Document Preparation with IATRX

(Originally edited by David Budgen)
Edited by Sam Nelson

Department of Computing Science

University of Stirling

February 1990, Revised October 1990

Contents

1 Introducing IBTRX
1.1 What is IWTRX? . . oo o oo
1.2 How it works L e e
1.3 This document L
1.4 Other tools e
1.5 Typography and other issues
1.5.1 Typographic terms L
1.5.2 Otherreading L
2 A Simple Example
2.1 General structure of a documento Lo,
2.2 Command formats L
2.3 Asimpleexample Lo
3 ITpX Structures
3.1 Introduction Lo
3.2 Organizing your teXt oL e e e e e
3.3 Sectioning e e
3.4 Displayed material oL
3.4.1 Quotationsl
3.4.2 Verbatimo
343 Lists . . o o o e e e e
344 Formulae
3.5 Changing fonts L L
3.6 Footnotes L e
3.7 Figures and tables L L L
3.8 Producing a bibliography L
3.9 Errors e e e e
4 Structuring a Dissertation
4.1 Document Design L e e e
4.2 Sectioning intofiles
4.2.1 File hierarchy
4.2.2 The include and input options L.
4.2.3 Pagenumbering
4.3 Development Strategy

o o ©

12
13
13
13
14
15
16
16
16
18
19

20
20
21
21
22
23
24

CONTENTS

5 Generating Bibliographies with BIBTEX

5.1 Introduction oL
5.1.1 The Bibliographic Database
5.1.2 Using BIBTEX with IA\TRXo oo
5.1.3 Output from BIBTEXo o o
5.1.4 The thebibliography Environment

5.2 Format of Bibliographic Entries Lo oo
521 Text Fields
5.2.2 Entry Types o o i i e

5.3 Additional Information oL Lo

6 Running IATpX and dvips

6.1 TATEX . . .
6.2 The .dvi (DeVice-Independent) file and post-processing
6.3 The dvips post-processoro
6.4 Administrative hints L Lo

7 Previewing IWTpX Documents

7.1 Using xdvi . . . L e
7.2 xdvioptions L e
7.2.1 Options selected when xdvi is invoked
7.2.2 Commands used within xdvi
7.3 Ghostview L

8 Generating graphics

8.1 PostScript graphics fileso oo
8.2 Incorporating the image into IANTpXo
8.3 Example output L
8.4 Conclusion e

9 Some Hints & Useful References
9.1 BIpX commands o
9.2 Styleand Use e
9.3 FEthical and Social Issues e

Chapter 1

Introducing I&IpX

1.1 What is IXTpX?

During the 1980’s, one of the major changes that occurred in computing was the development
of highly versatile output devices. Unlike earlier impact printers, the high-resolution matrix
printers and laser printers are capable of printing a wide range of typefaces, fonts and sizes
(these terms will be clarified later). IATRX is one of the software tools that has been developed
to allow the user to take full advantage of the power of such printing devices.

The popularity of word processing has led to the development of many software tools which
are based upon wysiwyg techniques (what you see is what you get). While such systems can
be excellent when used with fixed-pitch typewriter style printing forms, the results when used
with mixed fonts and mixed typefaces are often far less impressive. This is largely because
over the decades and centuries typesetters and compositors have developed a set of ‘rules’
which embody hard-won ‘knowledge’ about the effective use of such tools, and we have become
used to seeing books and document laid out to these high standards.

Another reason for the lack of ‘perfect’ wysiwyg packages is that while printer technology
involving resolutions in hundreds of pixels per inch is standard, display screen technology is
still limited to less than 100 pixels per inch, except in very specialised (and very expensive)
areas. Thus, it is technologically impossible to achieve true wysiwyg effects, unless the effects
required are very limited in scope (boxes-and-lines diagrams or fixed-width fonts, say).

IATEX is based upon an entirely different philosophy to that of wysiwyg tools. The idea
in IATRX is that the designer of a document should specify their layout requirement in an
abstract manner, and that the program should then translate these into the necessary details
of typeface, font and size, making use of a set of rules of ‘style’ that have been derived from
type-setting experience. So the user of IATEX is concerned only with specifying the logical
design of their document in terms of chapters, sections, lists etc, rather than being concerned
with physical layout.

The effect of this approach is that the document producer controls the appearance of the
document indirectly, through a series of encodings which describe to the document processing
package how the document should look. These descriptions take the form of ordinary text
files produced with any ordinary text editor; indeed, the whole armoury of text-processing
utilities may be used to ‘attack’ INTpX source files, which can lead to useful short cuts, as will
be seen later.

2 CHAPTER 1. INTRODUCING IWTpX

1.2 How it works

IATRX is what is termed a ‘mark up’ language. The input to IATRX consists of the raw text
of a document, interspersed with directives that indicate how each part of a document is to
be processed. IATRX supplies a generous set of structures, as well as the means of adjusting
some of their parameters where necessary. Overall, the effect is very like that of compiling a
program.

The output from IATRX is not immediately printable. While a number of files of infor-
mation may be produced (the exact number depending upon the options selected), the main
textual output is a device-independent file, usually given the extension .dvi. This file needs
to be further processed so that it can be displayed on a screen or printed on a particular
printer. A wide range of programs to performs the translation are available. For example,
tools are available to transform .dvi files into line-printable output for cheap proof-reading
purposes (highly recommended and environmentally sound), various different programs are
available locally to preview output approximating the page display on a workstation screen
(depending on the exact type of your workstation), and at least two programs are locally
available to transform .dvi file into PostScript! for output to a laser printer for ‘“fair copy’.

IATRX is itself built upon Donald Knuth’s TEX typesetting language. TEX is enormously
powerful, but writing in TEX is rather akin to writing programs in assembler—and is not
recommended for the inexperienced. Because IATRpX is implemented as a set of style macros
for TEX we occasionally become aware of its presence when errors occur, since some of the
error messages may be generated from TEX rather than from IATRpX. Neither give particularly
clear messages, but those from TEX can be particularly obscure!

1.3 This document

The purpose of this document is to support the ‘no frills’ use of INTRX within the Department.
The various chapters give basic guides to INTpX document commands, running the available
tools, and organisation of a large document, such as a dissertation. It provides hints and
guidelines and has been assembled from a wide range of sources.

As a general point though, if you cannot find out how to obtain a particular effect with
IATRX fairly easily, don’t waste your time, simply find a different form of expression. IATpX
discourages the production of output forms that are regarded as stylistically undesirable, and
it is generally better to accept that in these matters ‘IATpX knows best’. It is probably only
too true!

1.4 Other tools

UNIX does provide some useful tools that can be used with any form of document preparation.
In particular, everyone should know about the following ones.

we will count words and lines in a file.

spell will check the spelling of words in a file and provide a list of errors.

!PostScript is an example of a Page Description Language, a shorthand method for describing the layout
of every pixel on a printed page.

1.5. TYPOGRAPHY AND OTHER ISSUES 3

We particularly recommend the use of the latter. ..

One other point ought to be mentioned here: laser printers are relatively slow and are
expensive to run. Draft sections of a document need not be typeset simply for the purposes
of proof-reading, and may simply be printed out on the standard line-printer. Please avoid
laserprinting your output whenever possible.

1.5 Typography and other issues

1.5.1 Typographic terms

Most of us use these very casually (and erroneously). As an instant guide to correct use of
someone else’s technical terms, we offer the list below.

typeface is an ‘abstract design idea for how letters are to be presented’. Examples of type-
faces are Times New Roman, Helvetica and Baskerville. A typeface can be realised in
various sizes and fonts (see below).

font describes a particular aspect of a typeface, often in a particular size. Examples of fonts
are bold, roman, italic, slanted and condensed.

point is a printer’s measure of size. A point can be taken as being approximately 1/72 of
an inch. Font size is measured in points; for example, this document is set in 11-point

type.

serif is a small lateral extension at the end of a stroke. These are found in various forms in
many typefaces, and are considered to be an aid to faster reading of a document, since
they help to create the imaginary line followed by the eye as a line of text is read. Most
books (and this guide) are set in typefaces that have serifs.

For a fuller description of typographical terms, the book by Rubinstein described in the
next section is particularly recommended.

1.5.2 Other reading

There is a short bibliography at the end of this document. The ‘bible’ of INTpX was written by
Leslie Lamport, who was its creator [Lamport86]. There is a copy in the library and various
copies are owned by members of the Department (who are generally very reluctant to lend
them out). It is not particularly well organised as a book, but, there is, at the time of writing,
no alternative. For dissertation preparation these notes should suffice, although reference to
Lamport’s book may prove necessary on occasion.

Anyone wanting to know more about digital type-setting, and about typography in general,
should consult the book Digital Typography by Richard Rubinstein [Rubinstein88]. This is a
very interesting and well-written book that is saturated with useful references and gives lots
of fascinating ideas.

TEX itself is thoroughly documented in the works by Donald Knuth, but these are NOT
recommended as suitable reading for the novice.

Chapter 2

A Simple Example

The aim of this chapter is to give a brief example of the IATpX structures and the way that
IATRX documents are organised. It should provide enough information for a user to be able to
produce a relatively simple document and contains a small example of such a document in the
form of the abstract for a larger paper. Chapter 3 in turn provides a much fuller description
and one that is more geared to the production of dissertations. Chapter 9 describes a number
of options, and gives some practical hints to help with document organisation and production.

2.1 General structure of a document

A INTpX document has a structure which is somewhat like that of a program written in a
block-structured language such as Pascal. The general form is as follows:

Style Declarations. These commands inform IATpX about the way that the document
is to be formatted and laid out on the page. The very first command must be a
\documentstyle command which identifies which of the general document forms this
is to be, namely article, report, letter or book.

(You should note that all IATpX commands begin with a backslash ‘\” character to
distinguish them. Some are placed on separate lines, others may be embedded in the
text.)

Other style declarations are optional, and may be used to determine such forms as page
numbering (arabic, roman, large roman etc), and to modify the values of particular
parameters used by INTpX to format the output, such as line spacing.

Headers. These are optional, and are generally used to format a document title block.

Document Body. Thisis the main body of the document, and is delimited by the commands
\begin{document} and \end{document}. These effectively determine the scope of the
IATRX commands.

The main body of the document can have quite complex internal structures. In particular,
it can be segmented into chapters (not for article), sections, subsections—all of which will
be automatically numbered. (The numbering mechanism can be easily suppressed if required
by appending an asterisk to the end of the section command.) Paragraphs are separated
by an empty line in the source text. IATRX provides a number of list-making structures for

4

2.2. COMMAND FORMATS 5

bulleted lists, numbered lists and highlighted lists, as well as the means of creating one’s own
forms! There are also font-changing commands that can be used to embolden or italicise
words and phrases. Fuller descriptions of these features are given in Chapter 3.

