keywords are spec-
ified, the value of the last one is used. It is not necessary to supply a final
newline in the strings or files; one will be provided automatically to ensure
correct output.

Literal PostScript code from a file or a literal string is expected to be well-
behaved, and preferably, should conform to Adobe’s EPSF format version 1.2
or later, and to Adobe’s PostScript Document Structuring Conventions, version
2.0 or later. It may contain a showpage (which is disabled temporarily here),
but it should not contain any of the operators given in Table 7.
If it does, erroneous output is virtually certain. While these commands could
be disabled like showpage is, Adobe’s EPSF guidelines do not recommend doing
so.

14

Table 7: Deprecated PostScript operators.

banddevice grestoreall nulldevice setpageparams
copypage initclip quit setsccbatch
erasepage initgraphics renderbands setscreen
exitserver initmatrix setdevice settransfer
framedevice note setmatrix

The imported PostScript should write into its own dictionary if it needs to
define objects. Because dictionary sizes must be specified when they are created,
it is not possible to define a standard one in advance in the SB (\special{}
begin) and SE (\special{} end) macros to protect from corruption of the dic-
tionary, TeXdict, used by dvialw.

The language keyword should specify "PS" or "PostScript"; letter case does
not matter. If any other non-empty value is found, the \special{} command
is ignored, since it presumably applies to some other output device, and control
returns immediately. However, if no language keyword is given, we assume
PostScript, and continue.

Files specified by include and overlay keywords are searched for in the
DVIINPUTS path.

In the common case of include "filename", the upper-left corner of the
bounding box will be placed at the current point. The PostScript file must then
contain (usually near the start) a comment of the form

%%BoundingBox: llx lly urx ury

specifying the bounding box lower-left and upper-right coordinates in standard
PostScript units of big points (1/72 inch). Alternatively, if the comment

%%BoundingBox: (atend)

is found in the file, the last 4096 characters of the file will be searched to find a
comment of the form:

%%BoundingBox: llx lly urx ury

In the case of overlay "filename", the PostScript file to be included will
be mapped onto the page at precisely the coordinates it specifies, where the
page origin is in the lower-left corner, y increasing upward, x increasing to the
right. Any %%BoundingBox specification is ignored, since it is not required for
positioning. This option might be used to print an overlay page. For actions
that are to be done on every page, such as printing a logo, or a string like Draft
or Company Confidential , it is more efficient to redefine showpage instead.

15

If the PostScript file cannot be opened, or the \special{} command string
cannot be recognized, or for relative positioning, the bounding box cannot be
determined, a warning message is issued and the \special{} command is ig-
nored.

Any literal string, and the section of the PostScript file between the comment
lines

%begin(plot)
%end(plot)

or the entire file, if the %begin(plot) comment cannot be found, is copied to
the output file as

SB % filename
(xcp-llx) (ycp-ury) translate % if relative positioning
...literal string...
...PostScript file contents...
SE % filename

The SB and SE macros revert to standard PostScript units of big points, and
bracket the inserted PostScript text with save and restore commands. The
translate command positions the (0,0) origin of the inserted PostScript such
that the upper-left corner of the bounding box is at TEX’s current point.

For literal inserted PostScript without an include or overlay command,
the origin is moved to TEX’s current point.

The save and restore in SB and SE ensure that the inserted PostScript code
cannot change the environment existing before the \special{}. Should it be
necessary to do so (e.g. to remember things from one \special{} to the next,
or to redefine an operator, like showpage), you should just output SE followed by
your PostScript, followed by another SB. The intervening PostScript will then
apply to dvialw’s private dictionary, TeXdict.

In order to support things like landscape mode, change bars, and grey shad-
ing, it is necessary to have paper dimensions, the bounding box size, and the
current point available to inserted PostScript code. These are stored in the Post-
Script macros PaperHeight, PaperWidth, BoxHeight, BoxWidth, CurrentX, and
CurrentY in the outer level dictionary, TeXdict. PaperHeight and PaperWidth
are set only once, at the beginning of the job. The other four are redefined be-
fore each SB is output. Their values are all in standard PostScript units of big
points, not pixels. For an overlay command, the size of the bounding box will
be the page size.

The origin can be moved to the lower-left page corner by the PostScript
sequence

CurrentX neg CurrentY neg translate

16

This is useful in order to obtain absolute page positioning, such as for a page
logo overlay.

The size of the bounding box in big points is saved in PostScript macros
BoxWidth and BoxHeight. They can be used to perform geometric transforma-
tions on the included PostScript. For overlay "filename", they are set to the
page size.

Here are some examples:

% Display a picture with the upper-left corner at the current point

\special{language "PostScript", include "pict.eps"}

% Display a picture at its original absolute page position

\special{language "PostScript", overlay "pict.eps"}

% Use literal PostScript to draw a 1in box with lower-left corner at

% TeX’s current point

\special{language "PostScript",

literal "

newpath

0 -72 translate % move origin from upper-left to lower-left

0 0 moveto

0 72 rlineto

72 0 rlineto

0 -72 rlineto

-72 0 rlineto

closepath

4 setlinewidth

stroke

showpage"}

% Display a figure at half size

\special{language "PostScript",

literal "0.5 0.5 scale",

include "pict.eps"}

% Display the figure in landscape mode by rotating the coordinates

% about the center of the bounding box

\special{language "PostScript",

literal "BoxWidth 2 div BoxHeight 2 div translate

90 rotate

BoxWidth -2 div BoxHeight -2 div translate",

include "pict.eps"}

Landscape mode for a complete document is properly handled by a paper
type, and that is now working for dvialw. Landscape mode for a single page is
tricky, because there is the question of which way to rotate the page, and how
to support portrait mode page headers with a landscape mode table. The latter

