TEX BY TOPIC, A TEXNICIAN'S REFERENCE

VICTOR EIJKHOUT*

ELECTRONIC VERSION 1.0, DECEMBER 2001

* This is — apart from minor changes — the full text of the bogK By Topic, copyright 1991-

2001 Victor Eijkhout. This book was printed in 1991 by Addison-Wesley UK, ISBN 0-201-56882-9,
reprinted in 1993. This book may be copied; the pdf file of this book may be printed and given
away, and it may be included in archives and on web sites; the book may be distributed in unaltered
form both on paper and electronic media. You are not allowed to make any changes to the file or to
reverse engineer its source; you are not allowed to charge for its distribution — whether in physical or
electronic form — beyond reasonable material costs.

If you have comments or want to express your appreciation that you are getting this book that formerly
sold for~$30 for free, please visit http://www.eijkhout.net/tbt/. If you already made a donation, thank
you. You are a credit to your species.

http://www.eijkhout.net/tbt/

Contents

[T The Structure of the TEX' Processof 1
i
mm 2
|21 CharacterlngptZ
[L2.Z__Two-levelinput processing?

3
|0|?3
[L3.3_Braces in the expansion procepser

4 € execution processo. 4
. e visual processor] 5
O D S 5

[T.6.1 Skipped spadess

[1.6.2 Internal quantities and their representajions

2 Category Codes
[_andInfernal Stafes
2.1 Introduction 7

2.2 Initial processing| 7

[2.3~ Category codes| 8

2.4 From characters (o tokens 10

2.0 The input processor as a finite state automaton, 10

2.0.1 StateN: new | 10

[25.2 State&s sk| mg sgac@sw
253 Statdl middle of [iné 10

2.6 Accessing the full character setf| 11

[27 Transitions between internal states 11
[2.7.1 0 escape charadtet I

272 1=4,7=8,11—13: non-blank charadtei<
273 5. endofline 12

[2.7.4 6. parameter 12

[275 7 superscript 12
2769 gnored charagjer12

[2-7.710-spate 12
m:zmm 12

279 15 invalidl 13

2.8 Letters and other characters 13
2.9 The \par toke 14
m 14

[Z.10-1_Skipped spagesi4
mmmsw

7

Contents

2.10.3 Ignored and obeyed spaceks
[2-10-4_More ignored spagesi6
2.10.5 (space tokey 16
[2-10.6_ControTspage 17

2Io7 17 17

2.11 More about line ends 17
[P-ILT_Obeylings 17

18

2.11.3 More remarks about the end-of-line chara

2.12 More about the input processor| 19

[P-TZ.1_The inpu processor as a separate prpcéss
T2 7T IpUT processor ot as & Separaie piocass
[2.12.3 Recursive invocation of the inpuf proceksan
2,13 The @ convention 20

B Characters 21

B.1 Character codesl 21

3.2 Control sequences for characters| 22

22
mm 23

B4 Accents 24
3.5 Testing characters| 25
.0 Uppercase and lowercase 25

[3.6.1 Uppercase and lowercase codes

3.6.2 Uppercase and lowercase commpngé

6. Uppercase and lowercase forms of keywords

.6.4 reative use Oluppercase and\lowercase| 26
[B.7—Codes of a charactell 27
3. 8 Converting tokens 1nto character strin 27

3.8.1 Output of control sequen¢eg7
3 8 2 Cat gog co§es ofEtrlna 28
‘ ontd 29

41— Fonts 29
4.2 Fontdeclaration 30
4.2.1 Fonts andfmfiled 30

4.2.2 Querying the current font and font name3)
.23 \nullfont| 3I
4.3 Fontinformation 31
4.3.1 Fontdimensions 31
32
4.5.3 Ttalic correction 32

3.4 Ligatures 32
F35__Boundary ligaturgs 33

b Boxes 34
35

5.2 Box registers| 35

.2.1 Allocation:\newbox| 35
[0.2.2 Usage\setbox, \box, \copy| 36

EZE !estmg.\ifvoid, \ifhbox, \ifvbox| 36
B24 The\lastbox| 36

9.3 Natural dimensions of boxes| 37

2 Victor Eijkhout — EX by Topic

Contents

2.3.1 Dimensions of created horizontal baxe3/
[0.3.2 Dimensions of created vertical baxe37
[0.3.3 Examplgs 38

39

2.4.1 Predetermined dimensions9

[6.4.2 Changes to box dimensibng0

[543 Moving boxes arouhd40

5.4.4 Box dimensions and box placement)

b-45 Boxes and negalive gluei!
5.5 Overtull and underfull boxes 42

[°.6 Opening and closing boxes| 42

Unb g 43
44
5.9 Assorted remarks 44
5.9.1 Forgetting thebox| 44
[:9.7_Special-purpose boyesis
[:9.3_The height of a vertical boX i ForiZontal mbdds
5.9.4 More subtleties with vertical boxests
[2.9.5 Hanging thalastbox back in the ligt 46
[.9.6Dissecting paragraphs wRhastbor] 46

6 Horizontal and

| Vertical Mode| 48

6.1 Horizontal and vertical model 48
6.1.1 Horizontal mode 48

6.1.2 Vertical mode 49

6.2 Horizontal and vertical commands| 49
6.5 The internal modes 50

[6.3.1 Restricted horizontal mddes0

6.3.2 [Internal vertical mode 50

6.4 Boxes and modes 51

[6.4.1 What box do you use in what mofle3!
6.4.2 What mode holds in what bax>1
[6.4.3 Mode-dependent behaviour of Dgxesl
[65 Modes and glugd 51

6.6 Migrating material 52

0.0. vadjust| 52

[6.7 Testing modes| 52

[7 Numberd 54

7.1 Numbers and (number)s| 54

2 Integers| 54
[7-Z__Denotations: integerss’s
[7.2.2_Denotafions: characterss
[7.2.3__Internal integers 56
[7.2.4" Tnternalintegers: other codes of a character
|7.2.5 (special integel 57
[7.2.6_Other internal quantities: coersion to intéget7
[72.7_Trailing spaces 57
[Z.3— Numbers 57
7.4 Integer registers| 58

7.5 Arithmetid 58

Victor Eijkhout — EX by Topic

Contents

/0.1 Arthmetic statements59
|7.5.2 Floating-point arithmetic 59
[7.2.3 Fixed-point arithmetic 59

.0 Number testing) 59

.7 Remarkd 60
[7.7.1 — Character constahts;0

|[7.7.2 EXpanding too far / how far60

8 Dimensions and Glué 62

8.1 Definition of (glue) and (dimen)| 62
8.1.1 Definition of dimensioms 63

[8.1.2 Definition of glug 64
8.1.3 Conversion ofglue) to (dimen)

3.1.4 Registers 1oxdimen and\skip| 65
8.1.5 Arithmefic: addition 65
Arithmetic: multiplication and division 66

8.2 More about dimensions
8.2.1 Units of measurement66

8.2.2 Dimension testing 67
8.2.3 Defined dimensions67
8.3 More about glue| 67
8.3.1 Stretch and shrihk67
|8.3.2 Glue settl[]g 69
B.33 Badness 69
| .3. 4 Glue and breaking 69
8.3.5 \kern| 70
8.3.6 Glue and modes70
The Tast glue item in a list: backspagingo
. xamples of backspac|ng/1
[B3.0 Glue in trace output 71
9 Rules and Leaders 73
73
9.1.1 Rule dimensions 74
74
9.2.1 Ruleleaders 75
9.2.2 Boxleadefs 76
[9.2.3 Evenly spaced leadprs’6
77
9.3.1 Rules and modes77
9.3.2 Ending a paragraph with leaderg7

|9.3.3 Leaders and box regls!|er§’7
537 OUpUl i Teader boses7s
.35 Boxleaders in trace outpurs
3.6 Leaders and shifted margins’s
mm 79

110.1 The grouping mechanism| 79
[10.2 Local and global assignments| 80
0

10.4 More about braces 81

4 Victor Eijkhout — EX by Topic

Contents

[10.4.3" Open and closing brace control symjpo&2
11 Macrog 83

11.1 _ Introduction| 83
11.2 Layout of a macro definition| 84
113" Prefixes 84
11.4 The definition type 85
. e parameter text] 85

[11.5.1 Undelimited parameterss5
[[15.2_Delimited paramet@rss6
[[1.5.3_Examples with delimited argumantss
[[L5.4_Emply argumentsss
[[L55_The macro parameter charactes
[TT.5.6 Brace delimitifg 89
[11.6 Construction of control sequences| 89
[ITI.7 Token assignments by \Iet and \futurelet| 90
II.7.1 \Iet] 90
11.7.2 \futurelet| 90
[11.8 Assorted remarks 91
111.8.1 Active characters9i
[11.8.2 Macros versus primitivies91
[I1.8.3 Tailrecursidn 91
11.9 Macro techniques 92
[TT.9.7 Unknown number of argument$2
[11.9.2 Examining the argumento3
|;1.§.§ Qgtlonal macro parameters Wittuturelet| 95
[[1.9.4_Two-step macrbs9s
11.9.5 A comment environm
12 Expansion 98
12.1 Introduction 98
12.2 Ordinary expansion 98
99
3. One step expansiotexpandafter| 99
100
100
12.3.4 \aftergroup| 10!
[[2.4__ Preventing expansior] 102
[12.4.1 \noexpand 102
\noexpand and active charactérsi02
125 \relax| 103
112.5.1 \relax and\csname| 103
12.5.2 Preventing expansion witfrelax| 104
104
[I2.5.4 The value of non-macrosthe] 105
[12.6 Examples 105
[[2:6.1_Expanding after 105
106
107
6.4 ontrolled expansion inside & 108
[[2.6:5_Muliple prevention of expansion!08
[12.6.6 More examples withrelax| 108

>

;

Victor Eijkhout — EX by Topic 5

Contents

|12.6.7 Examgle: categorz code savmg and restprimQQ

110

[[2.6.9_More expansion 110

111

[13.1 The shape of conditionals| 111

[I3.2"Character and control sequence tests| 112

112

112

112

15,5 Mode tests 113

13.4 Numerical tests 113

[13.5 _ Othertestsd 114

113.5.1 Dimension testing 114

13.5.2 Boxtests 114

1353 1[Ofteslis 114

115.5.4 Case statement! 14

[13.5.5 Specialtests115

[[3.6 The \newif macrd 115

[13./ Evaluation of conditionals 116

13.8 Assorted remarksl 117

[13.86.1 The test gobbles up tokpn$17
.. : i| 117

118

s o [T —

[38.5_Condftionals and grouping! 19

m 120

|13.8.7 More examgles of eannsmn n COﬂdItIO'IaHO

14 __ TokenlLists 123

14.1 [oken lists 123

[14.2 _ Use of token Iistd 123

[14.3 (token parameter)| 124

|14 4 loken list registers| 124

14.5 Examples 125

[T45.17 Operations on token lists: stack macrdes

[14.5.2 EXxecuting token ligts 126

15 Baseline Disfancés 128

[15.1 Interline gluel 128

EEZ ZT_le percetved depth of boxes| 130

M5.3 Terminology 130

15.4 Additional remarks| 131

|16 Paragraph Start] 132

0. When does a paragraph starf 132

0. What happens when a paragraph starts| 133
[16.3Assorted remarks 133
116.3.1 Starting a paragraph with a box33
[16.3.2 Starting a paragraph with a group33
134

16.4.1 Stretchable indentatil
[16.4.2" Suppressing indentation 34

16.4.3 An Indentation schetnel34

6 Victor Eijkhout — EX by Topic

Contents

[16.4.4 A paragraph skip schemd 35
[T7 Paragraph End 137

. The way paragraphs end 137
138

.1.2 Paragraph fillin 138
[17.2Assorted remarks 138
|17 2.1 Ending a paragraph and a group at the samé tifd8

nding a paragraph witlhhfill\break| 139

[[7-2.3_Ending a paragraph with a fuié 39
mpm
|IZ 25 Elnlte\EarflllSklEI 139
[[7-2.6_A precaution for paragraphs that do not imdef0
FFW 141
18.1 _ The width of text lined 141
|18.2 Shape parameters| 141
[[8:2.1_Hanging indentatipn /41
[[8-2.2_General paragraph shapesirshape| 142

18.3 Assorted remarksl 143
18.3.1 Centred lastlines143
[18.3.2 Indenting into the margin143
[[8:3.3_Hang a paragraph from an objedt+4
[[8:3.4_Another approach {0 hanging indentgtion4
[[83.6_More examples 145

0 B gl 146
9.1 Paragraph break cost calculation] 147
19.1. 1 Badnes$s 147
[19.1.2 Penalties and other break locationst7
[19.1.3" Demerils 148
[19.1.4 The number of lines of a paragrapl9
[19.1.5 Between the linkes 149
[19.2 The process of breaking| 149
[[9:2.1_Three pasges!50
[19.2.Z Tolerance values150
19.3 Discretionaried 150
[19.3.1 Hyphens and discretionatie$50

[[9:3.7 Examples of discretonafiess|
0.4 Hyp 151

[19.4.1 Start ofawoid 152
[19.42 Endofawoid 152
WWEE 153
[[9.2.4Paltemns and exceptipnss3

0. witching hyphenation patterns| 153

20 Spacing 155
[20.1 Automatic interword spacel 155
[20.2 User interword space| 156
203 Conmol space and 156
[20.4_More on the space factoi] 157

[20.4.1_Space factor assignmentss?
mmm-mmm nli 5 7

Victor Eijkhout — EX by Topic 7

Contents

20.4.3 Other non-letters 158

[20.4.4 Other Influences on the space fgctass

159

Mathematical ch sl 159

1.2 Delumiters 160

21.2.1 Delimiter codes 161

[21.2.2 Explicit\delimiter commands 161

[21.2.3 Flndlng a delimiter; succesgor$61
Big, \bigg, and\Bigg| 162

m:s:m 162

[21.4 Math accents 163

22 Fontsin Formulag 164

[22.1 Determining the font of a character in math mode| 164

[22.2 Initial family settings| 164

165

165

|ZZ E I gl iange t[ie !ont 0! o@nary characters and uggercase|G|166k
[22.4.2 " Change uppercase Greek independent of text fo6h

[22.4.3 Change the font of lowercase Grpell66
22.5 Assorted remarks 166

22.5.1 New tonts in formulas 166

22.5.2 Evaluating the families 167

23 Mathematics Typeseting 168
[23.1 Math modes 169

[23.2 Styles in math model 169
[73.2.1_Superscripts and sUbsGipt70
[23.2.2_Choice of styés 170

171
m 171
W 172
173
[23.6.7_Muskip registefs 173

23.6.3 Ofher spaces in math mbde74
23.7 Generalized fractionsl 174

[23.8 Underlining, overlining| 175

175

23.10 Font dimensions of families 2 and 31 175

[23710.1 Symbol font aftribufes 175

[23.10.2 Extension font attribules! 76

[23.10.3 Example: subscript loweringl 77
[24Display Math] 178

178

179

[24.3 Vertical material around displays 179
[24.4 Glue setting of the display math lisf 180

4, ‘entring the display formula: displacement] 180
180

24.6.1 Ordinary equation numberd 81
|22I 6 2 The equation number on a separate liné1

8 Victor Eijkhout — EX by Topic

Contents

Non-centred displa 181

[25 Alignment] 183
[25.1 Introductionl 183
[25.2 Horizontal and vertical alignment| 183
184
184
184
[25.2.4_Size of the alignmenti85
253 _The preamblg 185
[25.3.1_Tnfinite prearbles 185
[75.3.2Brace counting in preambles 86
[75.3.3_Expansion in the preample/s6
186
187
[25.4.1_Reading an erry 187
4. Alternate specificationsomit 187
188
—ts188
189
[25.5 Examgle: math al1gnmentg 189
[26 Page Shapg 191
[26.1 The reference point for global positioning| 191
[26.2 \topskip 191
192
27 — Page Breaking 193
mﬁge and the recent contributions] 193
194
Page leng t bookkeeping| 194

O74 Breakpointy 195
[27.4.1 Possible breakpointsi 95
[27.4.7_Breakpomt penalties!95
273 Breakporntcomputatniss
197
mmwm 198
[27.6.1 Filling up a page 198
[27.6.2_Determining the breakpdinti 98
[£7.6.3_The page bullder atfter a paragiapto9
200
200

8. Output and \box255| 201
201
28.4 Assorted remarks 203

[28.4.1 Hazards In non-trivial output routineg03
[P84.2_Page numberig203
PET_Headines and Io0lnes 1 Py 203
2527 Evample: 0 widow s 205

78.4.5_Example: no indentattion fop of phgeo4

28.4.6 More examples of output routineg05
29 Insertiond 206
[29.1 Insertion items 206

Victor Eijkhout — EX by Topic 9

Contents

[29.2 Insertion class declarationl 207
[29.3 Insertion parameters] 207

[29.4 Moving nsertion items from the contributions lisf| 207
[29.6Plain TEX fseriiony 209

B0 File Inputand Outpdt] 210

BO.L__ Including Ailes: \input and \endinput] 210

210

[30.2.1 Opening and closing stream31 1

0) d 211
212
212
[80.4 Assorted remarks 212
[30.4.1 Inspecting input 212

4. esting for existence of files?213
[B0:4:3_Timing problens 213
213
30.4.5 Write inside a vertical bbx213
[30.4.6 EXpansion and spaces\iirite and\message| 214
[B1___Allocafion] 215
81.1 Allocation commands 215
[31.1.1 \count, \dimen, \skip, \muskip, \toks| 216
[BT.T.2 \box, \fam, \write, \read, \insert] 216
[81.2 Ground rules for macro writers 216
[32 Running TEX| 218
218
[32.1.1 Startofthe jgb 218
BZLZ_Endotthejab 219
B2.1.3 Thelogfile 219
|32.2 Run modes 219
‘ TEXandthe
‘ QQI&Q&M[IQl 221
221
Bm—rmts—mgzm
| 3.1.2 Formats: dum[:_)lpgzzz
B3.L3_Formats: preloading222
33.1.4_The knowledge of IngK| 222
33.1.5_Memory sizes of)K and INIEX| 223
33.2 More about formats 223

223

33.2.2 Preloaded fonts223

[33.2.3 The plain format 224

224
33.2.5 Mathematical formats224
[33.2.6__Other formats 224

[33.3 Thedvi fild 225
33.3.1 Thedvi file format 225
[33.3.2 Page identificatipn 225
225
w 226

10 Victor Eijkhout — EX by Topic

Contents

B35 _Timd 226

226
[83.6.1 Font metri¢s 227
[83.6.2 Virtual fonts 227

227
[33.6.4_Computer Modejn 228
228

229
|’§Z T racm§| 230

Fﬂ. Meaning and content: \show, \showthe, \meaning| 231

EEZ Show boxes: \showbox, \tracingoutput| 231

233

135 Errors, Catastrophes, |

| and Help 234

234

235

[35:2.1 Buffer size (500) 235

[35.2.2 Exception dictionary (307)235

[35.2.3 Font memory (20000)236

[B5.2.4_Grouping levels 236

[35:25 Hash size (2100)236

[35.2.6 Number of sirings (3000)236

[35.2.7 Tnput stack size (200)236

[35.2.8 Main memory size (30 000)236

[35.2.9 Parameter stack size (6037

[35.2.10 Pattern memory (80001237

[65.2.T1_Pattern memory ops per langlags7

[35:2.12 Pool size (32000)237

[35.2.13 Save size (600)237

[35.2.14 Semantic nest size (B0237

[35.2.15 Textinputlevels () 237

6 e Grammar o X| 238

36.1 Notations 238

36.2 Keywords| 239

[36.3 Specific grammatical terms| 239

[36.3.1 (equals| 239

36.3.2 (filler), (general tex{ 239

36.3.3 {} and(left brace(right brace| 240

36.3.4 (math field| 240

36.4 Differences between IEX versions 2 and 3 240
ossary of IeX Primitives| 242

255

[38.1 Character tables 255

[38.2 Computer modern fonts| 257
262

38.3.1 Mathcharacter coc

(38.3.2 Delimiter codes 263

38.3.3 (mathchardef tokensordinary symbols 264
38.3.4 (mathchardef tokenslarge operatofs 265
38.3.5 (mathchardef tokensbinary operations 266

Victor Eijkhout — EX by Topic 11

Contents

38.3.6 gmathchardeftokegsrelationjs 267
38.3.7 \delimiter macrok 268

12 Victor Eijkhout — EX by Topic

Abstract

To the casual observergX is not a state-of-the-art typesetting system. No flashy multilevel
menus and interactive manipulation of text and graphics dazzle the onlooker. On a less
superficial level, however,gX is a very sophisticated program, first of all because of the
ingeniousness of its built-in algorithms for such things as paragraph breaking and make-up
of mathematical formulas, and second because of its almost complete programmability. The
combination of these factors makes it possible foX To realize almost every imaginable
layout in a highly automated fashion.

Unfortunately, it also means thagX has an unusually large number of commands and
parameters, and that programmirgXican be far from easy. Anyone wanting to program

in TeX, and maybe even the ordinary user, would seem to need two books: a tutorial that
gives a first glimpse of the many nuts and boltspf;Tand after that a systematic, complete
reference manual. This book tries to fulfil the latter function. g<&r who has already
made a start (using any of a number of introductory books on the market) should be able to
use this book indefinitely thereafter.

In this volume the universe ofgX is presented as about forty different subjects, each in

a separate chapter. Each chapter starts out with a list of control sequences relevant to the
topic of that chapter and proceeds to treat the theory of the topic. Most chapters conclude
with remarks and examples.

Globally, the chapters are ordered as follows. The chapters on basic mechanisms are first,
the chapters on text treatment and mathematics are next, and finally there are some chapters
on output and aspects ofX’s connections to the outside world.

The book also contains a glossary gXTcommands, tables, and indexes by example, by
control sequence, and by subject. The subject index refers for most concepts to only one
page, where most of the information on that topic can be found, as well as references to the
locations of related information.

This book does not treat any specifigXlmacro package. Any parts of the plain format
that are treated are those parts that belong to the ‘core’ of pgintfiey are also present

in, for instance ,ATEX. Therefore, most remarks about the plain format are true gL

as well as most other formats. Putting it differently, if the text refers to the plain format,
this should be taken as a contrast to puregiiTnot to BTeX. By way of illustration,
occasionally macros from plairgX are explained that do not belong to the core.