2.2 Command formats

As already noted, IATRX commands begin with a backslash character, ‘\’. Command argu-
ments are enclosed in curly braces, and these are sometimes used to delimit the scope of more
local options such as font changes.

The scope of an environment is normally delimited by using the form:

\begin{..environmentform..}

\end{. .environmentform. .}

and we have already seen an example of the use of this form with the \begin{document}
and \end{document} commands. Other environments include itemize for bulleted lists,
enumerate for numbered lists, quote for indented quotation blocks and so on. In general
these forms can be nested without any problems.

More local options such as font changes can be denoted by a short form as in {\bf ...}
to embolden the enclosed character string, and {\em ...} to italicise it.

2.3 A simple example

The example used below is based upon a simple technical article or paper. Figure 2.1 shows
the resulting formatted output that will be generated from IATpXwhen this is processed. For
brevity, the bodies of some of the paragraphs have been abbreviated in the source text listing
that follows:

% comment lines begin with the percent symbol and are ignored by
% LaTeX and TeX. LaTeX commands begin with a back-slash.

\documentstyle[1ipt,ad]{article}

\author{David Budgen \\ University of Stirling \\ Scotland}
\title{On A Use of Metrics for the Assessment of Software Designs}

\begin{document} % this begins the actual document body
\maketitle % this actually creates the title block
\begin{abstract}

The following description was an outline of a paper being submitted
for a conference. It summarises an item of work, and gives the
supporting technical references.

\end{abstract}

\section{Introduction}

6 CHAPTER 2. A SIMPLE EXAMPLE

The work described here was performed as part of an Alvey-funded research
project (MDSE -- MASCOT Design Support Environment). The project is
investigating ways of enabling a designer to produce and assess a design
using the MASCOT representation \cite{mascot}.

\section{Metrics for Design}

The lack of metrics that can be used to quantify the features of software
designs can be attributed partly to the lack of any standard design
representation.

This therefore makes MASCOT a widely-available ‘standard’ that

can be used to provide the basis for the work of this project.

The use of metrics for assessing the quality of code is quite
well-established \cite{conte}, and the value of many of the better-known

common design representation.
\section{Experimental Work}

The work described in this paper has taken a rather different approach,
similar to the ‘top-down’ approach used by Troy and Zweben \cite{troy};

that is more suited to a quantitative assessment.

We begin by selecting a set of {\em design principles}, which are global
descriptions of the properties of a design that are believed important.
We then derive a set of {\em general attributes} that reflect these
principles, and further decompose these into {\em specific attributes}.
Figure 1 shows the proposed hierarchy of principles and attributes.

The next step is MASCOT-specific, and involves identifying the
MASCOT design entities that will be expected to exhibit the

specific attributes, and from this, the measurable features that will
provide quantitative assessments of these attributes.

We are currently conducting a series of ‘design experiments’ within the

of the {\em design principles}. The preliminary results from these will
be presented in this paper.

\begin{thebibliography}{6}

\bibitem{mascot} H R Simpson and K Jackson, {\em Process Synchronisation
in MASCOT}, The Computer Journal, {\bf 22}, 332, 1979

2.3. A SIMPLE EXAMPLE 7

\bibitem{conte} S D Conte, H E Dunsmore and V Y Shen, {\em Software
Engineering metrics and models}, Benjamin/Cummings, 1986

\bibitem{troy} D A Troy and S H Zweben, {\em Measuring the Quality of
Structured Designs}, Journal of Systems and Software, {\bf 2}, 1981, 113--120

\end{thebibliography}
\end{document}

This example contains a number of additional forms, most of which should be self-evident.
In particular the combination \\ forces a line break at that particular point in the text.

You might note that IATRX cannot always produce perfect line breaks, although it does its
very best using strict hyphenation rules. The first line of the second paragraph of §2 is slightly
longer than the other lines, and the following extract from the run-time output produced by
IATRX shows how this is reported.

This is TeX, C Version 2.9 (preloaded format=lplain 89.3.20) 25 0OCT 1990 09:48
**&/usr/lib/tex/fmt/1lplain dbexample

(dbexample.tex

LaTeX Version 2.09 <25 Jan 1988>

(/usr/lib/tex/inputs/article.sty

Document Style ‘article’ <5 Feb 88>.

(/usr/lib/tex/inputs/artil.sty)

) (/usr/lib/tex/inputs/ad.sty) (dbexample.aux)

Overfull \hbox (4.05452pt too wide) in paragraph at lines 38--47

[J\elvrm The use of met-rics for as-sess-ing the qual-ity of code is quite well
-established

] [2] (dbexample.aux)

Output written on dbexample.dvi (2 pages, 5532 bytes).

This is a relatively infrequent problem, although it becomes a more severe one if you use
narrow page widths (using two columns leads to a significant increase in such lines). It is
rarely significant in terms of the usefulness of the output!

CHAPTER 2. A SIMPLE EXAMPLE

On A Use of Metrics for the Assessment of Software

Designs

David Budgen

University of Stirling

Scotland

October 16, 1991

Abstract

The following description was an outline of a paper being submit-
ted for a conference. It summarises an item of work, and gives the

supporting technical references.

1 Introduction

The work described here was performed as part
project (MDSE ~ MASCOT Design Support I
is investigating ways of enabling a designer to

using the MASCOT representation [1].

2 Metrics for Design

The lack of metrics that can be used to quant|
designs can be attributed partly to the lack of
sentation. Because MASCOT is a standard fo
by the Ministry of Defence in the U.K., its gral
ily the ACP diagram) are widely understood.
MASCOT system is also well-defined for the mo|
tation of a MASCOT design is something that w
“MASCOT community’. This therefore makes
‘standard’ that can be used to provide the basis

The use of metrics for assessing the quality of
[2], and the value of many of the better-known n
In general though, the available metrics have
bottom-up manner, rather than to support any
and they do not all lend themselves to being us
sign too. Those metrics that have been used fa
have generally been limited to rather qualitat]
lack of any common design representation.

3 Experimental Work

The work described in this paper has taken a rather different approach,
similar to the ‘top-down’ approach used by Troy and Zweben [3]; first es-
tablishing which qualities we want to assess in a design, and then examining
how the available measurable features can be used to assist such assessments.
By expressing these features in terms of MASCOT elements, we are then
able to define our metrics in a manner that is more suited to a quantitative
assessment.

We begin by selecting a set of design principles, which are global de-
scriptions of the properties of a design that are believed important. We
then derive a set of general atiributes that reflect these principles, and fur-
ther decompose these into specific attributes. Figure 1 shows the proposed
hierarchy of principles and attributes.

The next step is MASCOT-specific, and involves identifying the MAS-
COT design entities that will be expected to exhibit the specific attributes,
and from this, the measurable features that will provide quantitative assess-
ments of these attributes.

We are currently conducting a series of ‘design experiments’ within the
MDSE project, with the aim of providing both a verification for these ideas,
and also a means of determining how the various metrics can be re-combined
to provide measures of the general attributes, and hence of the design prin-
ciples. The preliminary results from these will be presented in this paper.

References

[1] H R Simpson and K Jackson, Process Synchronisation in MASCOT, The
Computer Journal, 22, 332, 1979

[2] S D Conte, H E Dunsmore and V'Y Shen, Software Engineering melrics
and models, Benjamin /Cummings, 1986

[3] D A Troy and S H Zweben, Measuring the Quality of Structured Designs,
Journal of Systems and Software, 2, 1981, 113 120

Figure 2.1: The formatted output

Chapter 3

[dTpX Structures

3.1 Introduction

This document was produced with the intention of assisting students in the preparation of
their dissertations using IATpX. The document works on two levels. Firstly it provides a
short introduction to IATRpX. Secondly the text files from which it is produced form a set of
templates you can use in creating your own IATRpX files. This chapter is also set using an
increased interline spacing, as would be appropriate for a dissertation.

IATEX is a collection of typesetting macros designed to make Donald Knuth’s TEX [Knuth86]
typesetting program more accessible. IATEpX is a powerful tool. This document only deals
those aspects which seem to be essential in the preparation of a dissertation. For a compre-

hensive presentation the reader is referred to the IATpX manual [Lamport86].

3.2 Organizing your text

Input to INTRX is in the form of a text file. IATRpX input files have a .tex extension. The
logical structure of a document is imposed by typesetting commands. It is good practice to
split your text into logical units, each stored in a separate file, (see Chapter 4). Co-ordination
is achieved through a root input file which specifies the document style and ‘pulls in’ the

relevant text files. This document was produced with the following root file:

10 CHAPTER 3. IWIpX STRUCTURES

\documentstyle[11ipt,adwide,twoside]{report}
\pagestyle{headings}

\newcommand{\dspaceon}{\renewcommand{\baselinestretch}{1.3}\large\normalsize}
\newcommand{\dspaceoff}{\renewcommand{\baselinestretch}{1}\large\normalsize}

\title{Document Preparation with \LaTeX}

\author{Edited by David Budgen \\Department of Computing Science \\
University of Stirling}

\date{February 1990, Revised October 1990}

\begin{document}
\pagenumbering{roman}
\maketitle

\input{acks}
\tableofcontents

% The chapters as available

\include{intro}
\include{example}
\include{miniguide}
\include{documents}
\include{running}
\include{dvipsguide}
\include{previewer}
\include{graphics}
\include{hints}

\include{biblio}

\end{document?}

A detailed description of this file follows. Firstly, the command
\documentstyle[11pt,adwide,twoside]l{report}

specifies the basic format of the document — this effects the layout of your text on the page,
the size of headers, etc. In general INTRX commands are prefixed by a \ (backslash) character.

IATRX provides a number of standard styles such as report, article, and book. Here we opt

3.2. ORGANIZING YOUR TEXT 11

for the standard report style (report). Additional style options are selected within [...]
brackets. Here the 11pt option specifies the point size to be used throughout the document.
A point is a measure of type size — 1pt is approximately 71—2 of an inch. Other sizes are 10pt
(the default) and 12pt. The ad4wide option enlarges the printing area on the page to fit better
on to A4-sized paper, while the twoside option organises page margins for two-sided printing.
This last option would not be appropriate for a thesis. (For many purposes the a4wide option
produces a page that is really too full and with text that occupies too wide a line. The a4
option may be much more suitable for articles, essays etc, although a4wide is probably more
appropriate for the denser material of a dissertation!)

Comment lines begin with the % character, and are terminated by the end of a line. Com-
ments are mostly useful in ‘root’ files such as this one, where they can be used to remind the
author of items to be included later, or to exclude sections that have not yet been completed.