17

cannot be accomplished on most devices because of restrictions they impose.
However, it is possible with PostScript, and I have a demonstration file that
shows how to do it.

dvialw has been revised to make it possible to output PostScript conforming
to Adobe’s EPSF specifications. To do this, each page must be independent of
every other page, and for a job with downloaded fonts, this poses a very large
overhead. Normally, fonts are not reloaded every page, but apart from this,
the output PostScript follows the EPSF guidelines. In particular, none of the
deprecated operators are used, and I have demonstrations that show that it is
possible to incorporate dvialw output as input pictures that can be arbitrarily
transformed. This can even be iterated to produce a figure showing a TEX page
inside a TEX page inside a TEX page inside a

dvialw has also been changed to remove almost all dependence on output
device resolution. Now, only a single parameter sets the resolution in dots/inch.
This should make it easy to extend to support PostScript printers of other
resolutions, including the NeXT 400-dpi laser printer, and phototypesetters.

With the assistance of in-line PostScript code, change bars proved to be easy
to implement; I thought about how to do it one evening, wrote the code the next
morning, and had it working almost immediately. The essential idea is to rede-
fine the PostScript showpage operator to handle completion of an open change
bar at end-of-page, and provide for its continuation on the following page. From
the user’s point of view, change bars merely involve bracketing the changed text
with \BeginChangeBar and \EndChangeBar macros; no restrictions whatever
are placed on the intervening text.

Grey shading proved harder to do, but the problem has now been solved.
Because PostScript has an opaque painting model, it is impossible to draw the
shading after text has been set, since the shading would replace the text. Draw-
ing the shading first would be more convenient, since it could permit shading
to be handled like change bars, and flow automatically across page boundaries.
Instead, it is necessary in the TEX code to place the text to be shaded in a box,
then to calculate the box dimensions, output PostScript code to draw a grey
box slightly larger than that, then output the box itself. The tricky part is to
get both boxes correctly aligned.

I have written PostScript macros that make it easy to take an input Post-
Script file and arbitrarily scale it to fit a rectangle of specified size. Here is an
example that scales a figure to fit a half-size page:

\special{language = "PS",
literal = "PageWidth 2 div PageHeight 2 div RESIZE",
include = "spec8a.eps"}

The use of the predefined PageWidth and PageHeight values ensures that this
will work correctly for any paper size.

dvialw.ps also contains a macro sx sy SCALE to scale an input figure by
factors sx and sy from its natural size.

18

At INRS Telecommunications in Montréal, Michael Ferguson has imple-
mented TEX macros that actually read the PostScript file to find the dimensions
from the %%BoundingBox comment, and then automatically compute the space
needed for the figure, freeing the user of having to insert explicit TEX spacing
requests around a \special{}. Those macros should be easily adaptable to this
new \special{} support code in dvialw.

In order to deal with the fact that \special{} code is not standardized, and
each driver implementer has done it differently, it may be desirable to provide
a run-time regular expression editing capability for \special{} strings. This
would add the not-insignificant code for regular expression parsing, which may
require excessive memory. It would, however, make it fairly straightforward to
provide built-in (and user-definable) support for syntaxes provided by other DVI
drivers. No code to do this has yet been implemented, and it would probably
be better instead to write a separate DVI-to-DVI filter to do the job. While
such changes can obviously also be done in the original TEX manuscript, DVI
files have become a medium of documentation exchange on the Internet, and
will often be processed on a system other than the one they were generated on.

Most of the preceding remarks seem to be dependent upon PostScript, and
indeed, features like change bar support seem to need the programmability of
PostScript. What about ordinary graphics files? In the TUG DVI committee,
we have been wrestling with this problem for many months. In May, 1989, I
gave a talk in Paris on the topic of TEX and graphics, where I discussed various
possibilities. It is published in Cahiers GUTenberg, No. 2, Mai 1989, pp. 13–53.

While simple pictures can be done (usually laboriously) with TEX macros,
TEX memory limits put a very severe restriction on the complexity of pictures
that can be handled, and TEX is almost completely lacking in graphics prim-
itives. Thus, handling of complex pictures seems destined to be relegated to
requests in a \special{} string.

The problem is then to decide on a format that can be generated by graph-
ics packages, produced by translation from popular graphics file formats (e.g.
Tektronix and HPGL), and written by hand for simple cases.

After long thought, my inclination is not to invent something new here, but
instead to adopt a subset of PostScript. A subset is required to simplify the
parser. PostScript is a stack-based extensible language, and parsing cannot
be done correctly until every operator can be interpreted; some operators take
variable numbers of arguments, and the stacks cannot be managed without
knowing how many arguments an operator must consume. I have therefore
modified my <PLOT79> graphics system to produce such a subset, and have
produced a working parser for that subset in about 220 lines of code and 130
lines of comments. With planned extensions to the subset, it seems likely that
an adequate parser may be around 1000 lines of code, which represents about
10% of the current size of a typical DVI driver.

Although PostScript has a large vocabulary, a subset of 20 operators is
sufficient for most line graphing applications, and it should be possible to write

19

the parser in such a way that a vector of pointers to functions can be provided
by the caller, so that the same parsing code can be used by all the DVI drivers,
with separate implementations of the primitives for different drivers. However,
all of the bitmap device drivers could use essentially identical code, since in each
case, the primitives merely have to be expanded into dots in a bitmap of known
resolution.

20