Acknowledgment
| am indebted to Barbara Beeton, Karl Berry, and Nico Poppelier, who read previous versi-
ons of this book. Their comments helped to improve the presentation. Also | would like to
thank the participants of the discussion lisgXfax, TeX-nl, andcomp . text . tex. Their
guestions and answers gave me much food for thought. Finally, any acknowledgement in
a book about gX ought to include Donald Knuth for inventing=X in the first place. This
book is no exception.
Victor Eijkhout
Urbana, lllinois, August 1991
Knoxville, Tennessee, May 2001

Chapter 1

The Structure of the TEX Processor

This book treats the various aspects gKTn chapters that are concerned with relatively
small, well-delineated, topics. In this chapter, therefore, a global picture of the gay T
operates will be given. Of necessity, many details will be omitted here, but all of these are
treated in later chapters. On the other hand, the few examples given in this chapter will
be repeated in the appropriate places later on; they are included here to make this chapter
self-contained.

1.1 Four TeX processors

The way X processes its input can be viewed as happening on four levels. One might say
that the EX processor is split into four separate units, each one accepting the output of the
previous stage, and delivering the input for the next stage. The input of the first stage is
then the. tex input file; the output of the last stage is avi file.

For many purposes it is most convenient, and most insightful, to consider these four levels
of processing as happening after one another, each one acceptirgripieted output of

the previous level. In reality this is not true: all levels are simultaneously active, and there
is interaction between them.

The four levels are (corresponding roughly to the ‘eyes’, ‘mouth’, ‘stomach’, and ‘bowels’
respectively in Knuth’s original terminology) as follows.

1. The input processor. This is the piece pKThat accepts input lines from the file
system of whatever computegX runs on, and turns them into tokens. Tokens are
the internal objects of gX: there are character tokens that constitute the typeset
text, and control sequence tokens that are commands to be processed by the next
two levels.

2. The expansion processor. Some but not all of the tokens generated in the first level
— macros, conditionals, and a number of primitigX Tommands — are subject to
expansion. Expansion is the process that replaces some (sequences of) tokens by
other (or no) tokens.

3. The execution processor. Control sequences that are not expandable are executa-
ble, and this execution takes place on the third level of théprocessor.

One part of the activity here concerns changeg¢diinternal state: assignments
(including macro definitions) are typical activities in this category. The other ma-
jor thing happening on this level is the construction of horizontal, vertical, and
mathematical lists.

Chapter 1. The Structure of theX Processor

4, The visual processor. In the final level of processing the visual pagbopiioces-
sing is performed. Here horizontal lists are broken into paragraphs, vertical lists
are broken into pages, and formulas are built out of math lists. Also the output to
thedvi file takes place on this level. The algorithms working here are not acces-
sible to the user, but they can be influenced by a number of parameters.

1.2 The input processor

The input processor ofgK is that part of EX that translates whatever characters it gets
from the input file into tokens. The output of this processor is a stream of tokens: a token
list. Most tokens fall into one of two categories: character tokens and control sequence
tokens. The remaining category is that of the parameter tokens; these will not be treated in
this chapter.

1.2.1 Character input

For simple input text, characters are made into character tokens. HowgXearaii ignore

input characters: a row of spaces in the input is usually equivalent to just one space. Also,
TeX itself can insert tokens that do not correspond to any character in the input, for instance
the space token at the end of the line, ortper token after an empty line.

Not all character tokens signify characters to be typeset. Characters fall into sixteen catego-
ries — each one specifying a certain function that a character can have — of which only two
contain the characters that will be typeset. The other categories contain such characters
as{, }, & and#. A character token can be considered as a pair of numbers: the charac-
ter code — typically thexscil code — and the category code. It is possible to change the
category code that is associated with a particular character code.

When the escape character (by defaglappears in the inputgK’s behaviour in forming
tokens is more complicated. BasicallgXTbuilds a control sequence by taking a number
of characters from the input and lumping them together into a single token.

The behaviour with whichgX’s input processor reacts to category codes can be described
as a machine that switches between three internal statesew line; M, middle of line;
S, skipping spaces. These states and the transitions between them are treated irf Chapter 2.

1.2.2 Two-level input processing

TeX’s input processor is in fact itself a two-level processor. Because of limitations of the
terminal, the editor, or the operating system, the user may not be able to input certain
desired characters. ThereforgXTprovides a mechanism to access with two superscript
characters all of the available character positions. This may be considered a separate stage
of TeX processing, taking place prior to the three-state machine mentioned above.

For instance, the sequenter+ is replaced bk because thascil codes ofk and+ differ
by 64. Since this replacement takes place before tokens are formed, Wriing+ip 5cm
has the same effect &sskip 5cm. Examples more useful than this exist.

Note that this first stage is a transformation from characters to characters, without consi-
dering category codes. These come into play only in the second phase of input processing
where characters are converted to character tokens by coupling the category code to the
character code.

2 Victor Eijkhout — EX by Topic

1.3. The expansion processor

1.3 The expansion processor

TeX's expansion processor accepts a stream of tokens and, if possible, expands the tokens
in this stream one by one until only unexpandable tokens remain. Macro expansion is the
clearest example of this: if a control sequence is a macro name, it is replaced (together
possibly with parameter tokens) by the definition text of the macro.

Input for the expansion processor is provided mainly by the input processor. The stream of
tokens coming from the first stage gfX processing is subject to the expansion process,
and the result is a stream of unexpandable tokens which is fed to the execution processor.

However, the expansion processor comes into play also when (among othgegledror
\write is processed. The parameter token list of these commands is expanded very much
as if the lists had been on the top level, instead of the argument to a command.

1.3.1 The process of expansion

Expanding a token consists of the following steps:

1. See whether the token is expandable.

2. If the token is unexpandable, pass it to the token list currently being built, and take
on the next token.

3. If the token is expandable, replace it by its expansion. For macros without para-

meters, and a few primitive commands such gsbname, this is indeed a simple
replacement. Usually, howevegX needs to absorb some argument tokens from
the stream in order to be able to form the replacement of the current token. For
instance, if the token was a macro with parameters, sufficiently many tokens need
to be absorbed to form the arguments corresponding to these parameters.

4, Go on expanding, starting with the first token of the expansion.

Deciding whether a token is expandable is a simple decision. Macros and active charac-
ters, conditionals, and a number of primitiveXTcommands (see the list on p&ge 98) are
expandable, other tokens are not. Thus the expansion processor replaces macros by their
expansion, it evaluates conditionals and eliminates any irrelevant parts of these, but tokens
such as\vskip and character tokens, including characters such as dollars and braces, are
passed untouched.

1.3.2 Special caseSiexpandafter, \noexpand, and \the

As stated above, after a token has been expang&dwill start expanding the resulting
tokens. At first sight th&expandafter command would seem to be an exception to this
rule, because it expands only one step. What actually happens is that the sequence

\expandafter(token)(token)
is replaced by
(token) (expansion of token
and this replacement is in fact reexamined by the expansion processor.
Real exceptions do exist, however. If the current token is\lwexpand command, the
next token is considered for the moment to be unexpandable: it is handled as if it were
\relax, and it is passed to the token list being built.
For example, in the macro definition
\edef\a{\noexpand\b}

Victor Eijkhout — EX by Topic 3

Chapter 1. The Structure of theX Processor

the replacement texhoexpand\b is expanded at definition time. The expansioN$expand
is the next token, with a temporary meaning\eklax. Thus, when the expansion proces-

sor tackles the next token, the, it will consider that to be unexpandable, and just pass it
to the token list being built, which is the replacement text of the macro.

Another exception is that the tokens resulting frethe (token variable are not expanded
further if this statement occurs inside ®¥def macro definition.

1.3.3 Braces in the expansion processor

Above, it was said that braces are passed as unexpandable character tokens. In general this
is true. For instance, theromannumeral command is handled by the expansion processor;
when confronted with

\romannumerall\number\count2 3{4 ...
TeX will expand until the brace is encountered\ifount?2 has the value of zero, the result
will be the roman numeral representationioB.
As another example,
\iftrue {\else }\fi
is handled by the expansion processor completely analogous to
\iftrue a\else b\fi
The result is a character token, independent of its category.
However, in the context of macro expansion the expansion processor will recognize braces.

First of all, a balanced pair of braces marks off a group of tokens to be passed as one
argument. If a macro has an argument

\def\macro#i{ ... }

one can call it with a single token, as in

\macro 1 \macro \$

or with a group of tokens, surrounded by braces
\macro {abc} \macro {d{efl}g}

Secondly, when the arguments for a macro with parameters are read, no expressions with
unbalanced braces are accepted. In

\def\a#1\stop{ ... }

the argument consists of all tokens up to the first occurrengetafp that is not in braces:
in

\a bc{d\stople\stop
the argument ofa is bc{d\stop}e. Only balanced expressions are accepted here.

14 The execution processor

The execution processor builds lists: horizontal, vertical, and math lists. Corresponding to
these lists, it works in horizontal, vertical, or math mode. Of these three modes ‘internal’
and ‘external’ variants exist. In addition to building lists, this part of tf¢ processor also
performs mode-independent processing, such as assignments.

Coming out of the expansion processor is a stream of unexpandable tokens to be processed
by the execution processor. From the point of view of the execution processor, this stream
contains two types of tokens:

4 Victor Eijkhout — EX by Topic

1.5. The visual processor

° Tokens signalling an assignment (this includes macro definitions), and other to-
kens signalling actions that are independent of the mode, sudlktas: and
\aftergroup.

. Tokens that build lists: characters, boxes, and glue. The way they are handled

depends on the current mode.

Some objects can be used in any mode; for instance boxes can appear in horizontal, ver-
tical, and math lists. The effect of such an object will of course still depend on the mode.
Other objects are specific for one mode. For instance, characters (to be more precise: cha-
racter tokens of categories 11 and 12), are intimately connected to horizontal mode: if the
execution processor is in vertical mode when it encounters a character, it will switch to
horizontal mode.

Not all character tokens signal characters to be typeset: the execution processor can also
encounter math shift characters (by defa@)land beginning/end of group characters (by
default{ and}). Math shift characters letgK enter or exit math mode, and braces let it
enter or exit a new level of grouping.

One control sequence handled by the execution processor deserves special esitin:
This control sequence is not expandable, but the execution is to do nothing. Compare the
effect of\relax in

\countO=1\relax 2

with that of \empty defined by
\def\empty{}

in

\countO=1\empty 2

In the first case the expansion process that is forming the number stepslakk and the
numberl is assigned; in the second casapty expands to nothing, st is assigned.

15 The visual processor

TeX's output processor encompasses those algorithms that are outside direct user control:
paragraph breaking, alignment, page breaking, math typesettingivarfile generation.
Various parameters control the operation of these partgXf T

Some of these algorithms return their results in a form that can be handled by the execution
processor. For instance, a paragraph that has been broken into lines is added to the main
vertical list as a sequence of horizontal boxes with intermediate glue and penalties. Also,
the page breaking algorithm stores its resutx255, SO output routines can dissect it.

On the other hand, a math formula can not be broken into pieces, and, naturally, shipping a
box to thedvi file is irreversible.

1.6 Examples
1.6.1 Skipped spaces

Skipped spaces provide an illustration of the view tha({'J levels of processing accept
the completed input of the previous level. Consider the commands

Victor Eijkhout — EX by Topic 5

Chapter 1. The Structure of theX Processor

\def\a{\penalty200}
\a 0

This isnotequivalent to

\penalty200 0

which would place a penalty @00, and typeset the digit. Instead it expands to
\penalty2000

because the space afteris skipped in the input processor. Later stages of processing then
receive the sequence

\a0

1.6.2 Internal quantities and their representations

TeX uses various sorts of internal quantities, such as integers and dimensions. These inter-
nal quantities have an external representation, which is a string of characters, gach as
0or91.44cm.

Conversions between the internal value and the external representation take place on two
different levels, depending on what direction the conversion goes. A string of characters is
converted to an internal value in assignments such as

\pageno=12 \baselineskip=13pt

or statements such as

\vskip 5.71pt

and all of these statements are handled by the execution processor.

On the other hand, the conversion of the internal values into a representation as a string of
characters is handled by the expansion processor. For instance,

\number\pageno \romannumeral\year
\the\baselineskip

are all processed by expansion.

As a final example, supposeount2=45, and consider the statement
\countO=1\number\count2 3

The expansion processor tacklesimber\count?2 to give the charactess, and the space
after the2 does not end the number being assigned: it only serves as a delimiter of the
number of the\count register. In the next stage of processing, the execution processor
will then see the statement

\count0=1453
and execute this.

6 Victor Eijkhout — EX by Topic

Chapter 2

Category Codes
and Internal States

When characters are reaggXTassigns them category codes. The reading mechanism has
three internal states, and transitions between these states are effected by category codes of
characters in the input. This chapter describes hg¥w@ads its input and how the category
codes of characters influence the reading behaviour. Spaces and line ends are discussed.

\endlinechar The character code of the end-of-line character appended to input lines.
INiTEX default: 13.

\par Command to close off a paragraph and go into vertical mode. Is generated by empty
lines.

\ignorespaces Command that reads and expands until something is encountered that is
not a({space token

\catcode Query or set category codes.

\ifcat Test whether two characters have the same category code.

\u Control space. Insert the same amount of space that a space token woulkyhesfactor =
1000.

\obeylines Macro in plain EX to make line ends significant.

\obeyspaces Macro in plain X to make (most) spaces significant.

2.1 Introduction

TeX's input processor scans input lines from a file or terminal, and makes tokens out of the
characters. The input processor can be viewed as a simple finite state automaton with three
internal states; depending on the state its scanning behaviour may differ. This automaton
will be treated here both from the point of view of the internal states and of the category
codes governing the transitions.

2.2 Initial processing

Input from a file (or from the user terminal, but this will not be mentioned specifically most
of the time) is handled one line at a time. Here follows a discussion of what exactly is an
input line for X.

Computer systems differ with respect to the exact definition of an input line. The carriage
return/line feed sequence terminating a line is most common, but some systems use just

Chapter 2. Category Codes and Internal States

a line feed, and some systems with fixed record length (block) storage do not have a line
terminator at all. ThereforegK has its own way of terminating an input line.

1. An input line is read from an input file (minus the line terminator, if any).

2. Trailing spaces are removed (this is for the systems with block storage, and it
prevents confusion because these spaces are hard to see in an editor).

3. The , by defaultreturr) (code 13) is appended. If the value\@ndlinechar is

negative or more than 255 (this was 127 in versionsgf dlder than version 3;
see pagg 240 for more differences), no character is appended. The effect then is
the same as if the line were to end with a comment character.

Computers may also differ in the character encoding (the most common schemesare
andEBCDIC), so X converts the characters that are read from the file to its own character
codes. These codes are then used exclusively, so giawill perform the same on any
system. For more on this, see Chapier 3.

2.3 Category codes

Each of the 256 character codes (0—255) has an associated category code, though not neces-
sarily always the same one. There are 16 categories, numbered 0-15. When scanning the
input, TeX thus forms character-code—category-code pairs. The input processor sees only
these pairs; from them are formed character tokens, control sequence tokens, and parameter
tokens. These tokens are then passegtdsiexpansion and execution processes.

A character token is a character-code—category-code pair that is passed unchanged. A con-
trol sequence token consists of one or more characters preceded by an escape character;
see below. Parameter tokens are also explained below.

This is the list of the categories, together with a brief description. More elaborate explana-
tions follow in this and later chapters.

0. Escape character; this signals the start of a control sequengeX Imidkes the
backslash (code 92) an escape character.

1. Beginning of group; such a character caug26td enter a new level of grouping.
The plain format makes the open braca beginningof-group character.

2. End of group; EX closes the current level of grouping. PlaipXThas the closing
brace} as end-of-group character.

3. Math shift; this is the opening and closing delimiter for math formulas. P T
uses the dollar sigh for this.

4. Alignment tab; the column (row) separator in tables made \#i#iign (\valign).
In plain TeX this is the ampersangl

5. End of line; a character thggX considers to signal the end of an input line. XT

assigns this code to tHeeturn), that is, code 13. Not coincidentally, 13 is also the
value that IniEX assigns to th&endlinechar parameter; see above.

6. Parameter character; this indicates parameters for macros. In pathis is the
hash sigr#.
7. Superscript; this precedes superscript expressions in math mode. It is also used to

denote character codes that cannot be entered in an input file; see below. In plain
TeX this is the circumflex.

8. Subscript; this precedes subscript expressions in math mode. In phithd
underscore is used for this.

8 Victor Eijkhout — EX by Topic

2.3. Category codes

9. Ignored; characters of this category are removed from the input, and have therefore
no influence on furthergX processing. In plain gX this is the(null) character,
that is, code O.

10. Space; space characters receive special treatmempX lagBigns this category to
theAsci (spacé character, code 32.

11. Letter; in IniEX only the characters. .z, A. . Z are in this category. Often, macro
packages make some ‘secret’ character (for instaha#o a letter.

12. Other; IniEX puts everything that is not in the other categories into this category.
Thus it includes, for instance, digits and punctuation.

13. Active; active characters function asgKicommand, without being preceded by

an escape character. In plaipXTthis is only the tie charactet, which is defined
to produce an unbreakable space; see 156.
14. Comment character; from a comment character onwagds;dnsiders the rest of
an input line to be comment and ignores it. In EXTthe per cent sigrk is made
a comment character.
15. Invalid character; this category is for characters that should not appear in the input.
IniTEX assigns thescii (delete character, code 127, to this category.

The user can change the mapping of character codes to category codes with the command
(see Chapt6 for the explanation of concepts sucbh@sals):

\catcode(numbej(equal$(numbe.
In such a statement, the first number is often given in the form
‘(character or ‘\(character
both of which denote the character code of the character (see[pages[2] and 55).
The plain format defines
\chardef\active=13
so that one can write statements such as
\catcode ‘\{=\active
The\chardef command is treated on pageg 22 pnd 56.
The BTEX format has the control sequences

\def\makeatletter{\catcode‘@=11 }
\def\makeatother{\catcode‘@=12 }

in order to switch on and off the ‘secret’ charactgisee below).
The\catcode command can also be used to query category codes: in
\count255=\catcode ‘\{
it yields a number, which can be assigned.
Category codes can be tested by

\ifcat(token)(token)

TeX expands whatever is aft&i fcat until two unexpandable tokens are found; these are
then compared with respect to their category codes. Control sequence tokens are considered
to have category code 16, which makes them all equal to each other, and unequal to all
character tokens. Conditionals are treated further in Chapjer 13.

Victor Eijkhout — EX by Topic 9

Chapter 2. Category Codes and Internal States

2.4 From characters to tokens

The input processor ofgK scans input lines from a file or from the user terminal, and
converts the characters in the input to tokens. There are three types of tokens.

. Character tokens: any character that is passed on its ovgXte flirther levels of
processing with an appropriate category code attached.
° Control sequence tokens, of which there are two kinds: an escape character — that

is, a character of category 0 — followed by a string of ‘letters’ is lumped together
into a control word, which is a single token. An escape character followed by a
single character that is not of category 11, letter, is made irtenaol symbol.

If the distinction between control word and control symbol is irrelevant, both are
calledcontrol sequences.

The control symbol that results from an escape character followed by a space
character is calledontrol space.

. Parameter tokens: a parameter character — that is, a character of category 6, by
default# — followed by a digit1. .9 is replaced by a parameter token. Parameter
tokens are allowed only in the context of macros (see Chapter 11).

A macro parameter character followed by another macro parameter character (not

necessarily with the same character code) is replaced by a single character token.
This token has category 6 (macro parameter), and the character code of the second
parameter character. The most common instance is of this is repkeibg #¢,

where the subscript denotes the category code.

2.5 The input processor as a finite state automaton

TeX's input processor can be considered to be a finite state automaton with three internal
states, that is, at any moment in time it is in one of three states, and after transition to
another state there is no memory of the previous states.

251 StateN: new line

StateN is entered at the beginning of each new input line, and that is the only tie T
is in this state. In stathl all space tokens (that is, characters of category 10) are ignored;
an end-of-line character is converted intdgar token. All other tokens bringgX into
stateM.

2.5.2 StateS skipping spaces

StateSis entered in any mode after a control word or control space (but after no other
control symbol), or, when in statd, after a space. In this state all subsequent spaces or
end-of-line characters in this input line are discarded.

2.5.3 StateM: middle of line

By far the most common stateli4, ‘middle of line’. It is entered after characters of catego-
ries 1-4, 6-8, and 11-13, and after control symbols other than control space. An end-of-line
character encountered in this state results in a space token.

10 Victor Eijkhout — EX by Topic

2.6. Accessing the full character set

2.6 Accessing the full character set

Strictly speaking, gX’s input processor is not a finite state automaton. This is because
during the scanning of the input line all trios consisting of &ygaal superscript characters
(category code 7) and a subsequent character (with charactexct2i®) are replaced by

a single character with a character code in the range 0-127, differing by 64 from that of the
original character.

This mechanism can be used, for instance, to access positions in a font corresponding to
character codes that cannot be input, for instance because they@reontrol characters.

The most obvious examples are thecii (returr) and(delete characters; the correspon-

ding positions 13 and 127 in a font are accessible asand ~~7. However, since the
category of "7 is 15, invalid, that has to be changed before character 127 can be accessed.

In TeX3 this mechanism has been modified and extended to access 256 characters: any
gquadruplet ~xy where bothk andy are lowercase hexadecimal digits9, a—f, is replaced

by a character in the range 0-255, namely the character the number of which is represented
hexadecimally asy. This imposes a slight restriction on the applicability of the earlier
mechanism: if, for instance,”a is typed to produce character 33, then a followtrep,

a—f will be misunderstood.

While this process makegX’s input processor somewhat more powerful than a true finite
state automaton, it does not interfere with the rest of the scanning. Therefore it is concep-
tually simpler to pretend that such a replacement of triplets or quadruplets of characters,
starting with~ ", is performed in advance. In actual practice this is not possible, because an
input line may assign category code 7 to some character other than the circumflex, thereby
influencing its further processing.