The commands used to specify these entities illustrate the notion of scope associated
with certain commands known as declarations. Braces are used to delimit the scope of a
declaration. For example, here is some emphasised text produced by the \em command. The

associated IATRpX input takes the form:
For example, here is some {\em emphasised text} produced by ...

The scope of a declaration can also be delimited by the \begin and \end commands. For in-
stance, consider “some more emphasised text” which was produced by the following fragment

of IATRX:

\begin{em}
‘‘some more emphasised text’’

\end{em}

Such a construct is called an environment, the name of the environment is specified within
braces. Note that the \em declaration corresponds to the em environment. Environments
are best used where a large section of text is involved. The largest text environment is the

complete document and is delimited as follows:

\begin{document}
\end{document}

The \pagestyle declaration controls the text printed in the header and footer regions of the
page. The command \pagestyle{plain} generates an empty header and places the page
number in the footer, whereas \pagestyle{empty} generates an empty header and footer.

Roman and arabic numbering is achieved by the \pagenumbering declarations.

12 CHAPTER 3. IWIpX STRUCTURES

IATRX keeps track of various kinds of referencing information enabling the automatic
generation of a table of contents by the \tableofcontents command. Similarly, lists of
figures and tables can also be generated for free.

The \include{intro} command causes IATpX to include the file intro.tex. In this way
the text of your document can be held in different files. In practice you will only work on one
file (chapter) at a time. A mechanism to prevent the inclusion of particular files is therefore
required. Two approaches are available. Firstly, as already mentioned, any line of the input
file starting with a % symbol is ignored by IATRpX. For instance, the following sequence of

includes would result in only “chapter2” being included:
%\include{chapteri}

\include{chapter2}
%\include{chapter3}

Alternatively, the \includeonly command enables you to specify within the preamble which
of the include files should be processed. For instance, the inclusion of only “chapter2” can

also be achieved by the following use of the \includeonly command:

\includeonly{chapter2}

\include{chapteri}
\include{chapter2}
\include{chapter3}

Finally, the \appendix command tells IATpX to treat the text which follows as appendices.

This basically means that sectional units are labelled using letters.

3.3 Sectioning

IATRX provides a number of sectioning commands. Chapters are constructed by the \chapter

command. The heading of this chapter was generated by the command

\chapter{\LaTeX\ Structures}

3.4. DISPLAYED MATERIAL 13

IATRX takes care of chapter numbering automatically. A chapter is terminated either when
another \chapter request is processed or when the \end{document} command is reached.

Sectioning within a chapter is produced by the commands:
\section

\subsection

\subsubsection

For example this section was produced by the command:

\section{Sectioning}

All sectioning commands result in a new paragraph being started. One or more blank lines

denote the end of a paragraph.

3.4 Displayed material

IATRX provides a number of standard environments for displaying text, the most common

ones are presented here.

3.4.1 Quotations

The quote environment is used to produce quotations, for example:

“An opening quotation is a useful device, especially if it shows the author to be
a broadly cultured Man (or Woman) of Science rather than a narrowly ignorant
philistine. Newton, again, is good, particularly if he includes a few quaint words
with initial capitals. Quotations from Ancient Greeks, if written in Greek charac-
ters without a translation, are highly sophisticated. Biblical quotes are considered
rather tasteless nowadays, and The Hitch-Hiker’s Guide to the Galaxy is passé.
The Rubaiyyat of Omar Khayyam is forbidden.”

(Jon Stoney, New Scientist 20/27 December 1984)

3.4.2 Verbatim

To prevent a block of lines from being re-arranged by IATEpX the verbatim environment should

be used. You might use this to show a piece of code, for example

14 CHAPTER 3. WIpX STRUCTURES

member (X, [X]_1).
member (X, [_|Y]):-
member(X,Y).

The dspaceoff\dspaceon switch is used to obtain single spacing in such instances.

3.4.3 Lists

IATRX provides three environments for creating lists: itemize, enumerate and description,

for example:

e bullets are produced by the itemize environment
e and are useful when you wish to present a list of items

e which has no order.

The proceeding list was produced by the following IATRX input:
\begin{itemize}
\item bullets are produced by the \verb+itemize+ environment
\item and are useful when you wish to present a list of items

\item which has no order.
\end{itemize}

Numbered items are produced by the enumerate environment
1. Tweedledum does not exist.
2. Tweedledee does not exist.
3. At least one of these sentences is false.
The proceeding list was produced by the following IATpX input:
\begin{enumerate}
\item Tweedledum does not exist.
\item Tweedledee does not exist.

\item At least one of these sentences is false.
\end{enumerate}

while a list of labelled items is generated by the description environment
grumble to complain in a bad-tempered way.

grumpy bad-tempered.

3.4. DISPLAYED MATERIAL 15

grunt to make the gruff snorting sound characteristic of a pig.
The proceeding list was produced by the following IATRX input:
begin{description}
\item[grumble] to complain in a bad-tempered way.
\item[grumpy] bad-tempered.
\item[grunt] to make the gruff snorting sound characteristic of a

pig.
\end{description}

List-making environments may be nested (up to four levels of any type — which is too
many). When nesting itemize environments, different symbols are used to begin each item,

and when nesting enumerate environments, different forms of counter are used.

3.4.4 Formulae

IATRX is particularly good for producing mathematical formulas, using the math environment

which is delimited by $ characters. Space limits all but a few basic examples.

This example of an inline formula \/z + y was produced by the following fragment of IATRX:

This example of an inline formula: $\sqrt{x+y}$ was produced by

the following ...

While a formula displayed on a separate line, such as

ve+y
is achieved by the following fragment of IATRpX

While a formula displayed on a separate line, such as
\[\sqrt{zx+y} \]
is achieved by the following ...

The displaymath environment has the same effect as the \[...\] delimiters. Numbered

equations are produced by the equation environment

(Vo : N)(Vy: N)@ =)V (2 #) (3.1)

Formulas which are too long to fit on a single line are handled by the eqnarray environment.

See the IATRX manual for more details.

16 CHAPTER 3. WIpX STRUCTURES

3.5 Changing fonts

A font is a particular size and style of type, some examples follow:

bf This bold face type is produced by: {\bf This bold face typel}
em This emphasised type is produced by: {\em This emphasised type}
tt This typewriter type is produced by: {\tt This typewriter typel}
sl This slanted type is produced by: {\sl This slanted type}

sc THIS SMALL CAPS TYPE is produced by: {\sc This small caps type}

3.6 Footnotes

Footnotes! are generated by the \footnote command. The preceding footnote reference was

produced by the following fragment of IATRX:

Footnotes\footnote{Defn: A note printed at the bottom of the page.}
are generated by the ...

b

Note that there is no space between “Footnotes” and the \footnote command.

3.7 Figures and tables

The figure environment is usually used for the presentation of diagrams and pictures. Tab-
ular information should be packaged up using the table environment. Both figures and tables
require titles. These are produced by the \caption command. Note that figures and tables
are never split across a page, they are said to “float”. Figure 3.1 was produced using the
picture environment while Table 3.1 was produced using the tabular environment which
allows you to align text within boxed columns. The IATRX source used to produce Table 3.1

is as follows:

\begin{table}

\centering

\begin{tabular}{|111|} \hline\hline

{\em Formatted } & {\em Unformatted} \\ \hline\hline
$A \rightarrow B$ & \verb+$A \rightarrow B$+ \\ \hline
$ \lambda ((x)b)$ & \verb+$ \lambda((x)b)$+ \\ \hline
$ \neg A § & \verb+$\neg A$+ \\ \hline

$ A \vee B$ & \verb+$A \vee B$+ \\ \hline

!Defn: A note printed at the bottom of the page.

3.7. FIGURES AND TABLES 17

modus tollens

A— B B— 1

modus tollens

A—0

Figure 3.1: Example figure

Formatted | Unformatted
A—B $A \rightarrow B$
A(z)b) $ \lambda((x)b)$
—-A $\neg A$

AV B $A \vee B$

AANB $A \wedge B$

Table 3.1: Example table

$ A \wedge B$ & \verb+$A \wedge B$+ \\ \hline
\end{tabular}

\caption{\label{formulas} Example table}

\end{table}

The references to Table 3.1 were produced by the \ref command, for example:

The references to Table™\ref{formulas} were produced by the
\verb+\ref+ command, for example:

The \ref command enables relative, as compared to absolute, referencing. A \ref command
takes a key as its argument. The point of reference, the table in this case, is indicated by
a corresponding \label command which appears within the table environment. For more

details on the tabular and picture environments see the INTpX manual.

18 CHAPTER 3. IWIpX STRUCTURES

3.8 Producing a bibliography

The bibliography list is produced with the thebibliography environment. This is a rather
special form of list making environment, which will also produce its own heading. A simple
example is:

\begin{thebibliography}{Rubinsteinetal}

\bibitem[Knuth86]{knuth}
Donald E Knuth, {\em The \TeX book}, Addison-Wesley, 1986,
ISBN 0-201-13447-0

\bibitem[Lamport86]{lamport}
Leslie Lamport, {\em \LaTeX\ A Document Preparation System},
Addison-Wesley, 1986, ISBN 0-201-15790-X

\bibitem[Rubinstein88]{rubinstein}

Richard Rubinstein, {\em Digital Typography: An Introduction to
Type and Composition for Computer System Design}, Addison-Wesley,
1988, ISBN 0-201-17633-5

\end{thebibliography}

The argument of the thebibliography environment should be a piece of text which is slightly
wider than the widest item in the list.

Fach \bibitem entry must have an associated label that can be referenced from the
\cite command (see below). It may also have an optional argument preceding this (in
square brackets) that is used to define the user’s own reference labels that will appear in the
document. If this is not used, then as a default IATpX will produce numerical reference labels,
so that in this case the argument for the thebibliography environment need only be a short
string such as {1003}.

The bibliography is most easily maintained by storing it in a separate file such as biblio.tex.
This form is used in the root file example given at the beginning of this chapter.

Citations? are produced by the \cite command. Associated with the \cite command is
a label, which is used to provide a reference to an entry in the bibliographic database. As an

example, using the above items, the phrase
. in the \TeX book \cite{knuth} ...
would appear as

...in the TEXbook [Knuth86] ...

2 Cross-references to publications.

3.9. ERRORS 19

Running IATEX produces a number of files, one of which, the auxiliary (.aux) file, includes
cross referencing information. The . aux file is also used in the creation of the table of contents
(.toc), and the lists of figures (.1lof) and tables (.lot). Modifications to your document
which effect the table of contents, etc are incorporated the second time around. For example,
the \tableofcontents command, which appears in the preamble, tells IATRX to create a new
.toc file and use the previous one (if any exists) to generate the contents page for inclusion
in the current document. The .toc file, therefore, is one step out of phase with the document

and consequently a second run is required. IATRX in effect is a two-pass compiler.

3.9 Errors

IATRX throws up errors as it finds them. Typical errors are missing closing brackets and
mis-spelt commands. For example, the following error message was produced because of a

mis-spelling of the itemize environment:

(5]
LaTeX error. See LaTeX manual for explanation.
Type H <return> for immediate help.
! Environment itemise undefined.
\@latexerr ...for immediate help.}\errmessage {#1}
\endgroup
1.226 \begin{itemise}

The 7 at the end of the error message indicates that IATRX has suspended processing. It is
possible to introduce a patch dynamically, however, this does not effect the source file which
must also be modified. The interested reader is referred to chapter 6 of the IATpX manual for
more details. By simply pressing the return key INTRX is instructed to skip over the error and
continue processing the input. Note that a single error may cause many spurious errors. It is
sensible to press on and identify as many errors as possible before going back to modify the
source file. If you do want to terminate IATRpX before it is finished then type the character e
followed by the ‘return’ character in response to the 7 prompt. A log (.1log) file is generated
which records the details of a text processing run and provides a permanent record of error

messages.

Chapter 4

Structuring a Dissertation

4.1 Document Design

IATRX is designed to be a tool that assists with the logical design of documents. Dissertations
should also have a logical design, and so this chapter briefly examines the form of this, and
discusses ways of mapping this design on to physical file structures.

Most dissertations have a structure that broadly approximates to the following:

1. Preamble: containing such items as dedication (if desired), acknowledgements etc. Usu-
ally less than a page in length.

2. Introduction: explaining what the project was about; describing the chief objectives;
outlining any constraints on the solution; introducing keywords and explaining them.
(Loosely conforms to ideas of problem specification.)

3. Background: describing techniques or tools appropriate to the problem and its solution.
May be more than one chapter if there are several of these. It may be difficult to
determine just how much to include under this on occasion, there is a need to provide
enough information for an educated reader to understand the rest of the dissertation,
without swamping them with unnecessary details.

4. Solution: describing how the problem was tackled by you (design plus a bit of the im-
plementation information if appropriate). This is your chance to explain what you did,
and why you made particular decisions.

5. Results: summarising the experiences of implementing the solution; modifications needed
as a result of this; whether the effects were expected, whether the project results met
the objectives etc, and if not — why.

6. Conclusions: providing a concise summary of what was achieved; how well it met the
objectives; any more general observations about these; scope for any further develop-
ment/extension of the ideas or your solution.

7. Bibliography: is an important component. It doesn’t need to be large, but it should be
enough to show that you read around the topic and looked for ideas other than those
suggested by your supervisor!

20

4.2. SECTIONING INTO FILES 21

8. Appendices: should be included as necessary. These supplement the material of the
main chapters by providing the details that would obscure the structure of a chapter,
but which would be needed by anyone who wanted to use your work.

The above is a very general framework, and will usually be implemented in some vari-
ant form. However, it does provide the start point for dissertation design. A suggested
implementation plan is as follows:

1. List an outline of topics along the lines above.

2. Convert this to chapter headings.

3. For each chapter, list the topics to be covered.

4. Convert these to section headings and section content outlines (topic lists).
5. Check through for consistency and omissions.

6. Begin writing!

The order in which sections and chapters are written is a matter of personal preference.
Provided that you have a good content plan for each chapter, the ordering of development
can be relatively flexible. The rest of this chapter explains how you can physically structure
your document so as to support this flexibility.

4.2 Sectioning into files

4.2.1 File hierarchy

IATRX makes it easy to structure a document as a set of separate files. There are good
arguments for making use of this. Among others these include:

e such files are easily maintained if the file structure reflects the document structure;

e sections can be moved within the document, or replaced with new versions, simply by
changing links;

¢ diagrams etc can be developed and tested separately;

Fxperience with the development of large reports suggests that the following structure is
useful during development as well as being easily maintained:

1. A root file which contains

(a) option-setting commands that will have global effect, such as \pagestyle and
any locally defined commands such as the \dspaceon and \dspaceoff commands
shown in Chapter 3. Also title-setting commands.

(b) Commands to create the tableofcontents and to set the page numbering forms
(see later).

(¢) Commands to ‘pull in’ the text of the chapters.

(d) Comments to remind the author of tasks to be performed in the future.

22 CHAPTER 4. STRUCTURING A DISSERTATION

Fssentially, this file reflects the top-level design of a document.

2. A file for each chapter, that in turn pulls in the files containing the text of each section.
Use of this added level of indirection makes it easy to re-organise parts of a document
if the original design proves incorrect.

3. A file of text for each section.

4. A file for each diagram/table. This allows these to be developed separately, using a
temporary root file, so reducing processing time considerably, as these items often need
a disproportionate number of re-tries in order to get them right.

The rest of this section describes how this structure can be organised using IATpX.

4.2.2 The include and input options

IATRX provides two mechanisms for ‘pulling in’ text from another file in the middle of reading
a source file. Both of them read the file in directly, and differ only in their ‘side effects’.

The include command

This has the effect of starting output on a new page. It also defines a ‘logical entity’ of the
document, which will have its own .aux file. We normally use this command in the root file
in order to pull in the chapter files and any other major units.

A (reduced) example of such a file is:

\documentstyle[11pt,adwide]{report}
\pagestyle{headings}

\newcommand{\dspaceon}{\renewcommand{\baselinestretch}{1.3}\large\normalsize}
\newcommand{\dspaceoff}{\renewcommand{\baselinestretch}{1}\large\normalsize}

\title{My Dissertation}

\author{A Student \\Department of Computing Science \\
University of Stirling}

\date{January 1990}

\begin{document}

\pagenumbering{roman}

\maketitle

% \input{acks}
% \tableofcontents

% The chapters as available

4.2. SECTIONING INTO FILES 23

\include{intro}
\include{chapteri}

% \include{chapter2}
% \include{chapter3}
% \include{chapterd}
% \include{chapter5}
% \include{appendixa}

\include{biblio}

\end{document?}

The input command

This has no side effects in terms of output, and the text file read in is simply treated as
though it were part of the outer file. It is normally used for reading in sections of a chapter,
diagrams, complex examples etc.

An example of a chapter file might be:

% Chapter 2 of dissertation, stored in chapter2.tex

\chapter{Software tools}
\label{tools}

\input{sect2_1%}
\input{sect2_2}
% \input{sect2_3}

The chapter heading is labelled to allow symbolic cross references to the chapter from
later sections of the document. In this example, the third section of this chapter has yet to
be prepared, and so has been commented out (or has been dropped from the plan!).

4.2.3 Page numbering

The default form is to use arabic numbering. If we include a tableofcontents in our docu-
ment, then as the document grows so will the table, and when this spreads to further pages
this will alter the page numbering for subsequent pages throughout the document.

A simple solution is to use roman numbers for the pages preceding the first chapter, as
was shown in the root file used as an example in the previous section. The switch back to
arabic numbering must then be made after the start of the first page. So the command

\pagenumbering{arabic}

must follow either a \newpage command at the end of the preamble, or appear after the first
\chapter command.

24 CHAPTER 4. STRUCTURING A DISSERTATION

4.3 Development Strategy

The root file is a realisation of the logical design of a document. It should therefore be complete
when first entered, although the % character might need to be used to comment out most of
the \include commands. By doing this, you ensure that none of the items in your plan
get omitted by accident. (An alternative, and maybe better scheme, is to create the chapter
and section files too, and to provide short summaries of intentions in the section files. This
way, all of the document files are created at the start, although most will only have interim
contents.)

IATpX is a large and relatively slow program. Dissertations are typically quite large docu-
ments, and so we need a means of reducing the time spent processing text which is essentially
fixed and completed. This is particularly important as the document increases in size. The
mechanism for doing this is provided by the \includeonly command. This directs IATpX
to only process those \include entities that are listed in its argument. In doing this, IATRX
will still read the .aux files for the omitted entities, in order to get page numbering and
cross-reference information, but it will not process the textual parts. This generally speeds
up processing very significantly.

(Note: If you use the \includeonly facility, and have organised the page numbering so
that you switch back to arabic numbers at the beginning of the first chapter, you need to
keep this chapter in the \includeonly list to avoid odd effects with page numbers!)

Chapter 5

Generating Bibliographies with
BibTEX

5.1 Introduction

BIBTEX is a program used to generate a list of references (bibliography) from one or more
bibliographic database files. BIBTEX is quite involved, and although it may not seem worth-
while using it if you are citing only one or two references - it is useful for keeping sources
centrally. Once you have started using BIBTEX it is simple to maintain your list of references
and to keep a note of books or articles that you have read in order to cite them in future
documents.

If you would prefer to create your own bibliography, INTpX provides an environment called
thebibliography which is similar to the itemize environment. This is described in some
detail in section 5.1.4.

5.1.1 The Bibliographic Database

The first step in using BIBTEX is to create or use an existing bibliographic database (a .bib
file). This file consists of entries of the form:

Q@ENTRYTYPE{key,
REQUIREDFIELD = "value",
REQUIREDFIELD = {value},
OPTIONALFIELD = value,

IGNOREDFIELD = abbrev }

BIBTEX supports several entry types, such as BOOK, ARTICLE, PHDTHESIS, and each
entry type has an associated list of fields. There are three different classes of fields: required,
optional and ignored. Required fields must appear in the entry as a minimum, otherwise
BBTEX will produce an error message. Optional fields will be used in the entry if present
but can be omitted. They are used to provide the reader with additional information such as
relevant chapters, the address of the publisher etc. Ignored fields are regarded as comments
by BIBTEX and as such are not printed out as part of the bibliography; they are typically
used to annotate the entry for your own use.
As an example consider the following entry:

25

26 CHAPTER 5. GENERATING BIBLIOGRAPHIES WITH BIBTEX

Q@STRING{addwes = "Addison-Wesley Publishing Company'}

©@B00K{latexbook,
title = "\LaTeX“User’s Guide \& Reference Manual",
author = {Leslie Lamport\},
publisher = addwes,

year = 1986,
note = "A comprehensive guide to preparing documents",
relevant = "Appendix B covers \BibTeX"in some detail" }

In this example, the entry type is BOOK; the key is latexbook; the required fields are title,
author, publisher and year; note is an optional field and relevant is an ignored field.
Strings in an entry can either be surrounded by braces or quotes as in the title and author
fields above. If a string is used more than once, it is worth defining an abbreviation and using
that as the value for a field. Abbreviations are defined by putting a @STRING command in
the .bib file.
Further entry types and their required and optional fields are given in section 5.2.