2.7 Transitions between internal states

Let us now discuss the effects on the internal stategifsTinput processor when certain
category codes are encountered in the input.

2.7.1 0: escape character

When an escape character is encountergh, starts forming a control sequence token.
Three different types of control sequence can result, depending on the category code of the
character that follows the escape character.

. If the character following the escape is of category 11, letter, tiXncdmbines
the escape, that character and all following characters of category 11, into a control
word. After that EX goes into stat&, skipping spaces.

. With a character of category 10, space, a control symbol called control space re-
sults, and EX goes into stat&.
° With a character of any other category code a control symbol results gXmgb€s

into stateM, middle of line.

The letters of a control sequence name have to be all on one line; a control sequence name
is not continued on the next line if the current line ends with a comment sign, or if (by
letting \endlinechar be outside the range 0—255) there is no terminating character.

Victor Eijkhout — EX by Topic 11

Chapter 2. Category Codes and Internal States

2.7.2 1-4, 7-8, 11-13: non-blank characters

Characters of category codes 1-4, 7-8, and 11-13 are made into tokengXayuk3 into
stateM.

2.7.3 5: end of line

Upon encountering an end-of-line charactggX Tiscards the rest of the line, and starts
processing the next line, in staké If the current state wabhl, that is, if the line so far
contained at most spaces)\par token is inserted; if the state wéé, a space token is
inserted, and in stat®@nothing is inserted.

Note that by ‘end-of-line character’ a character with category code 5 is meant. This is not
necessarily thdendlinechar, nor need it appear at the end of the line. See below for
further remarks on line ends.

2.7.4 6:parameter

Parameter characters — usually can be followed by either a digit. . 9 in the context of

macro definitions or by another parameter character. In the first case a ‘parameter token’
results, in the second case only a single parameter character is passed on as a character
token for further processing. In either cagXToes into stat@/.

A parameter character can also appear on its own in an alignment preamble (see Chap-

ter[23).

2.7.5 7:superscript

A superscript character is handled like most non-blank characters, except in the case where
it is followed by a superscript character of the same character code. The process that repla-
ces these two characters plus the following character (possibly two charactgk3)nby
another character was described above.

2.7.6 9:ignored character

Characters of category 9 are ignoregXTemains in the same state.

2.7.7 10: space

A token with category code 10 — this is calledspace toke) irrespective of the character

code — is ignored in statd$ and S (and the state does not change); in stdt@eX goes

into stateS inserting a token that has category 10 and character codes82i (space), that

is, the character code of the space token may change from the character that was actually
input.

2.7.8 14: comment

A comment character causegXTto discard the rest of the line, including the comment
character. In particular, the end-of-line character is not seen, so even if the comment was
encountered in statd, no space token is inserted.

12 Victor Eijkhout — EX by Topic

2.8. Letters and other characters

2.7.9 15: invalid

Invalid characters cause an error messagg. remains in the state it was in. However,
in the context of a control symbol an invalid character is acceptable. Thusdoes not
cause any error messages.

2.8 Letters and other characters

In most programming languages identifiers can consist of both letters and digits (and pos-
sibly some other character such as the underscore), but control sequengésane only
allowed to be formed out of characters of category 11, letter. Ordinarily, the digits and
punctuation symbols have category 12, other character. However, there are contexts where
TeX itself generates a string of characters, all of which have category code 12, even if that
is not their usual category code.

This happens when the operationg ring, \number, \romannumeral, \ jobname, \fontname
\meaning, and\the are used to generate a stream of character tokens. If any of the cha-
racters delivered by such a command is a space character (that is, character code 32), it
receives category code 10, space.

For the extremely rare case where a hexadecimal digit has been hidden in a control se-
guence, EX allows A1,—F1- to be hexadecimal digits, in addition to the ordinagy—F;;
(here the subscripts denote the category codes).
For example,
\string\end gives four character tokens\isejoniadio

Note that\;s is used in the output only because the valutefcapechar is the character
code for the backslash. Another value\efscapechar leads to another character in the
output of\string. The\string command is treated further in Chagtér 3.

Spaces can wind up in control sequences:

\csname a b\endcsname

gives a control sequence token in which one of the three characters is a space. Turning this
control sequence token into a string of characters

\expandafter\string\csname a b\endcsname
gives\12a1210b12.

As a more practical example, suppose there exists a sequence of inptti fitels tex,
file2.tex, and we want to write a macro that finds the number of the input file that is
being processed. One approach would be to write

\newcount\filenumber \def\getfilenumber file#1l.{\filenumber=#1 }
\expandafter\getfilenumber\jobname.

where the lettersile in the parameter text of the macro (see Sedtion|11.5) absorb that
part of the jobname, leaving the number as the sole parameter.

However, this is slightly incorrect: the lettef$1e resulting from thé\ jobname command
have category code 12, instead of 11 for the ones in the definitidgetffilenumber.
This can be repaired as follows:

Victor Eijkhout — EX by Topic 13

Chapter 2. Category Codes and Internal States

{\escapechar=-1

\expandafter\gdef\expandafter\getfilenumber
\string\file#1.{\filenumber=#1 }

}

Now the sequencestring\file gives the four letterg 3i12112e12; the\expandafter
commands let this be executed prior to the macro definition; the backslash is omitted be-
cause we puhescapechar=-1. Confining this value to a group makes it necessary to
use\gdef.

2.9 The\par token

TpX inserts a token into the input after encountering a character with category code 5, end
of line, in stateN. It is good to realize when exactly this happens: singe [Eaves stat®l

when it encounters any token but a space, a line givingaa can only contain characters

of category 10. In particular, it cannot end with a comment character. Quite often this fact
is used the other way around: if an empty line is wanted for the layout of the input one can
put a comment sign on that line.

Two consecutive empty lines generate twear tokens. For all practical purposes this is
equivalent to on&par, because after the first ongXenters vertical mode, and in vertical
mode a\par only exercises the page builder, and clears the paragraph shape parameters.

A \par is also inserted into the input whepX sees gvertical commangin unrestricted
horizontal mode. After th&par has been read and expanded, the vertical command is
examined anew (see Chaptefs 6 and 17).

The \par token may also be inserted by thend command that finishes off the run of
TEX; see Chaptdr 28.

It is important to realize thateX does what it normally does when encountering an empty
line (which is ending a paragraph) only because of the default definition apthetoken.

By redefining\par the behaviour caused by empty lines and vertical commands can be
changed completely, and interesting special effects can be achieved. In order to continue
to be able to cause the actions normally associated wislr, the synonym\endgraf is
available in the plain format. See further Chaptgr 17.

The\par token is not allowed to be part of a macro argument, unless the macro has been
declared to b&long. A \par in the argument of a noRiong macro promptsgX to give

a ‘runaway argument’ message. Control sequences that have\beemo \par (such as
\endgraf) are allowed, however.

2.10 Spaces

This section treats some of the aspects of space characters and space tokens in the initial
processing stages ofX. The topic of spacing in text typesetting is treated in Chgpter 20.

2.10.1 Skipped spaces
From the discussion of the internal states gK'§ input processor it is clear that some

spaces in the input never reach the output; in fact they never get past the input processor.

14 Victor Eijkhout — EX by Topic

2.10. Spaces

These are for instance the spaces at the beginning of an input line, and the spaces following
the one that letsgX switch to states.

On the other hand, line ends can generate spaces (which are not in the input) that may wind
up in the output. There is a third kind of space: the spaces that get past the input processor,
or are even generated there, but still do not wind up in the output. These gaptianal
spacesthat the syntax of gx allows in various places.

2.10.2 Optional spaces

The syntax of X has the concepts of ‘optional spaces’ and ‘one optional space’:

(one optional spage— (space token| (empty)

(optional spaces— (empty) | (space toker(optional spaces
In general,(one optional spageis allowed after numbers and glue specifications, while
(optional spacesare allowed whenever a space can occur inside a number (for example,
between a minus sign and the digits of the number) or glue specification (for example,
betweenplus and1£il). Also, the definition of equal$ allows (optional spacesbefore
the= sign.

Here are some examples of optional spaces.

. A number can be delimited bfone optional spageThis prevents accidents (see
Chaptef}), and it speeds up processing,gcan detect more easily where the
(numbel being read ends. Note, however, that not every ‘number{ruanbej:
for instance the in \magstep2 is not a number, but the single token that is the
parameter of th&magstep macro. Thus a space or line end after this is signifi-
cant. Another example is a parameter number, for exaplsince at most nine
parameters are allowed, scanning one digit after the parameter character suffices.

. From the grammar ofgX it follows that the keyword€ill andfil11 consist of
fil and separate s, each of which is a keyword (see p@ge|239 for a more elabo-
rate discussion), and hence can be followed by optional spaces. Therefore forms
such asil L 1 are also valid. This is a potential source of strange accidents. In
most cases, appending\aelax token prevents such mishaps.

. The primitive command may come in handy as the final command in a macro defi-
nition. As it gobbles up optional spaces, it can be used to prevent spaces following
the closing brace of an argument from winding up in the output inadvertently. For
example, in

\def\item#1{\par\leavevmode
\1llap{#1\enspace}\ignorespaces}
\item{a/}one line \item{b/} another line \item{c/}
yet another
the \ignorespaces prevents spurious spaces in the second and third item. An
empty line afteAignorespaces will still insert a\par, however.

2.10.3 Ignored and obeyed spaces

After control words spaces are ignored. This is not an instance of optional spaces, but it is
due to the fact thatgX goes into stat& skipping spaces, after control words. Similarly an
end-of-line character is skipped after a control word.

Numbers are delimited by onkpne optional spagebut still

Victor Eijkhout — EX by Topic 15

Chapter 2. Category Codes and Internal States

a\count0=3_ b gives ‘ab’,
because gX goes into states after the first space token. The second space is therefore
skipped in the input processor gfX; it never becomes a space token.

Spaces are skipped furthermore wheK 16 in stateN, newline. When gX is processing in
vertical mode space tokens (that is, spaces that were not skipped) are ignored. For example,
the space inserted after the first box in

\par
\hbox{a}
\hbox{b}

has no effect.

Both plain EX and BTeX define a commandlobeyspaces that makes spaces significant:
after one space other spaces are no longer ignored. In both cases the basis is
\catcode‘\ =13 \def {\space}

However, there is a difference between the two cases: in pin T

\def\space{ }

while in IATEX

\def\space{\leavevmode{} }

although the macros bear other names there.

The difference between the two macros becomes apparent in the contextegflines:
each line end is then gar command, implying that each next line is started in vertical
mode. An active space is expanded by the plain macro to a space token, which is ignored

in vertical mode. The active spaces AigX will immediately switch to horizontal mode,
so that each space is significant.

2.10.4 More ignored spaces

There are three further places whegXWill ignore space tokens.

1. When EX is looking for an undelimited macro argument it will accept the first
token (or group) that is not a space. This is treated in Chipter 11.

2. In math mode space tokens are ignored (see CHagter 23).

3. After an alignment tab character spaces are ignored (see Chapter 25).

2.10.5 (space token

Spaces are anomalous gXT For instance, the&string operation assigns category code 12
to all characters except spaces; they receive category 10. Also, as was said gksve; T
put processor converts (when in stétall tokens with category code 10 into real spaces:
they get character code 32. Any character token with category 10 is ¢afjede token
Space tokens with character code not equal to 32 are called ‘funny spaces’ .

After giving the characteq the category code of a space character, and

using it in a definition

\catcode‘Q=10 \def\q{aQb}

we get

\show\q

macro:-> a b

16 Victor Eijkhout — EX by Topic

2.11. More about line ends

because the input processor changes the character code of the funny space
in the definition.

Space tokens with character codes other than 32 can be created using, for instapeesase.
However, ‘since the various forms of space tokens are almost identical in behaviour, there’s
no point dwelling on the details’; see [17] p. 377.

2.10.6 Control space

The ‘control space’ commankl, contributes the amount of space thatspace token
would when the\spacefactor is 1000. A control space is not treated like a space to-
ken, or like a macro expanding to one (which is hegpace is defined in plain gX).

For instance, gX ignores spaces at the beginning of an input line, but control space is a
(horizontal commany so it makes gX switch from vertical to horizontal mode (and insert
an indentation box). See Chagfet 20 for the space factor.

2107 U/

The explicit symbol ;' for a space is character 32 in the Computer Modern typewriter ty-
peface. However, switching teet is not sufficient to get spaces denoted this way, because
spaces will still receive special treatment in the input processor.

One way to let spaces be typeset big to set
\catcode‘\ =12

TeX will then take a space as the instruction to typeset character number 32. Moreover,
subsequent spaces are not skipped, but also typeset this ways istat@y entered after a
character with category code 10. Similarly, spaces after a control sequence are made visible
by changing the category code of the space character.

2.11 More about line ends

TeX accepts lines from an input file, excluding any line terminator that may be used. Be-
cause of this, @X's behaviour here is not dependent on the operating system and the line
terminator it usesdR-LF, LF, or none at all for block storage). From the input line any trai-
ling spaces are removed. The reason for this is historic; it has to do with the block storage
mode onIBM mainframe computers. For some computer-specific problems with end-of-line
characters, seel[2].

A terminator character is then appended with a character colendfl inechar, unless
this parameter has a value that is negative or more than 255. Note that this terminator
character need not have category code 5, end of line.

2.11.1 Obeylines

Every once in a while it is desirable that the line ends in the input correspond to those in
the output. The following piece of code does the trick:

\catcode‘\""M=13 %
\def~"M{\par}/

Victor Eijkhout — EX by Topic 17

Chapter 2. Category Codes and Internal States

The \endlinechar character is here made active, and its meaning becapws The
comment signs preventX from seeing the terminator of the lines of this definition, and
expanding it since it is active.

However, it takes some care to embed this code in a macro. The definition
\def\obeylines{\catcode‘\""M=13 \def~"M{\parl}}

will be misunderstood: gX will discard everything after the secondM, because this has
category code 5. Effectively, this line is then

\def\obeylines{\catcode‘\""M=13 \def

To remedy this, the definition itself has to be performed in a context whetés an active
character:

{\catcode‘\""M=13 %
\gdef\obeylines{\catcode ‘\""M=13 \def”"M{\par}}/
¥

Empty lines in the input are not taken into account in this definition: these disappear, be-
cause two consecutivgar tokens are (in this case) equivalent to one. A slightly modified
definition for the line end as

\def~"M{\par\leavevmode}

remedies this: now every line end forcgs<To start a paragraph. For empty lines this will
then be an empty paragraph.

2.11.2 Changing thé\endlinechar

Occasionally you may want to change ttendlinechar, or the\catcode of the ordi-
nary line terminator ~M, for instance to obtain special effects such as macros where the
argument is terminated by the line end. See pagie 95 for a worked-out example.

There are a couple of traps. Consider the following:
{\catcode‘\""M=12 \endlinechar=‘\""J \catcode‘\~"J=5
.}
This causes unintended output of both character 18)(and 10 (~J), caused by the line
terminators of the first and last line.

Terminating the first and last line with a comment works, but replacing the first line by the
two lines

{\endlinechar=‘\""J \catcode‘\""J=5
\catcode‘\""M=12

is also a solution.

Of course, in many cases it is not necessary to substitute another end-of-line character;
a much simpler solution is then to put

\endlinechar=-1

which treats all lines as if they end with a comment.

18 Victor Eijkhout — EX by Topic

2.12. More about the input processor

2.11.3 More remarks about the end-of-line character

The character thateK appends at the end of an input line is treated like any other character.
Usually one is not aware of this, as its category code is special, but there are a few ways to
let it be processed in an unusual way.

Terminating an input line with ~ will (ordinarily, when\endlinechar
is 13) give ‘M’ in the output, which is thescii character with code 13+64.

If \""M has been defined, terminating an input line with a backslash will
execute this command. The plain format defines

\def\""M{\ }

which makes a ‘control return’ equivalent to a control space.

2.12 More about the input processor
2.12.1 The input processor as a separate process

TeX's levels of processing are all working at the same time and incrementally, but concep-
tually they can often be considered to be separate processes that each accept the completed
output of the previous stage. The juggling with spaces provides a nice illustration for this.
Consider the definition

\def\DoAssign{\count42=800}

and the call

\DoAssign 0

The input processor, the part gix that builds tokens, in scanning this call skips the space
before the zero, so the expansion of this call is

\count42=8000

It would be incorrect to reasonDoAssign is read, then expanded, the space delimits the
number 800, so 800 is assigned and the zero is printed’. Note that the same would happen
if the zero appeared on the next line.

Another illustration shows that optional spaces appear in a different stage of processing
from that for skipped spaces:

\def\c.{\relax}
a\c.. b

expands to
a\relax b
which gives as output
‘ab
because spaces after theelax control sequence are only skipped when the line is first
read, not when it is expanded. The fragment

\def\c.{\ignorespaces}
a\c. b

on the other hand, expands to
a\ignorespaces b

Executing thé\ignorespaces command removes the subsequent space token, so the out-
put is

Victor Eijkhout — EX by Topic 19

Chapter 2. Category Codes and Internal States

‘ab’.
In both definitions the period aft&k is a delimiting token; it is used here to prevent spaces
from being skipped.

2.12.2 The input processor not as a separate process

Considering the tokenizing oK to be a separate process is a convenient view, but some-
times it leads to confusion. The line

\catcode ‘\""M=13{}

makes the line end active, and subsequently gives an ‘undefined control sequence’ error for
the line end of this line itself. Execution of the commands on the line thus influences the
scanning process of that same line.

By contrast,

\catcode‘\""M=13

does not give an error. The reason for this is th2f Teads the line end while it is still
scanning the number 13; that is, at a time when the assignment has not been performed yet.
The line end is then converted to the optional space character delimiting the number to be
assigned.

2.12.3 Recursive invocation of the input processor

Above, the activity of replacing a parameter character plus a digit by a parameter token was
described as something similar to the lumping together of letters into a control sequence
token. Reality is somewhat more complicated than thi&’sTtoken scanning mechanism

is invoked both for input from file and for input from lists of tokens such as the macro
definition. Only in the first case is the terminology of internal states applicable.

Macro parameter characters are treated the same in both cases, however. If this were not
the case it would not be possible to write things such as
\def\a{\def\b{\def\c####1{####1}}}

See pagk 88 for an explanation of such nested definitions.

2.13 The@ convention

Anyone who has ever browsed through either the plain format ofTh¥ format will have
noticed that a lot of control sequences contain an ‘at’ sighese are control sequences
that are meant to be inaccessible to the ordinary user.

Near the beginning of the format files the instruction

\catcode‘@=11

occurs, making the at sign into a letter, meaning that it can be used in control sequences.
Somewhere near the end of the format definition the at sign is made ‘other’ again:
\catcode‘@=12

Now why is it that users cannot call a control sequence with an at sign directly, although
they can call macros that contain lots of those ‘at-definitions’? The reason is that the control
sequences containing @rare internalized bygX at definition time, after which they are a
token, not a string of characters. Macro expansion then just inserts such tokens, and at that
time the category codes of the constituent characters do not matter any more.

20 Victor Eijkhout — EX by Topic

Chapter 3

Characters

Internally, EX represents characters by their (integer) character code. This chapter treats
those codes, and the commands that have access to them.

\char Explicit denotation of a character to be typeset.

\chardef Define a control sequence to be a synonym for a character code.

\accent Command to place accent characters.

\if Test equality of character codes.

\ifx Test equality of both character and category codes.

\let Define a control sequence to be a synonym of a token.

\uccode Query or set the character code that is the uppercase variant of a given code.

\lccode Query or set the character code that is the lowercase variant of a given code.

\uppercase Convert the{general teXtargument to its uppercase form.

\lowercase Convertthegeneral textargument to its lowercase form.

\string Convert a token to a string of one or more characters.

\escapechar Number of the character that is to be used for the escape character when
control sequences are being converted into character tokerplaéTault: 92 {).

3.1 Character codes

Conceptually it is easiest to think thgtdworks with characters internally, but in fagtX
works with integers: the ‘character codes’.

The way characters are encoded in a computer may differ from system to system. Therefore
TeX uses its own scheme of character codes. Any character that is read from a file (or from
the user terminal) is converted to a character code according to the character code table.
A category code is then assigned based on this (see Chapter 2). The character code table is
based on the 7-biscii table for numbers under 128 (see Chaptér 38).

There is an explicit conversion between characters (better: character tokens) and character

codes using the left quote (grave, back quote) chardciarall places wheregK expects

a (numbe} you can use the left quote followed by a character token or a single-character

control sequence. Thus botkount ‘a and\count ‘ \a are synonyms fokcount97. See

also Chaptdr|7.

The possibility of a single-character control sequence is necessary in certain cases such as
\catcode‘\%=11 or \def\CommentSign{\char‘\%}

which would be misunderstood if the backslash were left out. For instance

21

Chapter 3. Characters

\catcode‘%=11

would consider the11 to be a comment. Single-character control sequences can be formed
from characters with any category code.

After the conversion to character codes any connection with external representations has
disappeared. Of course, for most characters the visible output will ‘equal’ the input (that is,
an ‘a’ causes an ‘a’). There are exceptions, however, even among the common symbols. In
the Computer Modern roman fonts there are no ‘less than’ and ‘greater than’ signs, so the
input ‘<> will give ‘j¢’ in the output.

In order to make gX machine independent at the output side, the character codes are also
used in thaivi file: opcodes: = 0. .. 127 denote simply the instruction ‘take character

from the current font’. The complete definition of the opcodes #&vafile can be found

in [18].

3.2 Control sequences for characters

There are a number of ways in which a control sequence can denote a charactehdhe
command specifies a character to be typesetytlee command introduces a synonym for
a character token, that is, the combination of character code and category code.

3.3 Denoting characters to be typesefichar

Characters can be denoted numerically by, for examydear98. This command tells
TeX to add character number 98 of the current font to the horizontal list currently under
construction.

Instead of decimal notation, it is often more convenient to use octal or hexadecimal nota-
tion. For octal the single quote is usédthar’ 142; hexadecimal uses the double quote:
\char"62. Note that\char’’62 is incorrect; the process that replaces two quotes by a
double quote works at a later stage of processing (the visual processor) than number scan-
ning (the execution processor).

Because of the explicit conversion to character codes by the back quote character it is also
possible to get a ‘b’ — provided that you are using a font organized a bit like loei
table — with\char ‘b or \char ‘\b.