5.1.2 Using BIBTEX with IATRpX

The following commands should be used in your IATRX document to successfully create and
refer to your bibliography:

¢ \bibliographystyle{style} specifies the style of the source list. This must be placed
after the \begin{document} command. There are four standard bibliography styles:

— unsrt Entries are sorted according to the order they appear in the document and
numbered.

— plain Entries are sorted alphabetically and numbered.

— alpha Entries are sorted alphabetically and entry labels are formed from the au-
thor’s name, e.g. ‘Lam’ would be the entry label for the example above.

— abbrv Entries are sorted alphabetically but the first names, month names and
journal names are abbreviated.

e The \bibliography command is used to specify one or more files containing the bibli-
ographic database. For example, the command
\bibliography{myrefs, deptrefs}
specifies that the source list is to be obtained from the files myrefs.bib and dep-
trefs.bib. This command is used where you want to place the bibliography.

o The \cite[note|{key, ...} command is used within the document text to refer to one
or more entries in the bibliography. The note parameter is optional and if used gives
additional information in the body of the text. For example to refer to the INTRpX manual
above, you could use the command \cite[AppendixB]{latexbook}. The entry label
[1, Appendix B] will then appear in the text of the document. You can also make use
of the \nocite{key, ...} command which puts references specified by the keys in the
bibliography, but does not cite them in the document text. This should be used after
the \begin{document} command.

5.1. INTRODUCTION 27

When you run latex on a document containing citations and bibliography commands,
the auxiliary file (.aux) will contain cross-referencing information. Note: this will produce
warnings stating that citations have been undefined. Running bibtex on your INTRpX docu-
ment will read information from the auxiliary file and create a file with the extension .bbl.
Any errors in the .bib file will be found at this stage and should be corrected before contin-
uing. When latex is next run, the \bibliography in your document reads the .bbl file and
generates the bibliography. Running latex will probably produce the warning :

Label(s) may have changed. Rerun to get cross-references right.
You should then rerun latex.

If you have any problems with the .bib file or your IATpX document, it may be worth
deleting the .aux and .bbl files (i.e. the files generated by latex and bibtex) and starting
again. Also if you add or remove a citation from your document you must rerun latex
followed by bibtex to generate your bibliography. If you are not satisfied in any way with
the output of BIBRTEX then you can edit the .bbl file.

5.1.3 Output from BIBTEX
Given the example in section 5.1.1, the following output is generated :

[1] Leslie Lamport. INTRX User’s Guide & Reference Manual.Addison-Wesley Publishing
Company, 1986. A comprehensive guide to preparing documents.

5.1.4 The thebibliography Environment

The .bbl file uses a type of list environment (such as the itemize enviroment), which has the
form:

\begin{thebibliography}{xx}
\bibitem[label]{key}

\bibitem[label]{key}
\end{thebibliography}

The thebibliography environment has an argument which should be a string at least
the length of the widest entry label in the source list. Instead of using the numbers generated
by the environment as entry labels, you can specify your own by using an optional argument
to bibitem, but remember to increase the length of the argument to the thebibliography
command. Consider the following examples:

\begin{thebibliography}{1}

\bibitem{latexbook}

Leslie Lamport. {\em \LaTeX"User’s Guide \& Reference Manual}.
Addison-Wesley Publishing Company, 1986.

\end{thebibliography?}

\begin{thebibliography}{Name YY}

\bibitem[Lam 66]{latexbook}

Leslie Lamport. {\em \LaTeX"User’s Guide \& Reference Manual}.
Addison-Wesley Publishing Company, 1986.

\end{thebibliography}

28 CHAPTER 5. GENERATING BIBLIOGRAPHIES WITH BIBTEX

In the first example, the entry label is generated by the environment. Note that this will fail
if you have more than nine entries, because the parameter to thebibliography command is
not wide enough. The second example shows the use of your own entry labels.

5.2 Format of Bibliographic Entries

5.2.1 Text Fields

The bibliography style you choose determines how names, such as titles and authors will be
formatted. You should therefore type the complete name and leave the formatting to BIRTEX.

If an entry has more than one author, then an "and” will separate the names; names in
braces are considered as one name and will not be stylised by BIBTEX.

According to the bibliography style you choose, a title may be capitalised by BIBTEX (even
if you had typed it in in lower case). In general titles of books are capitalised, while titles of
articles are not. If you want a specific word or letter to remain capitalised, then enclose it in
braces.

5.2.2 Entry Types

The following are the entry types allowed in the .bib file together with their required and
optional fields.

¢ article. Required: author, title, journal, year. Optional: volume, number, pages,
month, note.

¢ book. Required: author or editor, title, publisher, year. Optional: volume,
series, address, edition, month, note.

¢ booklet. Required: title. Optional: author, howpublished, address, month, year,
note. A booklet is a work that is printed and bound, but has no named publisher or
sponsor.

¢ inbook. Required: author or editor, title, chapter and/or pages, publisher, year.
Optional: volume, series, address, edition, month, note.

¢ incollection. Required: author, title, booktitle, publisher, year. Optional: edi-
tor, chapter, pages, address, month, note.

¢ inproceedings. Required: author, title, booktitle, year. Optional: editor, pages,
organization, publisher, address, month, note.

e manual. Required: title. Optional: author, organization, address, edition,
month, year, note. The manual entry is used for technical documentation.

¢ mastersthesis Required: author, title, school, year. Optional: address, month,
note.

e misc Required: none; Optional: author, title, howpublished, month, year, note.
Use this entry type if nothing else fits.

5.3. ADDITIONAL INFORMATION 29

¢ phdthesis. Required: author, title, school, year. Optional: address, month,
note.

¢ proceedings. Required: title, year. Optional: editor, publisher, organization,
address, month, note.

¢ techreport. Required: author, title, institution, year. Optional: type, number,
address, month, note.

¢ unpublished. Required: author, title, note. Optional: month, year.

Fields

Below is an explanation of some of the fields used in the entries:

¢ address. This is the address of the publisher. If it is a major publisher, then just give
the city.

e chapter. This should be a number, rather than the name of the chapter.
¢ pages. One or more page numbers, or a range, such as 19-32.

e note. Any extra information that will help the reader locate the reference.

5.3 Additional Information

This guide is intended to be an introduction to BIBTEX , additional information can be
found in section 4.3.2 and Appendix B in the IATpX manual. Also, an example bibliographic
database (xampl.bib) can be found in /usr/fs/latex-eg. This gives both minimal and full
entries for each of the entry types described in section 5.2.2.

Chapter 6

Running [@TEpX and dvips

Input to IATRX consists of a collection of source files, conventionally suffixed ‘.tex’, arranged
into a tree where the links in the tree are implemented by IATpX \input{} and \include{}
directives. In the case of a simple document, it is perfectly acceptable for this ‘tree’ to consist
of a single file, of course. In examples that follow, it is assumed that the root of the tree is
the file root.tex.

6.1 INTEX

The tree of files can be given to INTpX for processing with the command
latex root

IATRX takes no command line options at all-—all controls associated with the running of the
program are presented to the program via the input text file. INTpX is a very ‘chatty’ program
(it is designed with inter-operating system portability in mind, and this occasionally shows!),
but since it generally takes several seconds to complete a run even for a short document, this
is no bad thing. The on-screen output for a 25-page document, consisting of about ten source
files whose root is root.tex will look something like this:

This is TeX, C Version 2.9 (no format preloaded)

(root.tex

LaTeX Version 2.09 <25 Jan 1988>

(/usr/1lib/tex/inputs/report.sty

Document Style ‘report’ <5 Feb 88>.

(/usr/lib/tex/inputs/repll.sty) (/usr/lib/tex/inputs/titlepage.sty))
(/usr/lib/tex/inputs/adwide.sty (/usr/lib/tex/inputs/a4.sty))

No file root.aux.

[0] (abstract.tex [0]) (intro.tex [1] [2] [3] [4]1) [5] [6] (method.tex [7]
[8] [9] [10] [111) [12] (results.tex [13] [14] [15] [16]1) [17] (disc.tex
[18] [19]) [20] (conc.tex) [21] (acks.tex) [22] (refs.tex) [23] (root.aux
(abstract.aux) (intro.aux) (method.aux) (results.aux) (disc.aux) (conc.aux)
(acks.aux) (refs.aux))

Output written on root.dvi (25 pages, 80896 bytes).

Transcript written on root.log.

30

6.2. THE .DVI (DEVICE-INDEPENDENT) FILE AND POST-PROCESSING 31

Most of this is irrelevant to the casual user of IATRX, and can safely be treated merely as
comforting output to convince the user that IATRX is actually doing something. In case of
problems with documents, however, it is generally useful to have an idea what is going on.

First, TEX and IATpX announce themselves (remember that IATEX is just TEX with a
somewhat more usable ‘front-end’ bolted on) and then IATEX uses the \documentstyle{}
directive from the top of the root file to choose which style files to read, and reports on the
list it chose. Next, it works its way through the tree of files which make up the document,
laying out pages as it goes. FEach file is announced as it is encountered, and output of each
page is reported as it occurs by the appearance of the page number in square brackets. The
output from IATEX is sent to root.dvi. As IATRpX works its way through the document, it
makes itself ‘notes’ about the positions of various elements such as figures, section headings,
page counts, etc., in order to ease reprocessing and resolution of forward label references
later. These are saved in the various ‘.aux’ files mentioned in the commentary. The report
‘No file root.aux’is not an error message—it merely means that this is the first time INTRpX
has seen the file root.tex, and thus root.aux has not been created as yet.

6.2 The .dvi (DeVice-Independent) file and post-processing

The intended result of a IATRX run is the creation of a .dvi file containing a device-independent
description of each page of the document. Sometimes, in order to create this, it will be nec-
essary to run IATRpX on the document twice—similarly to a programming language compiler,
IATEX often needs two passes at a document to resolve forward references. An obvious case
of this is the contents page, which appears at the front of a document, but cannot be created
until IATRX has seen the whole of the document.

The .dvi file contains details of the size, style and placement of each character to be found
on each page of the final document. If IATRX can be considered to be a document compiler,
then a DVI post-processor, to continue the analogy, combines some of the functionality of an
assembler and a linker. The same .dvi file may be used to generate device-dependent output
for any number of output devices, the only limitation being the availability of the desired
output device. The DVI post-processor takes the device-independent form of the document
page descriptions, and produces output in a format suitable for delivery to a printer or similar
device.