The \char command looks superficially a bit like the substitution mechanism (Chap-
ter[d). Both mechanisms access characters without directly denoting them. However, the
~~ mechanism operates in a very early stage of processing (in the input procesgsr of T
but before category code assignment); Ykkear command, on the other hand, comes in

the final stages of processing. In effect it says ‘typeset character number so-and-so’.

There is a construction to let a control sequence stand for some character code: the com-
mand. The syntax of this is
\chardef (control sequengéequal${numbey,

where the number can be an explicit representation or a counter value, but it can also be
a character code obtained using the left quote command (see above; the full definition
of (numbey} is given in Chapte[]?). In the plain format the latter possibility is used in
definitions such as

22 Victor Eijkhout — EX by Topic

3.3. Denoting characters to be typesethar

\chardef\%=“\%

which could have been given equivalently as

\chardef\%=37

After this command, the control symbg}, used on its own is a synonym fkhar37,
that is, the command to typeset character 37 (usually the per cent character).

A control sequence that has been defined witlelrardef command can also be used as
a (numbej. This fact is used in allocation commands suchaswbox (see Chapters| 7
and3]). Tokens defined wittmathchardef can also be used this way.

3.31 Implicit character tokens: \1let
Another construction defining a control sequence to stand for (among other things) a cha-
racter is\let:

\let(control sequengéequals(token
with a character token on the right hand side of the (optional) equals sign. The result is
called an implicit character token. (See ppge 90 for a further discussiareof)
In the plain format there are for instance synonyms for the open and close brace:
\let\bgroup={ \let\egroup=}
The resulting control sequences are called ‘implicit braces’ (see Clapter 10).
Assigning characters bylet is different from defining control sequences Yhardef,
in the sense thatlet makes the control sequence stand for the combination of a character
code and category code.
As an example

\catcode‘|=2 %, make the bar an end of group
\let\b=| % make \b a bar character
{\def\m{...}\b \m

gives an ‘undefined control sequenag because th&b closed the group inside whictn
was defined. On the other hand,

\let\b=| % make \b a bar character
\catcode‘|=2 J, make the bar character end of group

{\def\m{...}\b \m

leaves one group open, and it prints a vertical bar (or whatever is in position 124 of the
current font). The first of these examples implies that even when the braces have been re-
defined (for instance into active characters for macros that format C code) the beginning-of-
group and end-of-group functionality is available through the control sequ&bgesup
and\egroup.

Here is another example to show that implicit character tokens are hard to distinguish from
real character tokens. After the above sequence

\catcode‘|=2 \let\b=|

the tests

\if\b]|

and

\ifcat\b}

Victor Eijkhout — EX by Topic 23

Chapter 3. Characters

are both true.

Yet another example can be found in the plain format: the commands
\let\sp=" \let\sb=_

allow people without an underscore or circumflex on their keyboard to make sub- and
superscripts in mathematics. For instance:

x\sp2\sb{ij} gives z};
If a person typing in the format itself does not have these keys, some further tricks are

needed:

{\lccode‘,=94 \lccode‘.=95 \catcode‘,=7 \catcode‘.=8
\lowercase{\global\let\sp=, \globalllet\sb=.}}

will do the job; see below for an explanation of lowercase codes. “Thmethod as it

was in EX version 2 (see pagde [L1) cannot be used here, as it would require typing two
characters that can ordinarily not be input. With the extensiongversion 3 it would

also be possible to write

{\catcode‘\,=7
\globall\let\sp=,,5e \globalllet\sb=,,5f}

denoting the codes 94 and 95 hexadecimally.

Finding out just what a control sequence has been defined to be\wgthcan be done
using\meaning: the sequence

\let\x=3 \meaning\x
gives ‘the character 3'.

3.4 Accents

Accents can be placed by tlleorizontal commany:
\accent(8-bit numbej(optional assignment&haracter

where(characteris a character of category 11 or 12\éhar(8-bit numbey command, or
a\chardef token. If none of these four types ¢tharacter follows, the accent is taken

to be a\char command itself; this gives an accent ‘suspended in mid-air’. Otherwise the
accent is placed on top of the following character. Font changes between the accent and the
character can be effected by t{@ptional assignmenits

An unpleasant implication of the fact that &accent command has to be followed by a
(characteris that it is not possible to place an accent on a ligature, or two accents on top of
each other. In some languages, such as Hindi or Vietnamese, such double accents do occur.
Positioning accents on top of each other is possible, however, in math mode.

The width of a character with an accent is the same as that of the unaccented chagécter. T
assumes that the accent as it appears in the font file is properly positioned for a character
that is as high as the x-height of the font; for characters with other heights it correspondin-
gly lowers or raises the accent.

No genuine under-accents exist gXT They are implemented as low placed over-accents.

A way of handling them more correctly would be to write a macro that measures the follo-
wing character, and raises or drops the accent accordingly. The cedilla rheciroplain

TeX does something along these lines. However, it does not drop the accent for characters
with descenders.

24 Victor Eijkhout — EX by Topic

3.5. Testing characters

The horizontal positioning of an accent is controlled tfiontdimen1, slant per point.

Kerns are used for the horizontal movement. Note that, although they are inserted automa-
tically, these kerns are classifiedaglicitkerns. Therefore they inhibit hyphenation in the
parts of the word before and after the kern.

As an example of kerning for accents, here follows the dump of a horizontal list.

\setbox0O=\hbox{\it \‘1}
\showbox0

gives

\hbox (9.58334+0.0)x2.55554

.\kern -0.61803 (for accent)
.\hbox(6.94444+0.0)x5.11108, shifted -2.6389
..\tenit ""R

.\kern -4.49306 (for accent)

.\tenit 1

Note that the accent is placed first, so afterwards the italic correction of the last character
is still available.

3.5 Testing characters

Equality of character codes is tested\ay:
\if(token)(toker)

Tokens following this conditional are expanded until two unexpandable tokens are left.
The condition is then true if those tokens are character tokens with the same character
code, regardless of category code.

An unexpandable control sequence is considered to have character code 256 and category
code 16 (so that it is unequal to anything except another control sequence), except in the
case where it had beanet to a non-active character token. In that case it is considered to
have the character code and category code of that character. This was mentioned above.
The test\ifcat for category codes was mentioned in Chapjer 2; the test

\ifx(token)(token)

can be used to test for category code and character code simultaneously. The tokens follo-
wing this test are not expanded. However, if they are macgasidsts their expansions for
equality.

Quantities defined bychardef can be tested withifnum:
\chardef\a=‘x \chardef\b=‘y \ifnum\a=\b % is false
based on the fact (see Chayjter 7) tfwitardef tokejs can be used as numbers.

3.6 Uppercase and lowercase
3.6.1 Uppercase and lowercase codes

To each of the character codes correspond an uppercase code and a lowercase code (for
still more codes see below). These can be assigned by

Victor Eijkhout — EX by Topic 25

Chapter 3. Characters

\uccode(numbej(equal${numbe}
and
\1lccode(numbej(equals(numbep.

InIniTeX codes‘a. . ‘z, ‘A.. ‘Zhave uppercase code. . ‘Z and lowercase code. . ‘ z.
All other character codes have both uppercase and lowercase code zero.

3.6.2 Uppercase and lowercase commands

The commands\uppercase{. ..} and\lowercase{...} go through their argument
lists, replacing all character codes of explicit character tokens by their uppercase and lower-
case code respectively if these are non-zero, without changing the category codes.

The argument ofuppercase and\lowercase is a(general text, which is defined as

(general text — (filler){(balanced textright brace

(for the definition of(filler) see Chapt6) meaning that the left brace can be implicit,
but the closing right brace must be an explicit character token with category cog 2. T
performs expansion to find the opening brace.

Uppercasing and lowercasing are executed in the execution processor; they are not ‘macro
expansion’ activities liknumber or \string. The sequence (attempting to prodiag
\expandafter\csname\uppercase{a}\endcsname

gives an error (@X inserts an\endcsname before thé\uppercase becauséuppercase

is unexpandable), but

\uppercase{\csname a\endcsname}

works.

As an example of the correct use\afppercase, here is a macro that tests if a character
is uppercase:

\def\ifIsUppercase#1{\uppercase{\if#1}#1}
The same test can be performed\dyfnum ‘ #1=\uccode ‘ #1.

Hyphenation of words starting with an uppercase character, that is, a character not equal to
its own\1lccode, is subject to thé.uchyph parameter: if this is positive, hyphenation of
capitalized words is allowed. See also Chaptér 19.

3.6.3 Uppercase and lowercase forms of keywords

Each character ingK keywords, such agt, can be given in uppercase or lowercase form.

For instancepT, Pt, pt, andPT all have the same meaning=XTdoes not use thguccode
and\1lccode tables here to determine the lowercase form. Instead it converts uppercase
characters to lowercase by adding 32 —Alse 11 difference between uppercase and lower-
case characters — to their character code. This has some implications for implementations
of TeX for non-roman alphabets; see page 370 of §¢ fook, [17].

3.6.4 Creative use of\uppercase and \lowercase

The fact thaf\uppercase and\lowercase do not change category codes can sometimes

be used to create certain character-code—category-code combinations that would otherwise
be difficult to produce. See for instance the explanation oktlearif macro in Chaptdr 13,

and another example on pgge 24.

26 Victor Eijkhout — EX by Topic

3.7. Codes of a character

For a slightly different application, consider the problem (solved by Rainer Sch”opf) of,
given a counteXnewcount\mycount, writing character numbéimycount to the terminal.
Here is a solution:

\lccode ‘a=\mycount \chardef\terminal=16
\lowercase{\write\terminal{al}}

The \lowercase command effectively changes the argument of theite command
from ‘a’ into whatever it should be.

3.7 Codes of a character

Each character code has a numbefaafdenamgs associated with it. These are integers in
various ranges that determine how the character is treated in various contexts, or how the
occurrence of that character changes the workinggXfiif certain contexts.

The code names are as follows:

\catcode (4-bit numbey (0-15); the category to which a character belongs. This is trea-
ted in Chaptef 2.

\mathcode (15-bit numbey (0—"7FFF) or "8000; determines how a character is treated
in math mode. See Chapfer|21.

\delcode (27-bit numbey (0—"7 FFF FFF); determines how a character is treated after
\left or \right in math mode. See pafje 161.

\sfcode integer; determines how spacing is affected after this character. See Ghapter 20.

\1lccode, \uccode (8-bit numbef (0-255); lowercase and uppercase codes — these were
treated above.

3.8 Converting tokens into character strings

The commandstring takes the next token and expands it into a string of separate cha-
racters. Thus

\tt\string\control

will give \control in the output, and

\tt\string$

will give $, but, noting that the string operation comes after the tokenizing,

\tt\string},

will not give ¥, because the comment sign is removed YT input processor. Therefore,
this command will ‘string’ the first token on the next line.

The\string command is executed by the expansion processor, thus it is expanded unless
explicitly inhibited (see Chaptér [12).

3.8.1 Output of control sequences

In the above examples the typewriter font was selected, because the Computer Modern
roman font does not have a backslash character. Howegérn&ed not have used the
backslash character to display a control sequence: it uses character nestgrechar.

This same value is also used when a control sequence is outputwyithe, \message,

Victor Eijkhout — EX by Topic 27

Chapter 3. Characters

or \errmessage, and it is used in the output Ofshow, \showthe and \meaning. If
\escapechar is negative or more than 255, the escape character is not output; the default
value (set in IniEX) is 92, the number of the backslash character.

For use in a\write statement th&string can in some circumstances be replaced by
\noexpand (see pagg 107).

3.8.2 Category codes of string

The characters that are the result ofstring command have category code 12, except

for any spaces in a stringed control sequence; they have category code 10. Since inside
a control sequence there are no category codes, any spaces resultingsfromg are

of necessity only spaceharacters, that is, characters with code 32. Howevgg< input
processor converts all space tokens that have a character code other than 32 into character
tokens with character code 32, so the chances are pretty slim that ‘funny spaces’ wind up
in control sequences.

Other commands with the same behaviour with respect to category colesrdasag, are
\number, \romannumeral, \ jobname, \fontname, \meaning, and\the.

28 Victor Eijkhout — EX by Topic

Chapter 4

Fonts

In text mode EX takes characters from a ‘current font'. This chapter describes how fonts
are identified to X, and what attributes a font can have.

\font Declare the identifying control sequence of a font.

\fontname The external name of a font.

\nullfont Name of an empty font thagX uses in emergencies.

\hyphenchar Number of the hyphen character of a font.

\defaulthyphenchar Value of\hyphenchar when afontisloaded. PlaineX default: < \-.
\fontdimen Access various parameters of fonts.

\char47 ltalic correction.

\noboundary Omitimplicit boundary character.

4.1 Fonts

In TpX terminology a font is the set of characters that is contained in one external font file.
During processing,gX decides from what font a character should be taken. This decision
is taken separately for text mode and math mode.

When EX is processing ordinary text, characters are taken from the ‘current font’. External
font file names are coupled to control sequences by statements such as
\font\MyFont=myfont10

which makes gX load the filemyfont10.tfm. Switching the current font to the font des-
cribed in that file is then done by

\MyFont

The status of the current font can be queried: the sequence

\the\font

produces the control sequence for the current font.

Math mode completely ignores the current font. Instead it looks at the ‘current family’,

which can contain three fonts: one for text style, one for script style, and one for scriptscript
style. This is treated in Chapfer|21.

Seel[42] for a consistent terminology of fonts and typefaces.

With ‘virtual fonts’ (see([25]) it is possible that what looks like one font pXTesides in
more than one physical font file. See further pagg 227.

29

Chapter 4. Fonts

4.2 Font declaration

Somewhere during a run ofX or IniTeX the coupling between an internal identifying
control sequence and the external file name of a font has to be made. The syntax of the
command for this is

\font(control sequengéequal$(file name (at clausé
where

(at clause — at (dimen) | scaled (numbeyj | (optional spaces
Font declarations are local to a group.

By the (at clauseg the user specifies that some magnified version of the font is wanted.
The (at clausé comes in two forms: if the font is givescaled f TpX multiplies all its

font dimensions for that font by /1000; if the font has a design sizépt and the(at
clause is at ppt TeX multiplies all font data by /d. The presence of afat clausé makes

no difference for the external font file (thefm file) that X reads for the font; it just
multiplies the font dimensions by a constant.

After such a font declaration, using the defined control sequence will set the current font to
the font of the control sequence.

4.2.1 Fonts andtfm files

The external file needed for the font isam (TpX font metrics) file, which is taken inde-
pendent of anyat clausgin the\font declaration. If thecfm file has been loaded already
(for instance by InifEX when it constructed the format), an assignment of that font file can
be reexecuted without needing recourse totthefile.

Font design sizes are given in the font metrics files. The10 font, for instance, has a
design size of 10 point. However, there is hot much in the font that actually has a size of
10 points: the opening and closing parentheses are two examples, but capital letters are
considerably smaller.

4.2.2 Querying the current font and font names

It was already mentioned above that the control sequence which set the current font can be
retrieved by the commantthe\font. This is a special case of

\the(font)
where

(font) — \font | (fontdef token | (family membey

(family membefy — (font rangé(4-bit numbey

(fontrange — \textfont | \scriptfont | \scriptscriptfont
A (fontdef token is a control sequence defined R§ont, or the predefined control se-
qguencé\nullfont. The concept offamily membey is only relevant in math mode.

Also, the external name of fonts can be retrieved:

\fontname(font)
gives a sequence of character tokens of category 12 (but space characters get category 10)
that spells the font file name, plus &t clausg if applicable.

After

\font\tenroman=cmr10 \tenroman

the calls\the\font and\the\tenroman both give\tenroman. The

call \fontname\tenroman givescmr10.

30 Victor Eijkhout — EX by Topic

4.3. Fontinformation

4.2.3 \nullfont

TeX always knows a font that has no characters:\thellfont. If no font has been spe-

cified, or if in math mode a family member is needed that has not been spegified;T

take its characters from the nullfont. This control sequence qualifiesfestdef token: it

acts like any other control sequence that stands for a font; it just does not have an associated
tfm file.

4.3 Font information

During a run of EX the main information needed about the font consists of the dimensions
of the characters.gX finds these in the font metrics files, which usually have extension
.tfm. Such files contain

° global information: the\fontdimen parameters, and some other information,
° dimensions and the italic corrections of characters, and
. ligature and kerning programs for characters.

Also, the design size of a font is specified in then file; see above. The definition of the
tfm format can be found in [18].

4.3.1 Fontdimensions

Text fonts need to have at least sevgntdimen parameters (butgX will take zero for
unspecified parameters); math symbol and math extension fonts have more (dee page 175).
For text fonts the minimal set of seven comprises the following:

1. the slant per point; this dimension is used for the proper horizontal positioning of
accents;

2. the interword space: this is used unless the user specifies an exgietteskip;
see Chaptdr 20;

3. interword stretch: the stretch component of the interword space;

4. interword shrink: the shrink component of the interword space;

5. the x-height: the value of th@nternal uni} ex, which is usually about the height
of the lowercase letter ‘x’;

6. the quad width: the value of thignternal uni} em, which is approximately the
width of the capital letter ‘M’"; and

7. the extra space: the space added to the interword space at the end of sentences
(that is, when\spacefactor > 2000) unless the user specifies an explicit-
spaceskip.

Parameters 1 and 5 are purely information about the font and there is no point in vary-
ing them. The values of other parameters can be changed in order to adjust spacing; see
Chaptef 2D for examples of changing parameters 2, 3, 4, and 7.

Font dimensions can be altered ixfant assignment which is a{global assignmeitsee
pagd 8D):

\fontdimen(numbe}(font)(equal$(dimen
See above for the definition ¢font).

Victor Eijkhout — EX by Topic 31

Chapter 4. Fonts

4.3.2 Kerning

Some combinations of characters should be moved closer together than would be the case
if their bounding boxes were to be just abutted. This fine spacing is called kerning, and a
proper kerning is as essential to a font as the design of the letter shapes.

Consider as an example

‘Vo’ versus the unkerned variant ‘Vo’
Kerning in X is controlled by information in thefm file, and is therefore outside the
influence of the user. Thefn file can be edited, however (see Chaptgr 33).

The \kern command has (almost) nothing to do with the phenomenon of kerning; it is
explained in Chaptér| 8.

4.3.3 Italic correction

The primitive control symbol/ inserts the ‘italic correction’ of the previous character

or ligature. Such a correction may be necessary owing to the definition of the ‘bounding
box’ of a character. This box always has vertical sides, and the width of the charagt¥ras T
perceives itis the distance between these sides. However, in order to achieve proper spacing
for slanted or italic typefaces, characters may very well project outside their bounding
boxes. The italic correction is then needed if such an overhanging character is followed by
a character from a non-slanting typeface.

Compare for instance

‘TeX has’ to TeX has’,
where the second version was typed as
{\italic\TeX\/} has

The size of the italic correction of each character is determined by font information in the
font metrics file; for the Computer Modern fonts it is approximately half the ‘overhang’ of
the characters; see [19]. Italic correction is not the sam¢fastdimeni, slant per point.
That font dimension is used only for positioning accents on top of characters.

An italic correction can only be inserted if the previous item processedgiywias a
character or ligature. Thus the following solution for roman text inside an italic passage
does not work:

{\italic Some text {\/\roman not} emphasized}
The italic correction has no effect here, because the previous item is glue.

434 Ligatures

Replacement of character sequences by ligatures is controlled by informationtifnthe
file of a font. Ligatures are formed frofcharacteér commands: sequences suchtasre
replaced by ‘fi’ in some fonts.

Other ligatures traditionally in use are betweeh ££i, £1, andf£1; in some older works
ft andst can be found, and similarly to tha. ligaturefk andfb can also occur.

Ligatures in BX can be formed between explicit character tokensar commands, and
(chardef tokejs. For example, the sequenoehar ¢ f\char ‘i is replaced by the ‘fi’ liga-
ture, if such a ligature is part of the font.

32 Victor Eijkhout — EX by Topic

4.3. Fontinformation

Unwanted ligatures can be suppressed in a number of ways: the unwanted ligature ‘halflife’
can for instance be prevented by

half{}1life, half{1}ife, half\/life, orhalf\hbox{}1life
but the solution using italic correction is not equivalent to the others.

4.3.5 Boundary ligatures

Each word is surrounded by a left and a right boundary charagt&B(@nly). This makes
phenomena possible such as the two different sigmas in Greek: one at the end of a word,
and one for every other position. This can be realized through a ligature with the boundary
character. A\noboundary command immediately before or after a word suppresses the
boundary character at that place.

In general, the ligature mechanism has become more complicated with the transition to
TeX version 3; se€ [22].

Victor Eijkhout — EX by Topic 33

Chapter 5

Boxes

The horizontal and vertical boxes gf are containers for pieces of horizontal and vertical

lists. Boxes can be stored in box registers. This chapter treats box registers and such aspects
of boxes as their dimensions, and the way their components are placed relative to each
other.

\hbox Construct a horizontal box.

\vbox Construct a vertical box with reference point of the last item.

\vtop Construct a vertical box with reference point of the first item.

\vcenter Construct a vertical box vertically centred on the math axis; this command can
only be used in math mode.

\vsplit Split off the top part of a vertical box.

\box Use a box register, emptying it.

\setbox Assign a box to a box register.

\copy Use a box register, but retain the contents.

\ifhbox \ifvbox Testwhether a box register contains a horizontal/vertical box.

\ifvoid Test whether a box register is empty.

\newbox Allocate a new box register.

\unhbox \unvbox Unpack a box register containing a horizontal/vertical box, adding the
contents to the current horizontal/vertical list, and emptying the register.

\unhcopy \unvcopy The same aSunhbox/\unvbox, but do not empty the register.

\ht \dp \wd Height/depth/width of the box in a box register.

\boxmaxdepth Maximum allowed depth of boxes. Plaigq default: \maxdimen.

\splitmaxdepth Maximum allowed depth of boxes generated\pgplit.

\badness Badness of the most recently constructed box.

\hfuzz \vfuzz Excess size thatgK tolerates before it considers a horizontal/vertical
box overfull.

\hbadness \vbadness Amount of tolerance beforegX reports an underfull or overfull
horizontal/vertical box.