In general, on this site, there are two DVI post-processing routes to consider: one for
on-screen presentation (if desired) and one for generation of the Postscript page description
language understood by local laser-printers. The former route is handled mostly by the xdvi
package described in Chapter 7, and the latter by a program called dvips. There is at least
one other driver available, but only for local compatibility with old documents that require
it; new users should not even consider attempting to use it.

6.3 The dvips post-processor

By the .dvi file stage, the relative sizes and positions of the characters on the final printed
page have been fixed, but various options are available within to modify the absolute size
and position of the entire page image. DVI post-processor options usually allow the user to
control precisely which pages of the document should be printed out (users who insist on
printing all 78 pages of a dissertation after a one-sentence change are carrying on an entirely

32 CHAPTER 6. RUNNING IWTpX AND DVIPS

unnecessary, wasteful practice which can be spotted and will be dealt with...) and various
other internal workings of the program.

The dvips program provides a large number of command-line options for controlling
aspects of the Postscript production process. The more significant of these are as follows:

-r Output is produced by default in ‘first page first, last page last’ order. Use -r to get ‘last
page first, first page last’.

-c<number> Generate ‘<number>’ copies of the output pages.

-p<number> Make page ‘<number>’ the first output page instead of the (default) first
page of the document.

-l<number> Make page ‘<number>" the last output page instead of the (default) last page
of the document. !

-h header-file Include the (assumed to be Postscript) file ‘header-file’ in the generated
Postscript output in such a way as to be processed by the printer before the Postscript
that describes the document. This is a ‘hook’ for access to a huge multitude of Postscript
facilities, most of which are way beyond the scope of a beginner’s introduction to IATRpX.
For example, the generally-available header files ‘multi.pro’ and ‘4xA6.pro’ may be used
to print an entire document as 4 A6 quarter-pages on each A4 page. This is sometimes
useful during drafting, and is often used locally to generate handouts consisting of the
slides from a presentation written with SL'TEX.

The above, plus default environment setups available to local users, should be adequate to
allow straightforward use of dvips. The online manual page gives further information, and
for the really committed user there is an extensive document on the package available from
your local support office.

The dvips program is fairly ‘chatty’, although a command-line option (-q) is available
to suppress all output other than real error messages. Terminal output from a sample run
should look something like this:

This is dvips 5.493 Copyright 1986, 1992 Radical Eye Software

> TeX output 1993.03.07:1431° -> guide.ps

<tex.pro><special.pro>. [0] [1] [2] [11 [1] [2] [3]1 [4] [5]1 [e] [7] [8
<dbexample.ps>] [9] [10] [11] [12] [13] [14] [15] [1e6] [17]1 [18] [19] [20]
[21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35]
[36] [37] [38] [39] [40<../../pix/trivial.ps>] [41<wdump.ps>] [42] [43] [44]
[45] [46]

The user is informed as each page is generated, and files other than the original DVI file
are identified as they are read. The sample output above was generated from the DVI file
associated with a version of this document.

LA single page of output may be obtained simply by giving the same number to ‘-p’ and *-I’; e.g., to get
just page 6, give the command-line options ‘-p6 -16°.

6.4. ADMINISTRATIVE HINTS 33

6.4 Administrative hints

The result of a Postscript post-processor run is, as described above, a Postscript file (suffixed
.ps) which can be sent to a laserprinter to produce the desired output pages. The Postscript
files produced by DVI post-processors are generated relatively quickly, but tend to be quite
large (about 40K for an average single page, rising non-linearly to about 250K for about
25-30 pages). Since disk space on local systems is almost always in short supply, it will be
appreciated if users could remove Postscript files whenever possible, and try not to leave them
around in between processing sessions. During the annual dissertation crisis experienced every
spring semester, the amount of disk space which can be reclaimed simply by trawling user
file systems for Postscript files created by dvips is phenomenal, but it is a task much better
performed by the individual conscientious user than the desperate system administrator.

Despite the usual provision of several megabytes of memory in each laser printer, it is
perfectly possible to generate Postscript files which exceed the capability of any particular
printer to print them. It is effectively impossible to determine in advance whether any par-
ticular Postscript file will cause trouble, and in any case users who create large print jobs
during prime time make themselves rapidly very unpopular anyway. Users are advised to
use page-selection arguments to slice large documents up into several parts of perhaps 20-25
pages or about 250K and to check the size of any particular Postscript file before aiming it at
a printer. Since diagrams included via \special can occupy sizeable amounts of disk space
(200K or more for a full X screen dump) documents containing figures incorporated in this
manner deserve special attention. It may sometimes be useful, having generated the diagram
itself, simply to leave the space for it blank in the draft document, include the diagram proper
at the last minute and print off the page bearing the diagram separately.

Chapter 7

Previewing KIpX Documents

The usual cycle that an average IXNTRX user goes through to produce their (eventually!) stun-
ning final document involves viewing the output one or more times, where ‘more’ is often
a much larger number than initially anticipated. If the method of viewing the document
through its various steps towards completion is restricted to simply printing it out on the
laserprinter, a large amount of paper is wasted on printing material to be read approximately
once. Also, the time taken between sending the document to the laserprinter and the docu-
ment appearing can sometimes be longer than is desirable for efficient document production.
The time delay may be due to a large queue of multi-page documents being ahead of your
one-page ‘first try’, or even the fact that someone has forgotten to refill the laserprinter paper
trayl.

Therefore, in an attempt to save the INTpX user valuable time and effort (and also to avoid
the needless destruction of acres of scarce forestry), various means are provided by which the
IATRX user can view a document without the aid of a laserprinter. The main machines within
the department offer at least one form of previewing INTRpX documents.

7.1 Using xdvi

xdvi is a DVI file post-processor which generates its output in an X window. All that is
necessary to start it up is the command

xdvi <filename>.dvi

In this case the .dvi filename extension may be omitted, as xdvi assumes that the extension
is present. In keeping with other X applications, after a few seconds a flickering outline of
the previewer window will appear. Positioning of this window is done in the usual manner.
The first page of the document appears in this window. By positioning the mouse pointer at
a required point within the window and holding down either the left mouse button, the right
mouse button, or both mouse buttons simultaneously, gives varying degrees of magnification
of that section of the document. This allows the close inspection of parts of a document as
well as being able to see its full-page appearance. To exit from the xdvi previewer, simply
type q to the window.

More extensive information is available from the xdvi manual pages and the next section
provides a summary of the main options available. In particular, and in common with the

! Please take note of this intentional hint!

34

7.2. XDVI OPTIONS 35

majority of X applications, xdvi accepts a large range of X default settings, described in the
manual page, with which the user may tailor the program’s behaviour. The behaviour seen
by the casual user is just the ‘default default’ configuration, so to speak.

7.2 xdvi options
7.2.1 Options selected when xdvi is invoked
The most useful options here are:

+page Preceding a numeric value with a + symbol will cause the previewer to begin with
the selected page (remember this is the DVI page number in the file).

- size This chooses a scaling factor. The default factor is a value of three. Using a larger
value produces a smaller image, which may be useful if you just want to look at the
layout on the page. As an example, using

xdvi - 5 test.dvi

will produce a scaled down image of the document test.dvi that will fit a complete page
on to the screen, but which will not be particularly readable. (Note that a space is
necessary between the ‘=’ character and the digit.)

7.2.2 Commands used within xdvi

The following are particularly useful commands to remember:

q quits the program. Synonyms are control-D and control-C.

n moves on to display the next page, or the nth next page if you prefix it with a numeric
value.

p moves back a page (or again, n pages if you provide a prefixed value.)
g moves to the given page, eg 4g moves to the start of page 4.
" moves to the ‘home’ position on a page (normally the top left corner).

d places the bottom of the page at the bottom of the display window.

7.3 Ghostview

When Postscript graphics are included in a document, xdvi is powerless to render them,
because it knows nothing at all about Postscript. xdvi operates on the user’s DVI file and
TEX font files to generate a screen image, and at the point where the graphic is included,
the DVT file simply has a note to the dvips post-processor about where to find the graphics.
When xdvi encounters such a note, it simply leaves a blank box where a diagram will appear
in the final printed version. Most of the time, this is fine, but there are circumstances where
whatever is missing has a close enough relationship to the document that to view the document

36 CHAPTER 7. PREVIEWING IXTpX DOCUMENTS

without it is insufficient for proof-reading purposes, and the user really needs a method of
proof-reading the actual Postscript shortly to be sent to a printer.

Ghostscript is a public-domain software package that interprets Postscript page descrip-
tions in an X window. It is adequate but suffers from a highly unsophisticated user interface
rather akin to entering text direct from keyboard to laser printer. Thankfully for the major-
ity of the user community, Ghostview is an X wrapper for Ghostscript which transforms the
basic Ghostscript user interface into a full-scale X application, complete with menus, but-
tons, scrollbars and the like. The general previewing user is strongly recommended to stick
to Ghostview.

Ghostview, as might be expected, operates on the Postscript version of the document, the
.ps file. Probably the most common mistake made in the use of TEX and IATRX previewers
is forgetting to regenerate the file to be previewed and becoming increasingly annoyed at
the computer’s failure to take any notice of the last two hours’ edit session. Remember, the
Ghostview stage, if used, happens between dvips and 1p!

To start up Ghostview, simply enter

ghostview file.ps

where ‘file.ps’ is the (full) name of the Postscript file you wish to preview. Ghostview is one
of those programs whose behaviour is only really learnable by experiment, and there is little
to be gained from listing the five most important options here. The manual page itself states

Don’t be alarmed by the number of options. Generally, one invokes ghostview
with just one parameter, the name of the file to be previewed...The options
provide a way to set X resources from the command line for a single invocation of
ghostview.

It should be stated here that given that Ghostscript is not necessarily a complete, semantically-
equivalent-to-a-laserprinter implementation of a Postscript interpreter. Indeed, the documen-
tation that accompanies the software explicitly states that it is not, for copyright/licensing
reasons. Users should remember that it is only close to Postscript, and should expect to
see occasional ‘blips’ in its rendering of Postscript objects (not to mention the occasional
straightforward core dump!).

Chapter 8

Generating graphics

IATRX itself is a document preparation package overlaid on the TEX typesetting package.
While it is possible to produce diagrams and pictures of acceptable appearance using INTpX
alone, the basic picture environment is difficult to learn, limited in scope, long-winded and,
in general, extremely counter-intuitive. Its use is not recommended, except perhaps for very
simple ‘boxes-and-lines’ drawings.