\overfullrule Width of the rule that is printed to indicate overfull horizontal boxes.

\hsize Line width used for text typesetting inside a vertical box.

\vsize Height of the page box.

\lastbox Register containing the last item added to the current list, if this was a box.

\raise \lower Adjust vertical positioning of a box in horizontal mode.

\moveleft \moveright Adjust horizontal positioning of a box in vertical mode.

\everyhbox \everyvbox Token list inserted at the start of a horizontal/vertical box.

34

5.1. Boxes

51 Boxes

In this chapter we shall look at boxes. Boxes are containers for pieces of horizontal or
vertical lists. Boxes that are needed more than once can be stored in box registers.
When EX expects &box), any of the following forms is admissible:

. \hbox(box specificatioj{ (horizontal materialr
o \vbox(box specificatioh{ (vertical materigl}
. \vtop(box specificatiop{ (vertical materigl}
. \box(8-bit numbey
. \copy(8-bit numbey
. \vsplit(8-bit numbefto(dimen
. \lastbox
A (box specificatiohis defined as
(box specificatioh — (filler)
| to (dimenfiller) | spread (dimen (filler)
An (8-bit numbey is a number in the range 0-255.
The braces surrounding box material define a group; they can be explicit characters of
categories 1 and 2 respectively, or control sequenges to such characters; see also
below.

A (box) can in general be used in harizontal, vertical, and math mode, but see below for
the\lastbox. The connection between boxes and modes is explored further in Chppter 6.

The box produced byvcenter —a command that is allowed only in math mode —is not a
(box). For instance, it can not be assigned witletbox; see further Chaptér 3.

The\vsplit operation is treated in Chapfer|27.

5.2 Box registers

There are 256 box registers, numbered 0-255. Either a box register is empty (‘void’), or it
contains a horizontal or vertical box. This section discusses specificallyepfters; the
sizes of boxes, and the way material is arranged inside them, is treated below.

5.2.1 Allocation: \newbox

The plain BX \newbox macro allocates an unused box register:

\newbox\MyBox

after which one can say

\setbox\MyBox=. ..

or

\box\MyBox

and so on. Subsequent calls to this macro give subsequent box numbers; this way macro
collections can allocate their own boxes without fear of collision with other macros.

The number of the box is assignedihardef (see Chaptér 31). This implies thatyBox
is equivalent to, and can be used aghambej. The control sequencenewbox is an
\outer macro. Newly allocated box registers are initially empty.

Victor Eijkhout — EX by Topic 35

Chapter 5. Boxes

522 Usage\setbox, \box, \copy

A register is filled by assigning @oXx) to it:
\setbox(numbej(equal${box)
For example, thebox) can be explicit
\setbox37=\hbox{...} or \setbox37=\vbox{...}
or it can be a box register:
\setbox37=\box38
Usually, box numbers will have been assigned Byewbox command.
The box in a box register is appended by the commamdg and\copy to whatever list
TeX is building: the call
\box38

appends box 38. To save memory space, box registers become empty by usinggkem: T
assumes that after you have inserted a box by calbwknn in some mode, you do not
need the contents of that register any more and empties it. In casymed the contents

of a box register more than once, you catopy it. Calling \copynn is equivalent to
\boxnn in all respects except that the register is not cleared.

It is possible to unwrap the contents of a box register by ‘unboxing’ it using the commands
\unhbox and\unvbox, and their copying versionsunhcopy and\unvcopy. Whereas a

box can be used in any mode, the unboxing operations can only be used in the appropriate
mode, since in effect they contribute a partial horizontal or vertical list (see also Chiapter 6).
See below for more information on unboxing registers.

523 Testing:\ifvoid, \ifhbox, \ifvbox

Box registers can be tested for their contents:
\ifvoid(numbej
is true if the box register is empty. Note that an empty, or ‘void’, box register is not the
same as a register containing an empty box. An empty box is still either a horizontal or a
vertical box; a void register can be used as both.
The test
\ifhbox(numbej
is true if the box register contains a horizontal box;
\ifvbox(numbej
is true if the box register contains a vertical box. Both tests are false for void registers.

5.2.4 The\lastbox

When EX has built a partial list, the last box in this list is accessible as\ttestbox.

This behaves like a box register, so you can remove the last box from the list by assigning
the \lastbox to some box register. If the last item on the current list is not a box, the
\lastbox acts like a void box register. It is not possible to get hold of the last box in the
case of the main vertical list. TR astbox is then always void.

As an example, the statement
{\setbox0=\1lastbox}

36 Victor Eijkhout — EX by Topic

5.3. Natural dimensions of boxes

removes the last box from the current list, assigning it to box register 0. Since this assi-
gnment occurs inside a group, the register is cleared at the end of the group. At the start
of a paragraph this can be used to remove the indentation box (see Ghapter 16). Another
example of\lastbox can be found on page 46.

Because th&lastbox is always empty in external vertical mode, it is not possible to get
hold of boxes that have been added to the page. However, it is possible to dissect the page
once it is in\box255, for instance doing

\vbox{\unvbox255{\setbox0=\1astbox}}
inside the output routine.
If boxes in vertical mode have been shifted\mpveright or \moveleft, or if boxes in

horizontal mode have been raised\naise or lowered by\lower, any information about
this displacement due to such a command is lost wheRlhetbox is taken from the list.

53 Natural dimensions of boxes
5.3.1 Dimensions of created horizontal boxes

Inside an\hbox all constituents are lined up next to each other, with their reference points
on the baseline of the box, unless they are moved explicitly in the vertical direction by
\lower Or \raise.

The resulting width of the box is the sum of the widths of the components. Thus the width
of
\hbox{\hskiplcm}
is positive, and the width of
\hbox{\hskip-1cm}
is negative. By way of example,
a\hbox{\kern-lem b}--
gives as output
be:
which shows that a horizontal box can have negative width.

The height and depth of exhbox are the maximum amount that constituent boxes project
above and below the baseline of the box. They are non-negative when the box is created.

The command§lower and\raise are the only possibilities for vertical movement inside
an\hbox (other than including avbox inside the\hbox, of course); gvertical commang
—such as\vskip — is not allowed in a horizontal box, angar, although allowed, does
not do anything inside a horizontal box.

5.3.2 Dimensions of created vertical boxes

Inside a\vbox vertical material is lined up with the reference points on the vertical line
through the reference point of the box, unless components are moved explicitly in the
horizontal direction by\moveleft Or \moveright.

The reference point of a vertical box is always located at the left boundary of the box. The
width of a vertical box is then the maximal amount that any material in the box sticks to
the right of the reference point. Material to the left of the reference point is not taken into
account in the width. Thus the result of

Victor Eijkhout — EX by Topic 37

Chapter 5. Boxes

a\vbox{\hbox{\kern-1em b}}--

ba—
This should be contrasted with the above example.

The calculation of height and depth is different for vertical boxes constructediak and
\vtop. The ground rule is that ®wbox has a reference point that lies on the baseline of its
last component, and‘artop has its reference point on the baseline of the first component.
In general, the depth (height) of\abox (\vtop) can be non-zero if the last (first) item is

a box or rule.

The height of a\vbox is then the sum of the heights and depths of all components except
the last, plus the height of that last component; the depth dfithex is the depth of its last
component. The depth of\artop is the sum of the depth of the first component and the
heights and depths of all subsequent material; its height is the height of the first component.

However, the actual rules are a bit more complicated when the first componekttéa

or the last component of wbox is not a box or rule. If the last component of\abox

is a kern or a glue, the depth of that box is zerdyvaop’s height is zero unless its first
component is a box or rule. (Note the asymmetry in these definitions; see below for an
example illustrating this.) The depth of\artop, then, is equal to the total height plus
depth of all enclosed material minus the height of theop.

There is a limit on the depth of vertical boxes: if the depth &fraox or \vtop calculated

by the above rules would exceed , the reference point of the box is moved down by the
excess amount. More precisely, the excess depth is added to the natural height of the box.
If the box had ato or spread specification, any glue is set anew to take the new height
into account.

Ordinarily, \boxmaxdepth is set to the maximum dimension possible gXTIt is for in-
stance reduced during some of the calculations in the pfinottput routine; see Chap-
ter[28.

533 Examples

Horizontal boxes are relatively straightforward. Their width is the distance between the
‘beginning’ and the ‘end’ of the box, and consequently the width is not necessarily positive.
With
\setbox0=\hbox{aa} \setboxl=\hbox{\copy0 \hskip-\wdO}
the\box1 has width zero;

/\box1/ gives ‘/da’
The height and depth of a horizontal box cannot be negative: in

\setbox0=\hbox{\vrule height 5pt depth 5pt}
\setbox1=\hbox{\raise 10pt \box0}

the\box1 has deptlopt and heightt5pt

\ertical boxes are more troublesome than horizontal boxes. Let us first treat their width.
After

\setbox0=\hbox{\hskip 10pt}
the box in the\box0 register has a width afopt. Defining

38 Victor Eijkhout — EX by Topic

5.4. More about box dimensions

\setbox1=\vbox{\moveleft 5pt \copyO}

the \box1 will have width5pt; material to the left of the reference point is not accounted
for in the width of a vertical box. With

\setbox2=\vbox{\moveright 5pt \copyO}
the \box2 will have width 15pt.

The depth of avbox is the depth of the last item if that is a box, so
\vbox{\vskip 5pt \hbox{\vrule height 5pt depth 5pt}}
has heightl0Opt and depttbpt, and

\vbox{\vskip -5pt \hbox{\vrule height 5pt depth 5pt}}

has heightpt and deptlbpt. With a glue or kern as the last item in the box, the resulting
depth is zero, so

\vbox{\hbox{\vrule height 5pt depth 5pt}\vskip 5pt}

has heightl5pt and depttopt;

\vbox{\hbox{\vrule height 5pt depth 5pt}\vskip -5pt}

has heightpt and depthopt.

The height of a\vtop behaves (almost) the same with respect to the first item of the box,

as the depth of &vbox does with respect to the last item. Repeating the above examples
with a\vtop gives the following:

\vtop{\vskip 5pt \hbox{\vrule height 5pt depth 5pt}}
has heightpt and deptht5pt, and

\vtop{\vskip -5pt \hbox{\vrule height 5pt depth 5pt}}
has heightpt and deptlbpt;

\vtop{\hbox{\vrule height 5pt depth 5pt} \vskip 5pt}
has heightpt and depthtOpt, and

\vtop{\hbox{\vrule height 5pt depth 5pt} \vskip -5pt}
has heightpt and depthopt.

5.4 More about box dimensions
5.4.1 Predetermined dimensions

The size of a box can be specified in advance with@ specificatioly see above for the
syntax. Any glue in the box is then set in order to reach the required size. Prescribing the
size of the box is done by

\hbox to (dimen {.. .3}, \vbox to (dimen {...}

If stretchable or shrinkable glue is present in the box, it is stretched or shrunk in order to
give the box the specified size. Associated with this glue setting is a badness value (see
Chaptef 8). If no stretch or shrink — whichever is necessary — is present, the resulting box
will be underfull or overfull respectively. Error reporting for over/underfull boxes is treated
below.

Another command to let a box have a size other than the natural size is
\hbox spread (dimen {. ..}, \vbox spread (dimen {...}

Victor Eijkhout — EX by Topic 39

Chapter 5. Boxes

which tells X to set the glue in such a way that the size of the box is a specified amount
more than the natural size.

Box specifications fokvtop vertical boxes are somewhat difficult to interprgtXTcon-

structs a\vtop by first making a\vbox, including glue settings induced bylaox specificatioly
then it computes the height and depth by the above rules. Glue setting is described in Chap-
ter[8.

5.4.2 Changes to box dimensions

The dimensions of a box register are accessible by the commandsdp, and\wd; for
instance\dp13 gives the depth of box 13. However, not only can boxes be measured this
way; by assigning values to these dimensiops dan even be fooled into thinking that a

box has a size different from its actual. However, changing the dimensions of a box does
not change anything about the contents; in particular it does not change the way the glue is
set.

Various formats use this in ‘smash’ macros: the macro defined by
\def\smash#1{{\setboxO=\hbox{#1}\dp0=0pt \ht0=Opt \boxO\relax}}

places its argument but annihilates its height and depth; that is, the output does show the
whole box, but further calculations byX act as if the height and depth were zero.

Box dimensions can be changed only by setting them. Theybemedimens, which can
only be set in gbox size assignmentand not, for instance changed wikhdvance.

Note that abox size assignmenis a(global assignmeitits effect transcends any groups
in which it occurs (see Chapter]10). Thus the output of

\setbox0=\hbox{---} {\wd0=0pt} a\boxOb
is ‘ab-".
The limits that hold on the dimensions with which a box can be created (see above) do not

hold for explicit changes to the size of a box: the assignmepo=-2pt for a horizontal
box is perfectly admissible.

54.3 Moving boxes around

In a horizontal box all constituent elements are lined up with their reference points at the
same height as the reference point of the box. Any box inside a horizontal box can be lifted
or dropped using the macradgaise and\lower.

Similarly, in a vertical box all constituent elements are lined up with their reference points
underneath one another, in line with the reference point of the box. Boxes can now be
moved sideways by the macresoveleft and\moveright.

Only boxes can be shifted thus; these operations cannot be applied to, for instance, charac-
ters or rules.

5.4.4 Box dimensions and box placement

TeX places the components of horizontal and vertical lists by maintaining a reference line
and a current position on that line. For horizontal lists the reference line is the baseline of
the surroundinghbox; for vertical lists it is the vertical line through the reference point of
the surrounding.vbox.

40 Victor Eijkhout — EX by Topic

5.4. More about box dimensions

In horizontal mode a component is placed as follows. The current position coincides initi-
ally with the reference point of the surrounding box. After that, the following actions are
carried out.

1. If the component has been shifted\naise or \lower, shift the current position
correspondingly.
2. If the component is a horizontal box, use this algorithm recursively for its contents;

ifitis a vertical box, go up by the height of this box, putting a new current position
for the enclosed vertical list there, and place its components using the algorithm
for vertical lists below.

3. Move the current position (on the reference line) to the right by the width of the
component.

For the list in a vertical boxg@X’s current position is initially at the upper left corner of

that box, as explained above, and the reference line is the vertical line through that point; it
also runs through the reference point of the box. Enclosed components are then placed as
follows.

1. If a component has been shifted ushagveleft or \moveright, shift the cur-
rent position accordingly.
2. Put the component with its upper left corner at the current position.
3. If the component is a vertical box, use this algorithm recursively for its contents;

if it is a horizontal box, its reference point can be found below the current position
by the height of the box. Put the current position for that box there, and use the
above algorithm for horizontal lists.

4, Go down by the height plus depth of the box (that is, starting at the upper left
corner of the box) on the reference line, and continue processing vertically.

Note that the above processes do not describe the construction of boxes. That would (for
instance) involve for vertical boxes the insertion of baselineskip glue. Rather, it describes
the way the components of a finished box are arranged in the output.

5.4.5 Boxes and negative glue

Sometimes it is useful to have boxes overlapping instead of line up. An easy way to do this
is to use negative glue. In horizontal mode

{\dimen0=\wd8 \box8 \kern-\dimenO}

places box 8 without moving the current location.

More versatile are the macrddlap and\rlap, defined as
\def\1llap#1{\hbox to Opt{\hss #1}}

and

\def\rlap#1{\hbox to Opt{#1\hss}}

that allow material to protrude left or right from the current location. Yhes glue is equi-
valent to\hskip Opt plus 1fil minus 1fil, which absorbs any positive or negative
width of the argument of11ap or \rlap.

The sequence

\1llap{\hbox to 10pt{a\hfill}}

is effectively the same as

\hbox{\hskip-10pt \hbox to 10pt{a\hfill}}
which has a total width ofpt.

Victor Eijkhout — EX by Topic 41

Chapter 5. Boxes

55 Overfull and underfull boxes

If a box has a size specificatiopX will stretch or shrink glue in the box. For glue with only
finite stretch or shrink components thadness (see Chaptdr 19) of stretching or shrinking

is computed. In @X version 3 the badness of the box most recently constructed is available
for inspection by the user through theadness parameter. Values for badness range 0-
10000, but if the box is overfull it isL 000 000.

When EX considers the badness too large, it gives a diagnostic message. Let us first con-
sider error reporting for horizontal boxes.

Horizontal boxes of which the glue has to stretch are never reportgtibédness >
10000; otherwise EX reports them as ‘underfull’ if their badness is more thahadness.

Glue shrinking can lead to ‘overfull’ boxes: a box is called overfull if the available shrink
is less than the shrink necessary to meet the box specification. An overfull box is only
reported if the difference in shrink is more thanfuzz, or if \hbadness < 100 (and it

turns out that using all available shrinkability has badri€ss.

Setting\hfuzz=1pt will let TEX ignore boxes that can not shrink enough
if they lack less thaript. In

\hbox to 1pt{\hskip3pt minus .5pt}

\hbox to 1pt{\hskip3pt minus 1.5pt}

only the first box will give an error message: itlisspt too big, whereas
the second lacksspt which is less thaRhfuzz.

Also, boxes that shrink but that are not overfull can be reported: if a box is ‘tight’, that is,
if it uses at least half its shrinkabilitygX reports this fact if the computed badness (which
is between 13 and 100) is more thettbadness.

For horizontal and vertical boxes this error reporting is almost the same, with parameters
\vbadness and\vfuzz. The difference is that for horizontal overfull boxgs<twill draw
a rule to the right of the box that has the same height as the box, and\wigéhfullrule.
No overfull rule ensues if thetabskip glue in an\halign cannot be shrunk enough.

5.6 Opening and closing boxes

The opening and closing braces of a box can be either explicit, that is, character tokens of
category 1 and 2, or implicit, a control sequendet to such a character. After the ope-
ning brace thé\.everyhbox or \everyvbox tokens are inserted. If this box appeared in a
\setbox assignment anyafterassignment token is inserted even before the ‘everybox’
tokens.

\everyhbox{b}
\afterassignment a
\setbox0=\hbox{c}
\showbox0

gives

> \box0=

\hbox (6.94444+0.0)x15.27782
.\tenrm a

.\tenrm b
.\kern0.27779
.\tenrm c

42 Victor Eijkhout — EX by Topic

5.7. Unboxing

Implicit braces can be used to let a box be opened or closed by a macro, for example:

\def\openbox#1{\setbox#1=\hbox\bgroup}
\def\closebox#1{\egroup\DoSomethingWithBox#1}
\openbox0 ... \closebox0

This mechanism can be used to scoop up paragraphs:

\everypar{\setbox\parbox=
\vbox\bgroup
\everypar{}
\def\par{\egroup\UseBox\parbox}}

Here the\everypar opens the box and lets the text be set in the box: starting for instance
Begin a text ...
gives the equivalent of
\setbox\parbox=\vbox{Begin a text ...
Inside the boxX\par has been redefined, so
. a text ends.\par
is equivalent to
. a text ends.l}\Usebox\parbox

In this example, th&UseBox command can only treat the box as a whole; if the elements
of the box should somehow be treated separately another approach is necessary. In

\everypar{\setbox\parbox=

\vbox\bgroup\everypar{}/
\def\par{\endgraf\HandleLines
\egroup\box\parbox}}
\def\HandleLines{ ... \lastbox ... }

the macro\HandleLines can have access to successive elements from the vertical list of
the paragraph. See also the example on pape 46.

5.7 Unboxing

Boxes can be unwrapped by the commakdshbox and \unvbox, and by their copy-

ing versions\unhcopy and\unvcopy. These are horizontal and vertical commands (see
Chapte[B), considering that in effect they contribute a partial horizontal or vertical list. It is
not possible td.unhbox a register containing ¥whbox or vice versa, but a void box register
can both bé.unhboxed and\unvboxed.

Unboxing takes the contents of a box in a box register and appends them to the surrounding
list; any glue can then be set anew. Thus

\setbox0=\hbox to 1cm{\hfil} \hbox to 2cm{\unhbox0}

is completely equivalent to

\hbox to 2cm{\hfil}

and not to

\hbox to 2cm{\kernicm}

The intrinsically horizontal nature dfunhbox is used to define

Victor Eijkhout — EX by Topic 43

Chapter 5. Boxes

\def\leavevmode{\unhbox\voidb@x}

This command switches from vertical mode to horizontal without adding anything to the
horizontal list. However, the subsequéiihdent caused by this transition adds an inden-
tation box. In horizontal mode theleavevmode command has no effect. Note that here it

is not necessary to ud@nhcopy, because the register is empty anyhow.

Beware of the following subtlety: unboxing in vertical mode does not add interline glue
between the box contents and any preceding item. Also, the valwgref;depth is not
changed, so glue between the box contents and any following item will occur only if there
was something preceding the box; interline glue will be based on the depth of that preceding
item. Similarly, unboxing in horizontal mode does not influence\tgacefactor.

5.8 Text in boxes

Both horizontal and vertical boxes can contain text. However, the way text is treated differs.
In horizontal boxes the text is placed in one straight line, and the width of the box is
in principle the natural width of the text (and other items) contained in it.({stical
commandls are allowed inside a horizontal box, axshr does nothing in this case.

For vertical boxes the situation is radically different. As soon as a character, or any other
(horizontal command(see pag@Q), is encountered in a vertical bgX Jtarts building

a paragraph in unrestricted horizontal mode, that is, just as if the paragraph were directly
part of the page. At the occurrence of\aertical commang (see pag@O), or at the end

of the box, the paragraph is broken into lines using the current values of parameters such
as\hsize.

Thus
\hbox to 3cm{\vbox{some reasonably long textl}}

will not give a paragraph of width 3 centimetres (it gives an overfull horizontal box if
\hsize > 3cm). However,

\vbox{\hsize=3cm some reasonably long text}
will be 3 centimetres wide.

A paragraph of text inside a vertical box is broken into lines, which are packed in horizontal
boxes. These boxes are then stacked in internal vertical mode, possib\pasiél ineskip
and\lineskip separating them (this is treated in Chapter 15). This process is also used
for text on the page; the boxes are then stacked in outer vertical mode.

If the internal vertical list is empty, ngparskip glue is added at the start of a paragraph.

Because text in a horizontal box is not broken into lines, there is a further difference bet-
ween text in restricted and unrestricted horizontal mode. In restricted horizontal mode no
discretionary nodes and whatsit items changing the value of the current language are inser-
ted. This may give problems if the text is subsequently unboxed to form part of a paragraph.

See Chaptdr 19 for an explanation of these items,[@nd [7] for a way around this problem.

5.9 Assorted remarks
5.9.1 Forgetting the\box

After \newcount\foo, one can us&foo on its own to get th&foo counter. For boxes,
however, one has to uséox\foo to get the\foo box. The reason for this is that there

44 Victor Eijkhout — EX by Topic

5.9. Assorted remarks

exists no separatéboxdef command, sd.chardef is used (see Chapfer|31).

Suppose\newbox\foo allocates box register 25; then typingoo is
equivalent to typing\.char25.

5.9.2 Special-purpose boxes

Some box registers have a special purpose:

\box255 is by used X internally to give the page to the output routine.
\voidb@x is the number of a box register allocatecimin. tex; it is supposed
to be empty always. It is used in the madieavevmode and others.

. when a new insert is created with the plaingX \newinsert macro, a\count,
\dimen, \skip, and\box all with the same number are reserved for that insert.
The numbers for these registers count down from 254.

5.9.3 The height of a vertical box in horizontal mode

In horizontal mode a vertical box is placed with its reference point aligned vertically with
the reference point of the surrounding bogXThen traverses its contents starting at the
left upper corner; that is, the point that lies above the reference point by a distance of the
height of the box. Changing the height of the box implies then that the contents of the box
are placed at a different height.
Consider as an example
\hbox{a\setbox0=\vbox{\hbox{b}}\box0 c}
which gives

abc
and
\hbox{a\setbox0=\vbox{\hbox{b}}\ht0=0cm \box0 c}
which gives

c

By contrast, changing the width of a box placed in vertical mode has no effect on its place-
ment.

5.9.4 More subtleties with vertical boxes

Since there are two kinds of vertical boxes, th®ox and the\vtop, using these two kinds
nested may lead to confusing results. For instance,

\vtop{\vbox{...}}

is completely equivalent to just

\vbox{...}

It was stated above that the depth ofwox is zero if the last item is a kern or glue, and
the height of a\vtop is zero unless the first item in it is a box. The above examples used a
kern for that first or last item, but if, in the case ofatop, this item is not a glue or kern,
one is apt to overlook the effect that it has on the surrounding box. For instance,
\vtop{\writel6{...}...}

has zero height, because the write instruction is packed into a ‘whatsit’ item that is placed
on the current, that is, the vertical, list. The remedy here is

Victor Eijkhout — EX by Topic 45

Chapter 5. Boxes

\vtop{\leavevmode\writel6{...}...}
which puts the whatsit in the beginning of the paragraph, instead of above it.
Placement of items in a vertical list is sometimes a bit tricky. There is for instance a diffe-

rence between how vertical and horizontal boxes are treated in a vertical list. Consider the
following examples. AfteNoffinterlineskip the first example

\vbox{\hbox{a}
\setbox0=\vbox{\hbox{(}}
\ht0=0pt \dpO=0Opt \box0
\hbox{ b}}

o

while a slight variant

gives

\vbox{\hbox{a}
\setbox0=\hbox{ (}
\ht0=0pt \dpO=0pt \box0
\hbox{ b}}

%

The difference is caused by the fact that horizontal boxes are placed with respect to their
reference point, but vertical boxes with respect to their upper left corner.

gives

5.9.5 Hanging the\lastbox back in the list

You can pick the last box off a vertical list that has been compiled in (internal) vertical
mode. However, if you try to hang it back in the list the vertical spacing may go haywire.
If you just hang it back,

\setbox\tmpbox=\lastbox
\usethetmpbox \box\tmpbox

baselineskip glue is added a second time. If you ‘unskip’ prior to hanging the box back,

\setbox\tmpbox=\lastbox \unskip
\usethetmpbox \box\tmpbox

things go wrong in a more subtle way. Tkiaternal dimef \prevdepth (which controls
interline glue; see Chapter]15) will have a value based on the last box, but what you need
for the proper interline glue is a depth based on one box earlier. The solution is not to
unskip, but to speciffnointerlineskip:

\setbox\tmpbox=\lastbox
\usethetmpbox \nointerlineskip \box\tmpbox

5.9.6 Dissecting paragraphs with\lastbox

Repeatedly applyin§last... and\un. .. macros can be used to take a paragraph apart.
Here is an example of that.

46 Victor Eijkhout — EX by Topic

5.9. Assorted remarks

In typesetting advertisement copy, a way of justifying paragraphs has become popular
in recent years that is somewhere between flushright and raggedright setting. Lines that
would stretch beyond certain limits are set with their glue at natural width. This paragraph
exemplifies this procedure; the macros follow next.

\newbox\linebox \newbox\snapbox

\def\eatlines{
\setbox\linebox\lastbox % check the last line
\ifvoid\linebox
\else % if it’s not empty
\unskip\unpenalty % take whatever is
{\eatlines} % above it;

% collapse the line
\setbox\snapbox\hbox{\unhcopy\linebox}
% depending on the difference
\ifdim\wd\snapbox<.98\wd\linebox
\box\snapbox 7 take the one or the other,
\else \box\linebox \fi
\fi}
This macro can be called as
\vbox{ ... some text ... \par\eatlines}

or it can be inserted automatically witleverypar; see[[10].

In the macro\eatlines, the\lastbox is taken from a vertical list. If the list is empty
the last box will test true oNifvoid. These boxes containing lines from a paragraph are
actually horizontal boxes: the teéstfhbox applied to them would give a true result.

Victor Eijkhout — EX by Topic 47

Chapter 6

Horizontal and
Vertical Mode

At any point in its processinggK is in some mode. There are six modes, divided in three
categories:

1. horizontal mode and restricted horizontal mode,
2. vertical mode and internal vertical mode, and
3. math mode and display math mode.

The math modes will be treated elsewhere (see 169). Here we shall look at the ho-
rizontal and vertical modes, the kinds of objects that can occur in the corresponding lists,
and the commands that are exclusive for one mode or the other.

\ifhmode Test whether the current mode is (possibly restricted) horizontal mode.

\ifvmode Test whether the current mode is (possibly internal) vertical mode.

\ifinner Testwhether the current mode is an internal mode.

\vadjust Specify vertical material for the enclosing vertical list while in horizontal mode.

\showlists Write to the log file the contents of the partial lists currently being built in
all modes.

6.1 Horizontal and vertical mode

When not typesetting mathematicgXTis in horizontal or vertical mode, building ho-
rizontal or vertical lists respectively. Horizontal mode is typically used to make lines of
text; vertical mode is typically used to stack the lines of a paragraph on top of each other.
Note that these modes are different from the internal stategX6$ Thput processor (see

pagd I).

6.1.1 Horizontal mode

The main activity in horizontal mode is building lines of text. Text on the page and text in
a\vbox or \vtop is built in horizontal mode (this might be called ‘paragraph mode’); if
the text is in an\hbox there is only one line of text, and the corresponding mode is the
restricted horizontal mode.

In horizontal mode all material is added to a horizontal list. If this list is built in unrestricted
horizontal mode, it will later be broken into lines and added to the surrounding vertical list.

Each element of a horizontal list is one of the following:

48

6.2. Horizontal and vertical commands

. a box (a character, ligaturgyrule, or a(box)),

. a discretionary break,

. a whatsit (see Chapter]30),

. vertical material enclosed Nmark, \vadjust, or \insert,
° glue or leaders, a kern, a penalty, or a math-on/off item.

The items in the last point are all discardable. Discardable items are called that, because
they disappear in a break. Breaking of horizontal lists is treated in CHapter 19.

6.1.2 Vertical mode

Vertical mode can be used to stack items on top of one another. Most of the time, these
items are boxes containing the lines of paragraphs.

Stacking material can take place inside a vertical box, but the items that are stacked can
also appear by themselves on the page. In the latter ¢26&sTn vertical mode; in the
former case, inside a vertical boxgX operates in internal vertical mode.

In vertical mode all material is added to a vertical list. If this list is built in external vertical
mode, it will later be broken when pages are formed.

Each element of a vertical list is one of the following:

a box (a horizontal or vertical box or amrule),
a whatsit,

a mark,

glue or leaders, a kern, or a penalty.

The items in the last point are all discardable. Breaking of vertical lists is treated in Chap-
ter[21.

There are a few exceptional conditions at the beginning of a vertical list: the value of
\prevdepth is set to-1000pt. Furthermore, ndparskip glue is added at the top of an
internal vertical list; at the top of the main vertical list (the top of the ‘current page’) no
glue or other discardable items are added, ®stghbskip glue is added when the first box

is placed on this list (see Chaptfrg 26 pnd 27).

6.2 Horizontal and vertical commands

Some commands are so intrinsically horizontal or vertical in nature that they fgxce T
go into that mode, if possible. A command that forcgX hto horizontal mode is called a
(horizontal commanyd similarly a command that forcegX into vertical mode is called a
(vertical commang

However, not all transitions are possiblgXTcan switch from both vertical modes to (un-
restricted) horizontal mode and back through horizontal and vertical commands, but no
transitions to or from restricted horizontal mode are possible (other than by enclosing ho-
rizontal boxes in vertical boxes or the other way around). A vertical command in restricted
horizontal mode thus gives an error; thear command in restricted horizontal mode has

no effect.

The horizontal commands are the following:

. any (letten, (otherchay, \char, a control sequence defined hghardef, or
\noboundary;

Victor Eijkhout — EX by Topic 49

Chapter 6. Horizontal and Vertical Mode

\accent, \discretionary, the discretionary hyphexr and control spacg,;
\unhbox and\unhcopy;
\vrule and the(horizontal skip commandshskip, \hfil, \hfill, \hss, and

\hfilneg;

. \valign;

° math shift ¢).

The vertical commands are the following:

. \unvbox and\unvcopy;

. \hrule and the(vertical skip commands\vskip, \vfil, \vfill, \vss, and
\vfilneg;

. \halign;

° \end and\dump.

Note that the vertical commands do not incluger; nor are\indent and\noindent
horizontal commands.

The connection between boxes and modes is explored below; see GRapter 9 for more on
the connection between rules and modes.

6.3 The internal modes

Restricted horizontal mode and internal vertical mode are the variants of horizontal mode
and vertical mode that hold inside ahbox and\vbox (0r \vtop Or \vcenter) respec-
tively. However, restricted horizontal mode is rather more restricted in nature than internal
vertical mode. The third internal mode is non-display math mode (see Chapter 23).

6.3.1 Restricted horizontal mode

The main difference between restricted horizontal mode, the mode\htarx, and unre-
stricted horizontal mode, the mode in which paragraphs in vertical boxes and on the page
are built, is that you cannot break out of restricted horizontal mgger does nothing in

this mode. Furthermore,(@ertical commangin restricted horizontal mode gives an error.

In unrestricted horizontal mode it would caus&ar token to be inserted and vertical
mode to be entered (see also Chaptér 17).

6.3.2 Internal vertical mode

Internal vertical mode, the vertical mode insidevdox, is a lot like external vertical mode,
the mode in which pages are built. (horizontal commanydin internal vertical mode, for
instance, is perfectly valid:gK then starts building a paragraph in unrestricted horizontal
mode.

One difference is that the commantisnskip and \unkern have no effect in external
vertical mode, anll1astbox is always empty in external vertical mode. See further pages

and_70.

The entries of alignments (see Chapter 25) are processed in internal modes: restricted ho-
rizontal mode for the entries of a&thalign, and internal vertical mode for the entries of

a \valign. The material in\vadjust and\insert items is also processed in internal
vertical mode; furthermore gK enters this mode when processing tatput token list.

The commandsend and\dump (the latter exists only in IngX) are not allowed in internal
vertical mode; furthermoré,dump is not allowed inside a group (see Chapter 33).

50 Victor Eijkhout — EX by Topic

6.4. Boxes and modes

6.4 Boxes and modes

There are horizontal and vertical boxes, and there is horizontal and vertical mode. Not
surprisingly, there is a connection between the boxes and the modes. One can ask about
this connection in two ways.

6.4.1 What box do you use in what mode?

This is the wrong question. Both horizontal and vertical boxes can be used in both hori-
zontal and vertical mode. Their placement is determined by the prevailing mode at that
moment.

6.4.2 What mode holds in what box?

This is the right question. When ahbox starts, EX is in restricted horizontal mode. Thus
everything in a horizontal box is lined up horizontally.

When a\vbox is started, §X is in internal vertical mode. Boxes of both kinds and other
items are then stacked on top of each other.

6.4.3 Mode-dependent behaviour of boxes

Any (box) (see Chapt5 for the full definition) can be used in horizontal, vertical, and
math mode. Unboxing commands, however, are specific for horizontal or vertical mode.
Both \unhbox and\unhcopy are (horizontal commani, so they can makeX switch

from vertical to horizontal mode; botfunvbox and\unvcopy are (vertical commanis,

so they can makegK switch from horizontal to vertical mode.

In horizontal mode th&spacefactor is set to 1000 after a box has been placed. In verti-
cal mode thé\prevdepth is set to the depth of the box placed. Neither statement holds for
unboxing commands: after aanhbox or \unhcopy the spacefactor is not altered, and af-
ter\unvbox or \unvcopy the\prevdepth remains unchanged. After all, these commands
do not add a box, but a piece of a (horizontal or vertical) list.

The operations\raise and \lower can only be applied to a box in horizontal mode;
similarly, \moveleft and\moveright can only be applied in vertical mode.

6.5 Modes and glue

Both in horizontal and vertical modg=X can insert glue items the size of which is deter-
mined by the preceding object in the list.

For horizontal mode the amount of glue that is inserted for a space token depends on the
\spacefactor of the previous object in the list. This is treated in Chaptgr 20.

In vertical mode EX inserts glue to keep boxes at a certain distance from each other. This
glue is influenced by the height of the current item and the depth of the previous one. The
depth of items is recorded in th@revdepth parameter (see Chapfer 15).

The two quantitiedprevdepth and\spacefactor use the same internal register @XT
Thus the\prevdepth can be used or asked only in vertical mode, and\thgcefactor
only in horizontal mode.

Victor Eijkhout — EX by Topic 51

Chapter 6. Horizontal and Vertical Mode

6.6 Migrating material

The three control sequencesnsert, \mark, and\vadjust can be given in a paragraph
(the first two can also occur in vertical mode) to specify material that will wind up on the
surrounding vertical list. Note that this need not be the main vertical list: it can be a vertical
box containing a paragraph of text. In this casemark or \insert command will not
reach the page breaking algorithm.

When several migrating items are specified in a certain line of text, their left-to-right order
is preserved when they are placed on the surrounding vertical list. These items are placed
directly after the horizontal box containing the line of text in which they were specified:
they come before any penalty or glue items that are automatically inserted (s¢e page 149).

6.6.1 \vadjust

The command
\vadjust(filler){(vertical mode materia}

is only allowed in horizontal and math modes (but it is ndharizontal commanyg. Ver-

tical mode material specified Byadjust is moved from the horizontal list in which the
command is given to the surrounding vertical list, directly after the box in which it occur-
red.

In the current line Avadjust item was placed to put the bullet in the margin.

Any vertical material in a\vadjust item is processed in internal vertical mode, even
though it will wind up on the main vertical list. For instance, tief inner test is true in a
\vadjust, and at the start of the vertical materigirevdepth=-1000pt.

6.7 Testing modes

The three conditionalsifhmode, \ifvmode, and\ifinner can distinguish between the
four modes of EX that are not math modes. Thefinner test is true if EX is in restric-

ted horizontal mode or internal vertical mode (or in non-display math mode). Exceptional
condition: during a\write TEX is in a ‘no mode’ state. The testsfhmode, \ifvmode,
and\ifmmode are then all false.

Inspection of all current lists, including the ‘recent contributions’ (see Chapter 27), is pos-
sible through the commandhowlists. This command writes to the log file the contents
of all lists that are being built at the moment the command is given.

Consider the example

a\hfil\break b\par
c\hfill\break d
\hbox{e\vbox{f\showlists

Here the first paragraph has been broken into two lines, and these have been added to the
current page. The second paragraph has not been concluded or broken into lines.

The log file shows the following.gX was busy building a paragraph (starting with an
indentation box0pt wide):

52 Victor Eijkhout — EX by Topic

6.7. Testing modes

horizontal mode entered at line 3
\hbox (0.0+0.0)x20.0

\tenrm f

spacefactor 1000

This paragraph was inside a vertical box:

internal vertical mode entered at line 3
prevdepth ignored

The vertical box was in a horizontal box,

restricted horizontal mode entered at line 3
\tenrm e
spacefactor 1000

which was part of an as-yet unfinished paragraph:

horizontal mode entered at line 2
\hbox (0.0+0.0)x20.0

\tenrm c

\glue 0.0 plus 1.0fill

\penalty -10000

\tenrm d

etc.

spacefactor 1000

Note how the infinite glue and thebreak penalty are still part of the horizontal list.

Finally, the first paragraph has been broken into lines and added to the current page:

vertical mode entered at line O

current page:

\glue (\topskip) 5.69446

\hbox (4.30554+0.0)x469.75499, glue set 444.75497fil
.\hbox (0.0+0.0)x20.0

.\tenrm a

.\glue 0.0 plus 1.0fil

.\penalty -10000

.\glue (\rightskip) 0.0

\penalty 300

\glue (\baselineskip) 5.05556

\hbox (6.94444+0.0)x469.75499, glue set 464.19943fil
.\tenrm b

.\penalty 10000

\glue(\parfillskip) 0.0 plus 1.0fil
\glue(\rightskip) 0.0

etc.

total height 22.0 plus 1.0

goal height 643.20255

prevdepth 0.0

Victor Eijkhout — EX by Topic 53

Chapter 7

Numbers

In this chapter integers and their denotations will be treated, the conversions that are possi-
ble either way, allocation and use \ofount registers, and arithmetic with integers.

\number Convert alnumbe} to decimal representation.

\romannumeral Converta positivénumbe} to lowercase roman representation.
\ifnum Test relations between numbers.

\ifodd Test whether a number is odd.

\ifcase Enumerated case statement.

\count Prefix for count registers.

\countdef Define a control sequence to be a synonym fateunt register.
\newcount Allocate an unuselicount register.

\advance Arithmetic command to add to or subtract fronjraumeric variablig
\multiply Arithmetic command to multiply &anumeric variable

\divide Arithmetic command to divide égnumeric variablig

7.1 Numbers and(number)s

An important part of the grammar ofX is the rigorous definition of gnumbej, the
syntactic entity that gX expects when semantically an integer is expected. This definition
will take the largest part of this chapter. Towards the &rdunt registers, arithmetic, and
tests for numbers are treated.

For clarity of discussion a distinction will be made here between integers and numbers,
but note that ganumbej can be both an ‘integer’ and a ‘number’. ‘Integer’ will be taken

to denote a mathematical number: a quantity that can be added or multiplied. ‘Number’
will be taken to refer to the printed representation of an integer: a string of digits, in other
words.

7.2 Integers

Quite a few different sorts of objects can function as integergi Th this section they
will all be treated, accompanied by the relevant lines from the grammaof T

First of all, an integer can be positive or negative:

54

7.2. Integers

(numbey — (optional signg(unsigned number

(optional signs — (optional spaceés

| (optional sign¥(plus or minu(optional spaces
A first possibility for an unsigned integer is a string of digits in decimal, octal, or hexade-
cimal notation. Together with the alphabetic constants these will be nameditieger
denotation. Another possibility for an integer is an internal integer quantity{iaternal
integed; together with the denotations these form thermal integers. Lastly an integer
can be &coerced integér an internal{dimer) or (glue) quantity that is converted to an
integer value.

(unsigned number— (normal integer | (coerced integér
(normal integer — (integer denotation| (internal integeyr
(coerced integér— (internal dimen | (internal glué

All of these possibilities will be treated in sequence.

7.2.1 Denotations: integers

Anything that looks like a number can be used aswanbej: thus42 is a number. However,
bases other than decimal can also be used:

7123

is the octal notation fot x 82 + 2 x 8! + 3 x 8° = 83, and

"123

is the hexadecimal notation farx 162 4+ 2 x 16! + 3 x 16° = 291.

(integer denotation— (integer constahtone optional spage

| » (octal constantone optional spage

| "(hexadecimal constar{bne optional spage
The octal digits ar®—7; a digit 8 or 9 following an octal denotation is not part of the
number: after

\count0="078
the\count0 will have the value 7, and the digtis typeset.

The hexadecimal digits ai®-9, A-F, where theA—F can have category code 11 or 12. The
latter has a somewhat far-fetched justification: the characters resulting figrardang
operation have category code 12. Lowercase are not hexadecimal digits, although (in
TpX3) they are used for hexadecimal notation in the ‘circumflex method’ for accessing all
character codes (see Chagter 3).

7.2.2 Denotations: characters

A character token is a pair consisting of a character code, which is a number in the range
0-255, and a category code. Both of these codes are accessible, and can be used as a
(numbep.

The character code of a character token, or of a single letter control sequence, is accessible
through the left quote command: both and ‘\a denote the character code &afwhich
can be used as an integer.

(integer denotation— ¢ (character toker{one optional spage
In order to emphasize that accessing the character code is in a sense using a denotation,
the syntax of X allows an optional space after such a ‘character constant’. The left quote
must have category 12.

Victor Eijkhout — EX by Topic 55

Chapter 7. Numbers

7.2.3 Internal integers

The class ofiinternal integerscan be split into five parts. The@odenamgs and(special
integeds will be treated separately below; furthermore, there are the following.

° The contents of\count registers; either explicitly used by writing for instance
\count23, or by referring to such a register by means of a control sequence that
was defined by countdef: after
\countdef\MyCount=23
\MyCount is called a(countdef tokef, and it is fully equivalent td.count23.

. All parameters of X that hold integer values; this includes obvious ones such as
\linepenalty, but also parameters such\ag/phenchar(font) and\parshape
(if a paragraph shape has been definedflimes, using\parshape in the context
of a (numbe} will yield this value ofn).