In principle, however, the PostScript page description language used to drive output de-
vices is capable of individually controlling every single possible pixel which might appear on
a printed page (a page of 300dpi A4 LaserWriter output is made up of about 8000000 pixels).
Hence, any sufficiently well-behaved PostScript ‘program’ can be added to IATpX output in
such a way as to make the added text part of the document. All that is required is to tell
IATRX where on the page the extra PostScript text will draw whatever it is to draw and
how large a box should be left to draw it, and IATpX can be persuaded to fit the rest of the
document around it. Graphics production methods used alongside IATRX are then directed
to generate drawings starting at the PostScript ‘origin’ page position, and when incorporated
in the document appear at whatever ‘current point’ the INTRX source specifies.

Several methods of generating graphics are available locally for INTRX users:

IATEpX picture As mentioned above. Extensions, such as ‘epic’ and ‘eepic’ are available,
which can ease some repetitive tasks, and clearly, this method is the most portable
available;

xfig A MacDraw-like program available on X workstations which, along with conversion pro-
grams such as fig2dev and the ‘graphics management’ TransFig package, provides the
cleanest IATpX-Postscript combination available;

idraw Another drawing program available in some parts of the Department (at the whim of
whatever C+4 compiler happens to be available!) that generates its own Postscript.
Experience suggests that this can be persuaded into INTRX incorporation with a little
tweaking;

xgraph A graph production program, capable of generating PostScript or HPGL. PostScript
from xgraph can be incorporated into IATpX with very little modification;

xwd,xpr Window dump files generated by the xwd program running on Sun or Hewlett-
Packard workstations under the X Window system, converted to PostScript by xpr.
Again, a little ‘hacking’ of the Postcript will be required.

37

38 CHAPTER 8. GENERATING GRAPHICS

IATRX handles picture output for itself entirely internally, and its use will be discussed no
further here; consult [Lamport86] for more details. The bulk of the remainder of this section
concerns itself with ‘hints and tips’ for getting around some of the more common problems
associated with the other methods mentioned above.

8.1 PostScript graphics files

In theory, any PostScript file can be incorporated into any other, so long as each obeys certain
rules concerning what they are allowed to do to the ‘PostScript engine’ producing the output.
The full collection of these rules is called the ‘Adobe Document Structuring Conventions’
(DSC) and while the phrase is widely-used, very little of this document is practically useful
for day-to-day document preparation. The main points to note are:

%%BoundingBox: Does the file to be incorporated have a %%BoundingBox: comment some-
where near the top? If not, then one must be calculated. If the file is printable by itself,
then the simplest way to do this is to print it out, draw around the diagram the smallest
rectangle which contains it, and convert the dimensions of this rectangle to ‘points’. For
all practical purposes, there are 72 points to the inch, and 2.835 to the millimetre. Bear
in mind that the printer’s accuracy in grabbing a piece of paper from the feed tray is
only around 1-2mm in any direction, and try not to become obsessed with accuracy.

All the utilities mentioned above can generate %%BoundingBox: comments in the right
circumstances. However, PostScript appears on this site from all sorts of places, and it
is wisest not to leave this to chance—check!

Diagram origin Occasionally, utilities which generate PostScript do so in ‘egotistical’ fash-
ion, assuming that the user cannot possibly want anything else on the page with its
graphics, and the output is rotated, scaled and centred on the page. This is all very well,
but what is desirable for inclusion in IATpX is a diagram whose lower-left %%BoundingBox
corner is at the PostSript origin. With most printers, this means that on printout of
the file on its own, the lower left corner of the diagram will be ‘off the page’ at the
bottom left, because they are designed to believe that they are printing on an American
8.57x11” page, rather than European A4 (210x297mm).

Usually, persuading the file to produce its output at the origin involves finding the
PostScript translate operator responsible and commenting it out. Then, it may be
necessary to ‘translate’ the %%BoundingBox comment to suit. xfig, xgraph and MacDraw
can all be persuaded to produce ‘origin graphics’; xpr will need a little strategic com-
menting.

Graphics context It is perfectly possible for a postScript graphic to leave the PostScript
engine in a state in which it cannot continue, or to ‘mess about’ with the state so that
it is pointless to continue. The obvious example of this is the showpage operator. If
the file has been produced with a view to printing it out alone, then somewhere at
the tail of the file a showpage will appear, which to the PostScript engine means ‘this
page description is complete; print it out’. In the case of a figure in a INTpX document,
we would prefer the rest of the page, after the figure, to be added before that page is
printed. Spurious showpages can be safely commented out.

8.2. INCORPORATING THE IMAGE INTO IWTpX 39

Complications can also be caused by save/restore and gsave/grestore appearing
in the included file. This is an area best avoided if possible, where, to use the time-
honoured phrase, ‘experience and informed courage count for much’. Access to various
PostScript manuals [Adobe85a, Adobe85b] is also useful here.

xfig, xgraph and idraw will produce showpageless code; xpr, again, may need some

help.

8.2 Incorporating the image into WX

This section covers only the incorporation of graphics as INTpX floating figures. Most of its
suggestions can be generalised to cover other uses, but what appears here should suffice for
most purposes.

Every object placed on a page by TEX and IATpX is enclosed in a box. Usually there is
a hierarchy of boxes involved in all but the simplest objects. For example, a letter in a word
appears in a box which contains only that letter, which appears in a box containing all or
part of the word (which might, after all be hyphenated), which appears in a box containing
a line of text, which appears vertically between all the other line boxes which constitute a
paragraph, etc. ..

The general principle of graphics incorporation is to persuade INTRX to allocate a box of
the right size and shape in the right place, in which the diagram will be drawn using the
IATRX \special{} directive. Continuing the analogy drawn several times in this document
to IATRpX as a programming language, \special{} is similar in approach to the ‘assembly
language insert’ features often found in lower-level and systems programming languages.

Text found between the braces in \special{} is not ‘interpreted’ at all by IATEX, but
passed on to the tools used to process the .dvi file. Thus, the use of \special{} is al-
most always ‘non-portable’, in the sense that changes may well have to be made to generate
a document containing the directive at a different site or on a different computer system.
This important point is often ignored by IATRpX users, but is only too well-understood by
producers of camera-ready conference proceedings. Collecting a large number of separately
produced articles together may sound like a simple business, given the relatively high level
of compatibility of basic IATpX systems, but the addition of graphics to each paper usually
means coming to terms with a large number of different methods of graphics production and
incorporation, and tempers can become frayed. If you are asked to send a document in IATRpX
source form to another site, agree with the remote site in advance how graphics, if there are
any, are to be presented.

The two dvips tools used on site take different approaches to diagram incorporation with
\special{}. By far the best way to explain this is with reference to an example. Suppose, for
example, that the diagram to be included is held in a PostScript file called trivial.ps, has
a correct %%BoundingBox, draws from the origin, and is 162 by 54 points in size (2.257x0.75”
or 57x19mm). Assume also that the document uses 11pt.sty and adwide.sty.

The dvips program offers a fairly sophisticated set of ‘hooks’ on which to hang Postscript
graphics. The style file epsf.sty contains a (locally-added) TEX macro \epsffig{} which
does almost all of the work for itself, as well as others which take care of more complex
examples. In this case, since the PostScript file contains a sensible %%BoundingBox, the
figure can be produced simply with the IATpX source given in Fig. 8.2. In this case, the
various calculations are done partly by the TEX macros, and partly by dvips itself, and the

40 CHAPTER 8. GENERATING GRAPHICS

\begin{figurel}[htb]
\epsffig{trivial.ps}
\label{examplefig}

\caption{An example of a figure.}
\end{figure}

Figure 8.1: Simple figure incorporation using dvips and epsf.sty.

\special{} is ‘hidden’ in the \epsffig{} macro. Note that, since \epsffig was added
locally, it should not be relied upon when shipping documents off-site. Tt is intended purely
as a ‘simplest route’ option to solve straightforward incorporation problems.

The general form of Postscript-graphic incorporation into INTRX is via the \special{}
directive. If the Postscript file you wish to incorporate is considered ‘well-formed’, then
the locally-available Perl script pssp will generate a IATRX fragment to incorporate that file,
consisting of a \vspace{} directive to allocate some vertical space and a \special{} directive
to pull the file in. Running the command pssp with no arguments gives a summary of usage:
there may even be a real manual page available by the time you read this document.

Practically speaking, you should approach the incorporation of PostScript graphics into
IATEX in the following manner:

1. Do your best to generate the graphics in such a way as to follow the conventions men-
tioned above. If that fails, do your best to handcraft the conventions in the manner
described above.

2. Try the methods described above to incorporate the graphics file. In each case, you
should be able to get some sort of output, even if it looks odd. The best way to fix
problems in this field is first to get to the stage where you have some output, then
work towards making it correct output. Previewers and the ability to print out only one
problematic page come in very useful here.

3. Investigate the ‘periphery’ of each of the techniques described above, to see if a more
complex form of one of them solves your problem. For example, dvips gives a large
collection of different options for \special{}, allowing extensive flexibility in scaling,
rotating, clipping and translating PostScript pictures. One of these configurations is
almost bound to work. It may be that you have not fully exploited the options to the
Postscript generation program; go back and check the manual pages to see if a better
way can be found.

Fventually, you may give up and come and ask. There is considerable expertise around the
Department in this sort of field, and it is very rare now that a PostScript picture simply
cannot be persuaded to behave as a INTRX figure. Please make sure you have exhausted the
available information first!

8.3 Example output

The figure ‘floating” somewhere around this paragraph (Fig. 8.3) is the example used above
as a demonstration of technique. It was generated using xfig and fig2dev and has a

8.4. CONCLUSION 41

Figure 8.2: An example of a figure.

%%BoundingBox comment on line 6 of the PostScript file which reads
%%BoundingBox: O O 162 54

indicating first the 2 and y co-ordinates (in points) of the lower left corner of the diagram (0,0)
and then the 2 and y co-ordinates of the upper right corner (162,54). Since this document is
processed using the newer of the two dvips programs available, the IATpX source quoted in
Fig. 8.2 was used to incorporate it. The centred figure is 162 points wide, and has whitespace
either side of it approximately 139 points wide, in order to centre it in a \textwidth of 441
points.

Figure 8.3 shows a screen dump taken from one of the Department’s Hewlett-Packard
workstations. The various screen windows show the following:

upper left Some of the source file of a version of this document
lower left Log output from a dvips run

centre xdvi previewer output, with the ‘magnifying glass’ active
lower right A screenful of ‘chatty’ INTRX log output

This figure was produced by adding the ‘xwd | xpr’ command line to the window manager
menu as an option, so that

¢ no command line asking for a screen dump appears on the screen dump itself (considered
terribly unprofessional);

e the mouse was free to be used to demonstrate the ‘magnifying glass’ facility of xdvi.

Close inspection of this figure reveals quite a lot about the actual operation of the IATRX
document production system.

8.4 Conclusion

In the final analysis, what matters is not that the first-chosen technique is the one that is
used for figure production, but that the figure is successfully produced in reasonable time.
There have been many cases where hours or even days have been spent trying to pummel one
PostScript file into shape, where time might have been more efficiently spent in using another
graphic generation package to copy the chosen picture by hand. The methods described
above are all known to work reasonably well, but bugs can appear in the strangest of places,
and it is best to be flexible so as not to waste time. One of the methods is bound to work
successfully... ...we hope!

Figure “wefixwddiag: shows a scre
Hewlett-Packard workstations, Th
“beginidescriptionk

“itemlupper leftlSome of the sour
“itemllower leftlThe start of the
“itemlcentrel{\tt xdvil previewsr
“item[lower rightlpartially ob=acu
“end{dezcriptionk
“heginifiguretlhtb]
Hepsffigfudunp, pst

“eaptiond¥ Workstation screen dum
“label{xwddiagk

“endfigurer

This figure was produced by addin
window manager meny az an option,
“bhegintitemizel

“item no command line asking for
itzelf {conszidered terribly
“item the mouse was free to be us
facility of {5t wdvik,
“endiitemizer

Close inspection of this figure r
of the “LaTeX document productio

adm

1
—ru-r— 1 zam adm
—ru-r— 1 zam adm
—ru-r— 1 zam adm
—ru-r— 1 zam adm
—ru-r— 1 zam adm
—ru-r— 1 zam adm
—ru-r— 1 zam adm
—ru-r-—r—— 1 sam adm
—ru-r-—r—— 1 sam adm
—ru-r-—r—— 1 sam adm
1 zam adm
1 zam adm
1 zam adm
1 zam adm
1 zam adm
1 zam adm
1 zam adm
—ru-r-—r—— 1 sam adm

ek !”/texsguide dvips guide

Thiz iz dvips 5,493 Copyright 198¢
* TeX output 1933,03,23:15427 > ¢
<tex,prorispecial,.pro>, [30] [31]
ek!“texdguide []

CHAPTER 8. GENERATING GRAPHICS

LA IVIFS

ironment setups

[Rokicki’s dv ips
committed user ﬂ
pport office. i,

nite ‘chatty’, alth¢™

K
y

n_rea] OTTrOTr_ I eaqlhnmm

liks prouced g V] sl iricesairs aee zenemaled relalivels gkl It tend 1 e quile
Iarze dalint i bir an averaze szl pae namg wm el kot S0 i sl

LA el Ames dek e an hical s¥sl e 1 kel sl W will he
ANt 1] et Skl e Baastse el lies whene

AR W e Rierssnz ems ks, [nn e anm

S st e et ek space which <an

liksyslete. br Peistscrml lles crealed Iy dvips e phe 3

perbinmeed by the mehwidnal consentims wsee than 0 |LaTed Yersion 2,09 <25 Jan 19883

Dt e nanal prewisem al seceral mezahl e -
perketle pissilib 1 zensrale Be et fils whih o2

{Auzr/libftexs inputs/report sty
Document Style “report” <b Feb 88>,

{Ausrdlibftexdinputs/repll, styy (Ausr/libstex/inputs/titlepage,styld
{fusrdlib/texdinputs/aduide, sty {Ausr/libstex/inputssad, stydl
{fusrdfadzan/texs inputssepsf styd (fusr/fe/zantex/ inputs/rokicki,sty?

prnter b then, 1 e el liels mnpsstlie b de
ncnlar Pastscrmt file will canse teinlle, and w ang ©
duninz e Tine wake Vierselves apely sre nmg

s g sele T Arznmenls 1 s hee larze dacument ; ‘ T3
Jagem ur alinl Filll anel 1 check e swe ol ang par e o fguide,aue {intro,aux (example,aux? (miniguide.aux) {(documents,aux}
A pnnter Smee dmzrane mehded via bspezial can - 5 (hibtex,aux? {running,aux) {previewer,aux? {graphics,aux? {hints,auxd

SHRL ar e bora Tl S sereen dupn dennent= < $8l Chiblio, auxd? {running, tex
wanner deerve apecial allentem, 1may somehes e Ehapter\ B.
WeedL ot 16 1t awe e aqrace baral Blank mihe drall

LaTe¥ Warning: Mo “sc typeface in thiz size, uzing “wm,
LaTe¥ Warning: Mo “tt typeface in thiz size, uzing “wm,

[301 [311 [32] [33]

Overfull “hbox {11,49258pt too wide) in paragraph at lines 237--237

[1 “elvtt [36]1 [37] [381 [39] [40<,./, . /pixitrivial,psr] [41<nwdump,ps>] [42]
[42] [441[1]

3 [34] {guide,aux {intro,aux) (example,aux) (miniguide,aux) {documents,aux?
{bibtex,aux} {running,aux} {previewer,aux} {graphics,aux) (hints,aux)
(hiblio,au}

{zee the tranzcript file for additional information?
Output written on guide,dvi (5 pages, 21096 bytesd,
Transcript written on guide,log,
ek “/texdguide []

Al the Tzl wannte and pemt all The page hearmz e d

™

Figure 8.3: X Workstation screen dump.

Chapter 9

Some Hints & Useful References

These are grouped together broadly, but are not ordered in any particular sense.

9.1 IIEX commands

Quote Marks. The single quote mark key produces a closing ‘9’ quotation mark. For an
opening ‘6’ quotation mark, use the backquote character (upper left somewhere on most
keyboards). For double quotes, type two single quote or backquote characters. (The
double quote mark character is unsuitable and is not normally used in ordinary text.)

Line Breaks. Can be forced by the use of two backslash characters, as in \\. Tt is mainly
used with the tabular environment, to separate fields in a \title or \author block,
and for setting poetry! Otherwise, only use with great care—if at all.

Page Breaks. These can be forced by using the \newpage command, but as with line breaks,
use sparingly if at all.

Reserved Characters. The following ten characters have special roles and cannot be in-
cluded directly in normal text:

#$he” " \N{1Z}

All of them, bar =~ = \ can be included in text by quoting them with a preceding
backslash character \. As an example, we use \& to produce the & character.

Accents & Special Characters. These can be produced by using the large range of char-
acter commands provided in IATpX. For details see the IATpX manual [Lamport86],
Chapter 3. There is a large range of mathematical symbols, accents, and special char-
acters such as £ which is produced by \pounds.

Extra spacing. On occasion, we need a little extra space between words or characters (an
example might be where the last letter of a word in italics would ‘collide’ with a closing
parenthesis character). The use of the character pair \/ directs INTRX to leave a little
extra space on such occasions. As a general rule though, leave spacing to IATpX to
organise.

43

44 CHAPTER 9. SOME HINTS & USEFUL REFERENCES

Dashes. The ‘minus’ character - prints as a short hyphen. For a longer dash, as in ‘pp21-29’
use two dash characters, as in 21--29. For a punctuation dash—you should use three
as in ---.

Includeonly. Using the \includeonly command not only ensures that the size of the .dvi
file is reduced, it also speeds up the processing time used by INTRpX. As your file gets
larger, this becomes a more significant benefit! Insert the \includeonly command after
the initial line of the root document.

9.2 Style and Use

Appearance. Don’t try to produce perfect copy from the start. Get the structure and
content of the document right, and only then, at the last stage, sort out any odd
formatting problems such as widows and orphans (see below), or extra spaces.

Emphasis. Typography uses italics rather than underlining for emphasis. Don’t overdo the
use of emphasis, as it soon loses its effect. A further useful convention is to set the first
occurrence of a significant technical term in boldface.

Widows & Orphans. A widow is the last line of a paragraph appearing as the top line of
a page. Similarly, an orphan is the first line of a paragraph appearing as the last line
of a page. The page-breaking algorithm in IATpX is quite good, but these still occur
from time to time. Careful use of \newpage can remove orphans, but leave such tasks
until the very end of document production. Widows are harder to remove.

Style Options. A dissertation should be produced using the following documentstyle op-
tions.

e report style, which provides for the use of chapter headings.

o 11pt size. The default size for IATRpX is 10pt, which is really too small when used
with an A4-sized page.

e a4 or adwide options. These enlarge the printed area to make better use of a
sheet of A4 paper. The a4 option leaves a larger margin and is probably the more
suitable one to use. (The a4wide option makes use of the a4 option and they are
mutually exclusive.)

e dspaceon, which will need to be defined as in the first example of Chapter 3.
Stretching the interline spacing by a factor of 1.3 is about right, but remember
to turn it off for example and mathematical expressions as these may look odd in
such spacing.

Glossary. Appending a glossary of technical terms seems to be a growing trend, but if you
do so, take care to obtain some good definitions. A glossary is really only justified where
the topic makes use of many specialised terms.

Index. You can produce these with IATRX, but the provision of an index is NOT recom-
mended for dissertations. Better to provide a tableofcontents at the beginning, since
this guides the reader more effectively.

9.3. ETHICAL AND SOCIAL ISSUES 45

9.3 Ethical and Social Issues

Our laser printers are used by staff, honours students and postgraduate students in the
Department. Anti-social behaviour easily leads to frayed tempers and worse! Please remember
always that you are not the sole user of the printers and try to consider the needs of others.

Print Runs. These should be kept short using the dvips options available. Few of us enjoy
standing by the printer watching someone’s life history appear while waiting for one
page of output. In particular, only print the pages that you need, and print them only
when you need them.

Paper Supply. It is easy to reload the printer tray (the need is indicated on an Apple/Sun
LaserWriter by the amber light staying on continuously, and by a displayed message on
HP LaserJets). If you are printing lots of pages, go and make sure that there is paper
available. Don’t overfill the feed tray, as this may cause the printer to jam; about half
full is sufficient.

Drafting. Do it elsewhere, not on the laser printers please. xdvi is quite competent at the
job. We would prefer to avoid the need to impose paper quotas, but such options are
open to us...

Bibliography

[Knuth86]

[Lamport86]

[Rubinstein88]

[Adobe85a]

[Adobe85b]

Donald E Knuth, The TpXbook, Addison-Wesley, 1986, ISBN 0-201-13447-0

Leslie Lamport, INTpX A Document Preparation System, Addison-Wesley,
1986, ISBN 0-201-15790-X

Richard Rubinstein, Digital Typography: An Introduction to Type and Com-
position for Computer System Design, Addison-Wesley, 1988, ISBN 0-201-
17633-5

Adobe Systems Inc., PostScript Language Reference Manual, Addison-
Welsey, 1985, ISBN 0-201-10174-2

Adobe Systems Inc., PostScript Language Tutorial and Cookbook, Addison-
Wesley, 1985, ISBN 0-201-10179-3

46