. Tokens defined bychardef or \mathchardef. After
\chardef\foo=74
the control sequencefoo can be used on its own to mearhar74, but in a
context where @dnumbej is wanted it can be used to denote 74:

\count\foo

is equivalent to\count74. This fact is exploited in the allocation routines for
registers (see Chapfer|31).

A control sequence thus defined hyhardef is called a{chardef tokejy if it is
defined byAmathchardef it is called aimathchardef token

Here is the full list:

internal integer — (integer parametégr

special integer| \lastpenalty

(countdef tokep | \count (8-bit numbey

(chardef tokeh | (mathchardef token

(codenamg(8-bit numbey

\hyphenchar(font) | \skewchar(font) | \parshape
\inputlineno | \badness

integer parametér— | \adjdemerits | \binoppenalty

| \brokenpenalty | \clubpenalty | \day

| \defaulthyphenchar | \defaultskewchar

| \delimiterfactor | \displaywidowpenalty

| \doublehyphendemerits | \endlinechar | \escapechar
| \exhypenpenalty | \fam | \finalhyphendemerits

| \floatingpenalty | \globaldefs | \hangafter

| \hbadness | \hyphenpenalty | \interlinepenalty

| \linepenalty | \looseness | \mag

| \maxdeadcycles | \month

| \newlinechar | \outputpenalty | \pausing

| \postdisplaypenalty | \predisplaypenalty

| \pretolerance | \relpenalty | \showboxbreadth

| \showboxdepth | \time | \tolerance

| \tracingcommands | \tracinglostchars | \tracingmacros
| \tracingonline | \tracingoutput | \tracingpages

| \tracingparagraphs | \tracingrestores | \tracingstats
| \uchyph | \vbadness | \widowpenalty | \year

(
l
|
|
|
|
(

56 Victor Eijkhout — EX by Topic

7.3. Numbers

Any internal integer can function as gmternal unit, which — preceded byoptional
spaces— can serve as @nit of measurg Examples of this are given in Chapjér 8.

7.2.4 Internal integers: other codes of a character

The\catcode command (which was described in Chapfer 2) {sadenamg and like the
other code names it can be used as an integer.

(codenamp— \catcode | \mathcode | \uccode | \1lccode
| \sfcode | \delcode

A (codenamghas to be followed by afB-bit numbey.

Uppercase and lowercase codes were treated in Cldpter\3sfthede is treated in Chap-
ter[20; the\mathcode and\delcode are treated in ChapterP1.

7.2.5 (special integep
One of the subclasses of the internal integers is that of the special integers.

(special integer— \spacefactor | \prevgraf
| \deadcycles | \insertpenalties

An assignment to any of these is called @ntimate assignmeht and is automatically
global (see Chaptér 110).

7.2.6 Other internal quantities: coersion to integer

TeX provides a conversion between dimensions and integers: if an integer is expected, a
(dimen or (glue) used in that context is converted by taking its (natural) size in scaled
points. However, onlyinternal dimefis and(internal glue can be used this way: no di-
mension or glue denotations can be coerced to integers.

7.2.7 Trailing spaces

The syntax of X defines integer denotations (decimal, octal, and hexadecimal) and ‘back-
quoted’ character tokens to be followed {mne optional spageThis means thatgX reads

the token after the number, absorbing it if it was a space token, and backing up if it was
not.

Because EX’s input processor goes into the state ‘skipping spaces’ after it has seen one
space token, this scanning behaviour implies that integer denotations can be followed by
arbitrarily many space characters in the input. Also, a line end is admissible. However, only
one space token is allowed.

7.3 Numbers

TeX can perform an implicit conversion from a string of digits to an integer. Conversion
from a representation in decimal, octal, or hexadecimal notation was treated above. The
conversion the other way, from dmternal integer to a printed representation, has to be
performed explicitly. X provides two conversion routineggumber and\romannumeral.

The commandnumber is equivalent to\the when followed by an internal integer. These

Victor Eijkhout — EX by Topic 57

Chapter 7. Numbers

commands are performed in the expansion processopXf that is, they are expanded
whenever expansion has not been inhibited.

Both commands yield a string of tokens with category code 12; their argumefmisgoe}.
Thus\romannumeral51, \romannumeral \year, and\number\linepenalty are valid,
and so is\number13. Applying \number to a denotation has some uses: it removes leading
zeros and superfluous plus and minus signs.

A roman numeral is a string of lowercase ‘roman digits’, which are characters of category
code 12. The sequence

\uppercase\expandafter{\romannumeral ...}

gives uppercase roman numerals. This works becggéeXpands tokens in order to find
the opening brace of the argument\afppercase. If \romannumeral is applied to a
negative number, the result is simply empty.

7.4 Integer registers
Integers can be stored Wrount registers:
\count (8-bit numbey

is an(integer variablieand an(internal integey. As an integer variable it can be used in a
(variable assignment

(variable assignmept— (integer variablgequal$(numbey | ...
As an internal integer it can be used asxambey}:
(numbe} — (optional sign¥(internal integer | ...

Synonyms fol\count registers can be introduced by theountdef command in gshorthand
definition):

\countdef (control sequengéequal$(8-bit numbey

A control sequence defined this way is calledcauntdef tokep, and it serves as an
(internal integey.

The plain BX macro\newcount (which is declared\outer) uses thé\countdef com-

mand to allocate an unusédount register. Counters 0-9 are scratch registers, like all
registers with numbers 0-9. However, counters 0-9 are used for page identification in the
dvi file (see Chaptdr 33), so they should be used as scratch registers only inside a group.
Counters 10-22 are used for plaigXis bookkeeping of allocation of registers. Counter

255 is also scratch.

7.5 Arithmetic

The user can perform some arithmetic gXTand X also performs arithmetic internally.
User arithmetic is concerned only with integers; the internal arithmetic is mostly on fixed-
point quantities, and only in the case of glue setting on floating-point numbers.

58 Victor Eijkhout — EX by Topic

7.6. Number testing

751 Arithmetic statements

TeX allows the user to perform some arithmetic on integers. The statement
\advance(integer variablig(optionalby) (numbef

adds the value of thhnumbe} — which may be negative — to tH@teger variable Simi-
larly,

\multiply(integer variablgoptionalby)(numbej
multiplies the value of théinteger variablg and
\divide(integer variablgoptionalby) (numbej
divides an(integer variabli
Multiplication and division are also available for any so-calledmeric variabli their
most general form is
\multiply(numeric variablg{optionalby)(numbef
where

(numeric variable — (integer variablg | (dimen variablé
| (glue variable | (muglue variable

The result of an arithmetic operation should not excz¥dn absolute value.
Division of integers yields an integer; that is, the remainder is discarded. This raises the
guestion of how rounding is performed when either operand is negative. In such gdses T

performs the division with the absolute values of the operands, and takes the negative of
the result if exactly one operand was negative.

7.5.2 Floating-point arithmetic

Internally some arithmetic on floating-point quantities is performed, namely in the calcula-
tion of glue set ratios. However, machine-dependent aspects of rounding cannot influence
the decision process ofX, so machine independence ¢fXTis guaranteed in this respect
(sufficient accuracy of rounding is enforced by theip test of [23]).

7.5.3 Fixed-point arithmetic

All fractional arithmetic in EX is performed in fixed-point arithmetic of ‘scaled integers’:
multiples of2~16. This ensures the machine independencezaf Printed representations
of scaled integers are rounded to 5 decimal digits.

In ordinary 32-bit implementations ofX the largest integers ag3! — 1 in absolute size.
The user is not allowed to specify dimensions larger in absolute siz&thanl: two such
dimensions can be added or subtracted without overflow on a 32-bit system.

7.6 Number testing

The most general test for integers XTis
\ifnum(number) (relatior) (numbes)
where(relation is a<, >, or= character, all of category 12.

Distinguishing between odd and even numbers is done by

Victor Eijkhout — EX by Topic 59

Chapter 7. Numbers

\ifodd(numbe}
A numeric case statement is provided by
\ifcase(numbe}(casg)\or. ..\or(case)\else(other casesfi

where the\else-part is optional. The tokens fdcaseg) are processed if the number turns
out to bei; other cases are skipped, similarly to what ordinarily happens in conditionals

(see Chaptdr 13).

7.7 Remarks
7.7.1 Character constants

In formats and macro collections numeric constants are often needed. There are several
ways to implement these irgX.

Firstly,

\newcount\SomeConstant \SomeConstant=42

This is wasteful, as it uses up\aount register.

Secondly,

\def\SomeConstant{42}

Better but accident pronegX has to expand to find the number — which in itself is a slight
overhead — and may inadvertently expand some tokens that should have been left alone.
Thirdly,

\chardef\SomeConstant=42

This one is fine. A(chardef tokeh has the same status as\eount register: both are
(internal integers. Therefore a number defined this way can be used everywhere that a
\count register is feasible. For large numberst@ardef can be replaced bynathchardef,
which runs to"7FFF = 32767. Note that amathchardef tokéncan usually only appear

in math mode, but in the context of a number it can appear anywhere.

7.7.2 Expanding too far / how far

It is a common mistake to write pieces giXI'code where EX will inadvertently expand
something because it is trying to compose a number. For example:

\def\par{\endgraf\penalty200}
...\par \number\pageno

Here the page number will be absorbed into the value of the penalty.

Now consider

\newcount\midpenalty \midpenalty=200
\def\par{\endgraf\penalty\midpenalty}

...\par \number\pageno

Here the page number is not scooped up by mistaeisitrying to locate anumbej after
the \penalty, and it finds &countdef tokeh This isnot converted to a representation in
digits, so there is never any danger of the page number being touched.

Itis possible to convert ecountdef tokeffirst to a representation in digits before assigning
it:

60 Victor Eijkhout — EX by Topic

7.7. Remarks

\penalty\number\midpenalty
and this brings back again all previous problems of expansion.

Victor Eijkhout — EX by Topic 61

Chapter 8

Dimensions and Glue

In TeX vertical and horizontal white space can have a possibility to adjust itself through
‘stretching’ or ‘shrinking’. An adjustable white space is called ‘glue’. This chapter treats
all technical concepts related to dimensions and glue, and it explains how the badness of
stretching or shrinking a certain amount is calculated.

\dimen Dimension register prefix.

\dimendef Define a control sequence to be a synonym feéamen register.
\newdimen Allocate an unused dimen register.

\skip Skip register prefix.

\skipdef Define a control sequence to be a synonym fegkip register.
\newskip Allocate an unused skip register.

\ifdim Compare two dimensions.

\hskip Insertin horizontal mode a glue item.

\hfil Equivalentto\hskip Ocm plus 1fil.

\hfilneg Equivalent to\hskip Ocm minus 1fil.

\hfill Equivalent to\hskip Ocm plus 1fill.

\hss Equivalent to\hskip Ocm plus 1fil minus 1fil.

\vskip Insertin vertical mode a glue item.

\vfil Equivalentto\vskip Ocm plus 1fil.

\vfill Equivalent to\vskip Ocm plus 1fill.

\vfilneg Equivalentto\vskip Ocm minus 1fil.

\vss Equivalent to\vskip Ocm plus 1fil minus 1fil.

\kern Add a kern item to the current horizontal or vertical list.
\lastkern If the lastitem on the current list was a kern, the size of it.
\lastskip If the lastitem on the current list was a glue, the size of it.
\unkern If the last item of the current list was a kern, remove it.
\unskip If the last item of the current list was a glue, remove it.
\removelastskip Macro to append the negative of theastskip.
\advance Arithmetic command to add to or subtract fronjraumeric variabli
\multiply Arithmetic command to multiply @numeric variable
\divide Arithmetic command to divide &énumeric variable

8.1 Definition of (glue) and (dimen)

This section gives the syntax of the quantit{démer) and(glue). In the next section the
practical aspects of glue are treated.

62

8.1. Definition of(glue) and(dimen)

Unfortunately the terminology for glue is slightly confusing. The syntactical quafgitye)

is a dimension (a distance) with possibly a stretch and/or shrink component. In order to add
a glob of ‘glue’ (a white space) to a list one has to I€ghue) be preceded by commands
such as\vskip.

8.1.1 Definition of dimensions

A (dimer) is what X expects to see when it needs to indicate a dimension; it can be
positive or negative.

(dimen) — (optional signg(unsigned dimen
The unsigned part of @imen can be

(unsigned dimen— (normal dimef | (coerced dimen
(normal dimefh — (internal dimef | (facton (unit of measurg
(coerced dimen— (internal glue

That is, we have the following three cases:

. an (internal dimen,; this is any register or parameter giXthat has a/dimen
value:
(internal dimef — (dimen parameter
| (special dimep| \lastkern
| (dimendef tokeh | \dimen(8-bit numbey
| \fontdimen(numbej(font)
| (box dimensiol(8-bit numbey
(dimen parametér— \boxmaxdepth
| \delimitershortfall | \displayindent
| \displaywidth | \hangindent
| \hfuzz | \hoffset | \hsize
| \lineskiplimit | \mathsurround
| \maxdepth | \nulldelimiterspace
| \overfullrule | \parindent
| \predisplaysize | \scriptspace
| \splitmaxdepth | \vfuzz
| \voffset | \vsize

. a dimension denotation, consisting(€dctor) (unit of measurkg for exampled . 7\vsize;
or
. an (internal glué (see below) coerced to a dimension by omitting the stretch and

shrink components, for exampl@arfillskip.
A dimension denotation is a somewhat complicated entity:

. a (facton is an integer denotation, a decimal constant denotation (a number with
an integral and a fractional part), or &nternal integer
(factory — (normal integer | (decimal constait
(normal integer — (integer denotation
| (internal integer
(decimal constant— .12 | ,12
| (digit) (decimal constant
| (decimal constaitdigit)
Aninternal integer is a parameter that is ‘really’ an integer (for instatweaynt0),
and not coerced from a dimension or glue. See Chéapter 7 for the definition of va-
rious kinds of integers.

Victor Eijkhout — EX by Topic 63

Chapter 8. Dimensions and Glue

. a (unit of measurgcan be aphysical unif, that is, an ordinary unit such as
(possibly preceded byrue), an internal unit such asm, but also an{internal
integed (by conversion to scaled points), &nternal dime, or an(internal glue.
(unit of measurg— (optional spacesinternal uni}
| (optionaltrue)(physical unif{one optional spage
(internal uni} — em(one optional spage
| ex{one optional spagd (internal integer
| (internal dimen | (internal glue
Some(dimens are calledspecial dimejs:

(special dimeh— \prevdepth

| \pagegoal | \pagetotal | \pagestretch

| \pagefilstretch | \pagefillstretch

| \pagefilllstretch | \pageshrink | \pagedepth

An assignment to any of these is called @mtimate assignmejtand it is automatically

global (see Chaptér [L0). The meaning of these dimensions is explained in Chépter 27, with

the exception okprevdepth which is treated in Chapter [L5.

8.1.2 Definition of glue

A (glue) is either some form of glue variable, or a glue denotation with explicitly indicated
stretch and shrink. Specifically,

(glue) — (optional signg(internal glue | (dimer) (stretch (shrink)

(internal glué — (glue parameter| \lastskip

| (skipdef tokef | \skip(8-bit numbey

(glue parameter— \abovedisplayshortskip

| \abovedisplayskip | \baselineskip

| \belowdisplayshortskip | \belowdisplayskip

| \leftskip | \lineskip | \parfillskip | \parskip

| \rightskip | \spaceskip | \splittopskip | \tabskip

| \topskip | \xspaceskip
The stretch and shrink components in a glue denotation are optional, but when both are
specified they have to be given in sequence; they are defined as

(stretch — plus (dimen | plus(fil dimen) | (optional spaces

(shrink — minus (dimen) | minus(fil dimen) | (optional spaces

(fil dimen) — (optional sign(factor) (fil unit) (optional spaces

(filunit) — | £i1 | £ill | £i11l
The actual definition offil unit) is recursive (see Chap36), but these are the only valid
possibilities.

8.1.3 Conversion of(glue) to (dimen)

The grammar rule

(dimen) — (factor (unit of measure
has some noteworthy consequences, caused by the fact thait @f measurgneed not
look like a ‘unit of measure’ at all (see the list above).
For instance, from this definition we conclude that the statement
\dimenO=\lastpenalty\lastpenalty

64 Victor Eijkhout — EX by Topic

8.1. Definition of(glue) and(dimen)

is syntactically correct becausgastpenalty can function both as an integer and(aasit
of measurg by taking its value in scaled points. Aftgpenalty8 the \dimen0 thus defi-
ned will have a size of4sp.

More importantly, consider the case where thait of measurgis an(internal glue, that
is, any sort of glue parameter. Prefixing such a glue with a numbe(fébern) makes it a
valid (dimer} specification. Thus

\skipO=\skipl
is very different from
\skipO=1\skipl

The first statement makéskip0 equal to\skip1, the second converts thekipl to a
(dimen before assigning it. In other words, thekip0 defined by the second statement
has no stretch or shrink.

8.1.4 Registers foAdimen and \skip
TeX has registers for storingdimen and (glue) values: thé\dimen and\skip registers
respectively. These are accessible by the expressions
\dimen(numbe}
and
\skip(numbe}
As with all registers of §X, these registers are numbered 0-255.
Synonyms for registers can be made with Ydeémendef and\skipdef commands. Their
syntax is
\dimendef (control sequengéequal$(8-bit numbey
and
\skipdef (control sequengéequals(8-bit numbey
For example, aftexskipdef\foo=13 using\foo is equivalent to usinyskip13.

Macros\newdimen and\newskip exist in plain BXfor allocating an unused dimen or
skip register. These macros are defined tddeter in the plain format.

8.1.5 Arithmetic: addition

As for integer variables, arithmetic operations exist for dimen, glue, and muglue (mathe-
matical glue; see pa@e 172) variables.
The expressions

\advance(dimen variablg(optionalby)(dimen
\advance(glue variablg(optionalby) (glue)
\advance(muglue variablgoptionalby)(muglue

add to the size of a dimen, glue, or muglue.
Advancing a(glue variable by (glue) is done by adding the natural sizes, and the stretch

and shrink components. BecaugXTonverts betweerglue) and(dimen, it is possible
to write for instance

\advance\skipl by \dimenl

Victor Eijkhout — EX by Topic 65

Chapter 8. Dimensions and Glue

or
\advance\dimenl by \skipil

In the first case\dimen1 is coerced tgglue) without stretch or shrink; in the second case
the\skip1 is coerced to &dimen) by taking its natural size.

8.1.6 Arithmetic: multiplication and division

Multiplication and division operations exist for glue and dimensions. One may for instance
write

\multiply\skipl by 2

which multiplies the natural size, and the stretch and shrink componekikop1 by 2.

The second operand of\multiply or \divide operation can only be @umbey}, that
is, an integer. Introducing the notion @fumeric variablg

(numeric variable — (integer variablg| (dimen variable
| (glue variable | (muglue variable

these operations take the form

\multiply(numeric variablEoptionalby)(numbef
and

\divide(numeric variablgoptionalby)(numbej
Glue and dimen can be multiplied by non-integer quantities:
\skip1=2.5\skip2
\dimenl=.78\dimen2

However, in the first line th&skip2 is first coerced to ddimer) value by omitting its
stretch and shrink.

8.2 More about dimensions
8.2.1 Units of measurement

In TeX dimensions can be indicated in

centimetre denotedcm or

millimetre denotedum; these are Sl unitsSyseme International d’'Unis the internatio-
nal system of standard units of measurements).

inch in; more common in the Anglo-American world. One inch is 2.54 centimetres.

pica denotedpc; one picais 12 points.

point denotedpt; the common system for Anglo-American printers. One inch is 72.27
points.

didot point denoteddd; the common system for continental European printers. Further-
more, 1157 didot points are 1238 points.

cicero denotedcc; one cicero is 12 didot points.

big point denotedvp; one inch is 72 big points.

scaled point denotedsp; this is the smallest unit ingX, and all measurements are integral
multiples of one scaled point. There &@@®536 scaled points in a point.

66 Victor Eijkhout — EX by Topic

8.3. More about glue

Decimal fractions can be written using both the Anglo-American system with the decimal
point (for example1in=72.27pt) and the continental European system with a decimal
comma;1in=72,27pt.

Internally TeX works with multiples of a smallest dimension: the scaled point. Dimensions
larger (in absolute value) th&® — 1sp, which is about 5.75 metres or 18.9 feet, are illegal.

Both the pica system and the didot system are of French origin: in 1737 the type founder
Pierre Simon Fournier introduced typographical points based on the French foot. Although
at first he introduced a system based on lines and points, he later took the point as unit:
there are 72 points in an inch, which is one-twelfth of a foot. About 1770 another foun-
der, Francois Ambroise Didot, introduced points based on the more common, and slightly
longer, ‘pied du roi'.

8.2.2 Dimension testing
Dimensions and natural sizes of glue can be compared witkith&im test. This takes the
form
\ifdim(dimen) relatior) (dimen,)
where the relation can be an<, or = token, all of category 12.

8.2.3 Defined dimensions

\z@ Opt

\maxdimen 16383.99999pt; the largest legal dimension.
These(dimer)s are predefined in the plain format; for instance
\newdimen\z@ \z@=0pt

Using such abbreviations for commonly used dimensions has at least two advantages. First
of all it saves main memory if such a dimension occurs in a macro: a control sequence is
one token, whereas a string suchoas takes three. Secondly, it saves time in processing,

as EX does not need to perform conversions to arrive at the correct type of object.

Control sequences such es0 are only available to a user who changes the category code
of the ‘at’ sign. Ordinarily, these control sequences appear only in the macros defined in
packages such as the plain format.

8.3 More about glue

Glue items can be added to a vertical list with one of the comméamnelsip(glue), \vfil,
\vfill, \vss or \vfilneg; glue items can be added to a horizontal list with one of the
commandshskip(glue), \hfil, \hfill, \hss or \hfilneg. We will now treat the pro-
perties of glue.

8.3.1 Stretch and shrink

In the syntax given abovéglue) was defined as having

. a ‘natural size’, which is gdimen), and optionally
. a ‘stretch’ and ‘shrink’ component built out of(#l dimen).

Victor Eijkhout — EX by Topic 67

Chapter 8. Dimensions and Glue

Each list that X builds has amounts of stretch and shrink (possibly zero), which are the
sum of the stretch and shrink components of individual pieces of glue in the list. Stretch
and shrink are used if the context in which the list appears requires it to assume a size that
is different from its natural size.

There is an important difference in behaviour between stretch and shrink components when
they are finite — that is, when tHldimen) is not£i1(1(1)). A finite amount of shrink is
indeed the maximum shrink thatX will take: the amount of glue specified as

5pt minus 3pt

can shrink to2pt, but not further. In contrast to this, a finite amount of stretch can be
stretched arbitrarily far. Such arbitrary stretching has a large ‘badness’, however. Badness
calculation is treated below.

The sequence with natural si2ept

\hskip 10pt plus 2pt \hskip 10pt plus 3pt

has5pt of stretch, but it has no shrink. In

\hskip 10pt minus 2pt \hskip 10pt plus 3pt

there is3pt of stretch, an@pt of shrink, so its minimal size i$8pt.

Positive shrink is not the same as negative stretch:

\hskip 10pt plus -2pt \hskip 10pt plus 3pt

looks a lot like the previous example, but it cannot be shrunk as there are
nominus(dimer) specifications. It does haugt of stretch, however.

This is another example of negative amounts of shrink and stretch. It is
not possible to stretch glue (in the informal sense) by shrinking it (in the
technical sense):

\hbox to 5cm{a\hskip Ocm minus -1fil}

is an underfull box, becausgX looks for aplus (dimen specification
when it needs to stretch the contents.

Finally,

\hskip 10pt plus -3pt \hskip 10pt plus 3pt

can neither stretch nor shrink. The fact that there is only stretch available
means that the sequence cannot shrink. However, the stretch components
cancel out: the total stretch is zero. Another way of looking at this is to
consider that for each point that the second glue item would stretch, the
first one would ‘stretch back’ one point.

Any amount of infinite stretch or shrink overpowers all finite stretch or shrink available:

\hbox to 5cm{\hskip Ocm plus 16384pt
text\hskip Ocm plus 0.0001fil}

has thetext at the extreme left of the box. There are three orders of ‘infinity’, each one
infinitely stronger than the previous one:

\hbox to 5cm{\hskip Ocm plus 16384fil
text\hskip Ocm plus 0.0001fill}

and

\hbox to 5cm{\hskip Ocm plus 16384fill
text\hskip Ocm plus 0.0001filll}

both have theext at the left end of the box.

68 Victor Eijkhout — EX by Topic

8.3. More about glue

8.3.2 Glue setting

In the process of ‘glue setting’, the desired width (or height) of a box is compared with the
natural dimension of its contents, which is the sum of all natural dimensions of boxes and
globs of glue. If the two differ, any available stretchability or shrinkability is used to bridge
the gap. To attain the desired dimension of the box only the glue of the highest available
order is set: each piece of glue of that order is stretched or shrunk by the same ratio.

For example, in

\hbox to 6pt{\hskip Opt plus 3pt \hskip Opt plus 9pt}

the natural size of the box Bpt, and the total stretch is2pt. In order to obtain a box
of 6pt each glue item is set with a stretch ratiolgR. Thus the result is equivalent to

\hbox {\hskip 1.5pt \hskip 4.5pt}

Only the highest order of stretch or shrink is used: in

\hbox to 6pt{\hskip Opt plus 1fil \hskip Opt plus 9pt}

the second glue will assume its natural sizeépt, and only the first glue will be stretched.
TeX will never exceed the maximum value of a finite amount of shrink. A box that cannot
be shrunk enough is called ‘overfull’. Finite stretchability can be exceeded to provide an

escape in difficult situations; howevepXis likely to give anUnderfull \hbox message
about this (see pafe]42). For an example of infinite shrink seq page 41.

8.3.3 Badness

When stretching or shrinking a lisgX calculates badness based on the ratio between actual
stretch and the amount of stretch present in the line. See Chapter 19 for the application of
badness to the paragraph algorithm.

The formula for badness of a list that is stretched (shrunk) is

3
b — min (10 000, 100 x < actual amount stretched (shrunk))

possible amount of stretch (shrink)

In reality TeX uses a slightly different formula that is easier to calculate, but behaves the
same. Since glue setting is one of the main activitiesgX, This must be performed as
efficiently as possible.

This formula lets the badness be a reasonably small number if the glue set ratio (the fraction
in the above expression) is reasonably small, but will let it grow rapidly once the ratio is
more than 1. Badness is infinite if the glue would have to shrink more than the allotted
amount; stretching glue beyond its maximum is possible, so this provides an escape for
very difficult lines of text or pages.

In TEX3, the\badness parameter records the badness of the most recently formed box.

8.3.4 Glue and breaking

TeX can break lines and pages in several kinds of places. One of these places is before a
glue item. The glue is then discarded. For line breaks this is treated in Chapter 19, for page
breaks see Chapter|27.

There are two macros in plairgX, \hglue and\vglue, that give non-disappearing glue
in horizontal and vertical mode respectively. For the horizontal case this is accomplished
by placing:

Victor Eijkhout — EX by Topic 69

Chapter 8. Dimensions and Glue

\vrule width Opt \nobreak \hskip ...

Because gX breaks at the front end of glue, this glue will always stay attached to the
rule, and will therefore never disappear. The actual macro definitions are somewhat more
complicated, because they take care to preservesdpecefactor and the\prevdepth.

8.3.5 \kern

The \kern command specifies a kern item in whatever mogk€ i€ currently in. A kern
item is much like a glue item without stretch or shrink. It differs from glue in that it is in
general not a legal breakpoint. Thus in

. text .. \hbox{a}\kernOpt\hbox{b}

TeX will not break lines in between the boxes; in
. text .. \hbox{a}\hskipOpt\hbox{b}

a line can be broken in between the boxes.

However, if a kern is followed by glue 2K can break at the kern (provided that it is not

in math mode). In horizontal mode both the kern and the glue then disappear in the break.
In vertical mode they are discarded when they are moved to the (empty) current page after
the material before the break has been disposed of by the output routine (see CHapter 27).

8.3.6 Glue and modes

All horizontal skip commands arghorizontal commany and all vertical skip commands
are(vertical commands. This means that, for instance, ®skip command makesgK
start a paragraph if it is given in vertical mode. T\i&rn command can be given in both
modes.

8.3.7 The last glue item in a list: backspacing

The last glue item in a list can be measured, and it can be removed in all modes but external
vertical mode. The internal variabl&3astskip and\lastkern can be used to measure

the last glob of glue in all modes; if the last glue was not a skip or kern respectively they
give Opt. In math mode th&lastskip functions as(internal muglug, but in general it
classifies aginternal glue. The\lastskip and\lastkern are alsopt if that was the

size of the last glue or kern item on the list.

The operation§unskip and\unkern remove the last item of a list, if this is a glue or kern
respectively. They have no effect in external vertical mode; in that case the best substitute
is \vskip-\lastskip and\kern-\lastkern.

In the process of paragraph buildingXTitself performs an importantunskip: a para-
graph ending with a white line will have a space token inserted@ysTinput processor.
This is removed by aNunskip before the\parfillskip glue (see Chaptgr [L7) is inser-
ted.

Glue is treated bygX as a special case of leaders, which becomes apparentwhekip
is applied to leaders: they are removed.

70 Victor Eijkhout — EX by Topic

8.3. More about glue

8.3.8 Examples of backspacing

The plain BX macro\removelastskip is defined as
\ifdim\lastskip=0Opt \else \vskip-\lastskip \fi

If the last item on the list was a glue, this macro will backspace by its value, provided its
natural size was not zero. In all other cases, nothing is added to the list.

Sometimes an intelligent version of commands suchvakip is necessary, in the sense
that two subsequent skip commands should result only in the larger of the two glue amounts.
On pag¢ 135 such a macro is used:

\newskip\tempskipa
\def\vspace#l1{\tempskipa=#1\relax
\ifvmode \ifdim\tempskipa<\lastskip
\else \vskip-\lastskip \vskip\tempskipa
\fi
\else \vskip\tempskipa \fi}
First of all, this tests whether the mode is vertical; if not, the argument can safely be placed.

Copying the argument into a skip register is necessary betadpace{2pt plus 3pt}
would lead to problems in axifdim#1<\lastskip test.

If the surrounding mode was vertical, the argument should only be placed if it is not less
than what is already there. The macro would be incorrect if the test read
\ifdim\tempskipa>\lastskip
\vskip-\lastskip \vskip\tempskipa
\fi
In this case the sequence
. last word.\par \vspace{Opt plus 1fil}

would not place any glue, because after tper we are in vertical mode andlastskip
has a value obpt.

8.3.9 Glue in trace output

If the workings of X are traced by settingtracingoutput positive, or if X writes a
box to the log file (because of\ahowbox command, or because it is overfull or underfull),
glue is denoted by the control sequenggue. This is not a X command; it merely
indicates the presence of glue in the current list.

The box representation thagX generated from, for instanc&showbox inserts a space
after every explicilkern, but no space is inserted after an implicit kern that was inserted
by the kerning information in the fonttm file. Thus\kern 2.0pt denotes a kern that was
inserted by the user or by a macro, anrn2.0pt denotes an implicit kern.

Glue that is inserted automaticallytopskip, \baselineskip, et cetera) is denoted by
name in EX’s trace output. For example, the box

\vbox{\hbox{Vo}\hbox{b}}

looks like

\vbox(18.83331+0.0)x11.66669
.\hbox(6.83331+0.0)x11.66669
..\tenrm V

Victor Eijkhout — EX by Topic 71

Chapter 8. Dimensions and Glue

..\kern-0.83334

..\tenrm o
.\glue(\baselineskip) 5.05556
.\hbox (6.94444+0.0)x5.55557
..\tenrm b

Note the implicit kern inserted between 'V’ and ‘0’.

72 Victor Eijkhout — EX by Topic

Chapter 9

Rules and Leaders

Rules and leaders are two ways of gettip 1o draw a line. Leaders are more general than
rules: they can also fill available space with copies of a certain box. This chapter explain
how rules and leaders work, and how they interact with modes.

\hrule Rule that spreads in horizontal direction.

\vrule Rule that spreads in vertical direction.

\leaders Fill a specified amount of space with a rule or copies of box.

\cleaders Like \leaders, but with box leaders any excess space is split equally before
and after the leaders.

\xleaders Like \leaders, but with box leaders any excess space is spread equally be-
fore, after, and between the boxes.

9.1 Rules

TeX's rule commands give rectangular black patches with horizontal and vertical sides.
Most of the times, a rule command will give output that looks like a rulefbcdn also be
produced by a rule.

TeX has both horizontal and vertical rules, but the names do not necessarily imply anything
about the shape. They do, however, imply something about modé&rafe command

can only be used in vertical mode, and\arule only in horizontal mode. In fact, an
\hrule is a(vertical commang and a\vrule is a (horizontal commangd so EX may
change modes when encountering these commands.

Why then is a\vrule called avertical rule? The reason is that\arule can expand
arbitrarily far in the vertical direction: if its height and depth are not specified explicitly it
will take as much room as its surroundings allow.

\hbox{\vrule\ text \vrule}
looks like
| text!
and
\hbox{\vrule\ A gogo! \vrule}
looks like
| A gogo!|
For the\hrule command a similar statement is true: a horizontal rule can spread to assume
the width of its surroundings. Thus

73

Chapter 9. Rules and Leaders

\vbox{\hbox{0One line of text}\hrule}
looks like
ne line of text

9.11 Rule dimensions

Horizontal and vertical rules have a default thickness:
\hrule isthe same as\hrule height.4pt depthOpt
and
\vrule isthe same as\vrule width.4pt
and if the remaining dimension remains unspecified, the rule extends in that direction to fill
the enclosing box.
Here is the formal specification of how to indicate rule sizes:

(vertical rulé — \vrule(rule specificatioh

(horizontal rulé — \hrule(rule specificatioh

(rule specificatioh — (optional spaces

| (rule dimensiongrule specificatioh

(rule dimensiolh — width(dimer) | height(dimen) | depth{(dimen

If a rule dimension is specified twice, the second instance takes precedence over the first.
This makes it possible to override the default dimensions. For instance, after

\let\xhrule\hrule \def\hrule{\xhrule height .8pt}

the macro\hrule gives a horizontal rule of double the original height, and it is still possi-
ble with

\hrule height 2pt
to specify other heights.

It is possible to specify all three dimensions; then

\vrule heightlex depthOpt widthlex

and

\hrule heightlex depthOpt widthlex

look the same. Still, each of them can be used only in the appropriate mode.

9.2 Leaders
Rules are intimately connected to modes, which makes it easy to obtain some effects. For
instance, a typical application of a vertical rule looks like
\hbox{\vrule widthipt\ Important text! \vrule width 1pt}
which gives
| Important text]|
However, one might want to have a horizontal rule in horizontal mode for effects such as

— 5cm —
from here to there

74 Victor Eijkhout — EX by Topic

9.2. Leaders

An \hrule can not be used in horizontal mode, and a vertical rule will not spread automa-
tically.

However, there is a way to use ghrule command in horizontal mode and\arule in

vertical mode, and that is with ‘leaders’, so called because they lead your eye across the
page. A leader command tellgX to fill a specified space, in whatever mode it is in, with

as many copies of some box or rule specification as are needed. For instance, the above
example was given as

\hbox to b5cm{from here\leaders\hrule\hfil to there}
that is, with an\hrule that was allowed to stretch along shfil. Note that the leader
was given a horizontal skip, corresponding to the horizontal mode in which it appeared.
A general leader command looks like

(leader$(box or rulg (vertical/horizontal/mathematical skip

where (leader$ is \leaders, \cleaders, or \xleaders, a (box or rule is a (box),
\vrule, or \hrule, and the lists of horizontal and vertical skips appear in Chdpter 6;
a mathematical skip is either a horizontal skip or\aiskip (see pagf 172). Leaders can
thus be used in all three modes. Of course, the appropriate kind of skip must be specified.

A horizontal (vertical) box containing leaders has at least the height and depth (width) of
the (box or rulg used in the leaders, even if, as can happen in the case of box leaders, no
actual leaders are placed.

9.2.1 Rule leaders

Rule leaders fill the specified amount of space with a rule extending in the direction of the
skip specified. The other dimensions of the resulting rule leader are determined by the sort
of rule that is used: either dimensions can be specified explicitly, or the default values can
be used.
For instance,
\hbox{g\leaders\hrule\hskip20pt £}
gives

g f
because a horizontal rule has a default height4gftc. On the other hand,
\hbox{g\leaders\vrule\hskip20pt f}
gives

olf
because the height and depth of a vertical rule by default fill the surrounding box.
Spurious rule dimensions are ignored: in horizontal mode
\leaders\hrule width 10pt \hskip 20pt
is equivalent to
\leaders\hrule \hskip 20pt

If the width or height-plus-depth of either the skip or the box is negatjd€ uses ordinary
glue instead of leaders.

Victor Eijkhout — EX by Topic 75

Chapter 9. Rules and Leaders

9.2.2 Boxleaders
Box leaders fill the available spaces with copies of a given box, instead of with a rule.

For all of the following examples, assume that a box register has been allocated:
\newbox\centerdot \setbox\centerdot=\hbox{\hskip.7em.\hskip.7em}
Now the output of
\hbox to 8cm {here\leaders\copy\centerdot\hfil there}
is
here there
That is, copies of the box register fill up the available space.
Dot leaders, as in the above example, are often used for tables of contents. In such appli-

cations it is desirable that dots on subsequent lines are vertically aligned.1&héers
command does this automatically:

\hbox to 8cm {here\leaders\copy\centerdot\hfil there}
\hbox to 8cm {over here\leaders\copy\centerdot\hfil over there}

gives
here e there
over here overthere

The mechanism behind this is the followingXTacts as if an infinite row of boxes starts
(invisibly) at the left edge of the surrounding box, and the row of copies actually placed is
merely the part of this row that is not obscured by the other contents of the box.

Stated differently, box leaders are a window on an infinite row of boxes, and the row starts
at the left edge of the surrounding box. Consider the following example:

\hbox to 8cm {\leaders\copy\centerdot\hfil}
\hbox to 8cm {word\leaders\copy\centerdot\hfil}

which gives

word e,
The row of leaders boxes becomes visible as soon as it does not coincide with other mate-
rial.

The above discussion only talked about leaders in horizontal mode. Leaders can equally
well be placed in vertical mode; for box leaders the ‘infinite row’ then starts at the top of
the surrounding box.

9.2.3 Evenly spaced leaders

Aligning subsequent box leaders in the way described above means that the white space
before and after the leaders will in general be different. If vertical alignment is not an issue
it may be aesthetically more pleasing to have the leaders evenly spacedcTidalers
command is like\1leaders, except that it splits excess space before and after the leaders
into two equal parts, centring the row of boxes in the available space.

\hbox to 7.8cm {here\cleaders\copy\centerdot\hfil there}
\hbox to 7.8cm {here is\cleaders\copy\centerdot\hfil there}
gives

76 Victor Eijkhout — EX by Topic

9.3. Assorted remarks

here there

hereis there
The ‘expanding leader&’x1leaders spread excess space evenly between
the boxes, with equal globs of glue before, after, and in between leader
boxes.

\hbox to 7.8cm{here\hskip.7em
\xleaders\copy\centerdot\hfil \hskip.7em there}
gives
here there
Note that the glue in the leader box is balanced here with explicit glue
before and after the leaders; leaving out these glue items, as in

\hbox to 7.8cm {here\xleaders\copy\centerdot\hfil there}
gives

here there
which is clearly not what was intended.

9.3 Assorted remarks
9.3.1 Rules and modes

Above it was explained how rules can only occur in the appropriate modes. Rules also in-
fluence mode-specific quantities: no baselineskip is added before rules in vertical mode. In
order to prevent glue after ruleg¥sets\prevdepth to -1000pt (see Chaptgr 15). Simi-

larly the\spacefactor is set to 1000 after gvrule in horizontal mode (see Chapfer] 19).

9.3.2 Ending a paragraph with leaders

An attempt to simulate axhrule at the end of a paragraph by
\nobreak\leaders\hrule\hfill\par

does not work. The reason for this is thgXTperforms an\unskip at the end of a para-
graph, which removes the leaders. Normally thiaskip removes any space token inser-
ted by the input processor after the last line. Remedy: stickh@ox{} at the end of the
leaders.

9.3.3 Leaders and box registers

In the above examples the leader box was inserted \witlpy. The output of

\hbox to 8cm {here\leaders\box\centerdot\hfil there}
\hbox to 8cm {over here\leaders\box\centerdot\hfil
over there}
is
here there
over here over there

The box register is emptied after the first leader command, but more than one copy is placed
in that first command.

Victor Eijkhout — EX by Topic 77

Chapter 9. Rules and Leaders

9.3.4 Outputin leader boxes

Any \write, \openout, or \closeout operation appearing in leader boxes is ignored.
Otherwise such an operation would be executed once for every copy of the box that would
be shipped out.

9.3.5 Boxleaders in trace output

The dumped box representation obtained from, for instaXieeacingoutput does not
write out box leaders in full: only the total size and one copy of the box used are dumped.
In particular, the surrounding white space before and after the leaders is not indicated.

9.3.6 Leaders and shifted margins

If margins have been shifted, leaders may look different depending on how the shift has
been realized. For an illustration of hdwiangindent and\leftskip influence the look

of leaders, consider the following examples, where

\setbox0=\hbox{K o }

The horizontal boxes above the leaders serve to indicate the starting point of the row of
leaders.

First

\hbox{\leaders\copyO\hskip5cm}
\noindent\advance\leftskip lem
\leaders\copyO\hskip5cm\hbox{}\par
gives
KoKoKoKoKoKoKoKo
KoKoKoKoKoKoKo
Then
\hbox{\kernlem\hbox{\leaders\copyO\hskip5cm}}
\hangindent=1em \hangafter=-1 \noindent
\leaders\copyO\hskip5cm\hbox{}\par
gives (note the shift with respect to the previous example)
KoKoKoKoKoKoKoKo
KoKoKoKoKoKoKoKo
In the first paragraph theleftskip glue only obscures the first leader box; in the second
paragraph the hanging indentation actually shifts the orientation point for the row of lea-
ders. Hanging indentation is performed XTby a \moveright of the boxes containing
the lines of the paragraph.

78 Victor Eijkhout — EX by Topic

Chapter 10

Grouping

TeX has a grouping mechanism that is able to confine most changes to a particular locality.
This chapter explains what sort of actions can be local, and how groups are formed.
\bgroup Implicit beginning of group character.

\egroup Implicit end of group character.

\begingroup Open a group that must be closed wigndgroup.

\endgroup Close a group that was opened witbegingroup.

\aftergroup Save the next token for insertion after the current group ends.

\global Make assignments, macro definitions, and arithmetic global.

\globaldefs Parameter for overridingglobal prefixes. InipX default: O.

10.1 The grouping mechanism

A group is a sequence of tokens starting with a ‘beginning of group’ token, and ending with
an ‘end of group’ token, and in which all such tokens are properly balanced.

The grouping mechanism ofX is not the same as the block structure of ordinary pro-
gramming languages. Most languages with block structure are only able to have local defi-
nitions. EX’s grouping mechanism is stronger: most assignments made inside a group are
local to that group unless explicitly indicated otherwise, and outside the group old values
are restored.

An example of local definitions
{\def\a{b}}\a

gives an ‘undefined control sequence’ message bedaLisenly defined inside the group.
Similarly, the code

\count0=1 {\count0=2 } \showthe\countO

will display the value 1; the assignment made inside the group is undone at the end of the
group.

Bookkeeping of values that are to be restored outside the group is done through the me-
chanism of the ‘save stack’. Overflow of the save stack is treated in Cliapter 35. The save

stack is also used for a few other purposes: in calls sucthiasx to 100pt{...} the
specificationto 100pt is put on the save stack before a new level of grouping is opened.

In order to prevent a lot of trouble with the save stack, gifiloes not allow dumping a
format inside a group. Theend command is allowed to occur inside a group, gt Will
give a diagnostic message about this.

79

Chapter 10. Grouping

The \aftergroup control sequence saves a token for insertion after the current group.
Several tokens can be set aside by this command, and they are inserted in the left-to-right
order in which they were stated. This is treated in Chdpter 12.

10.2 Local and global assignments

An assignment or macro definition is usually made global by prefixing it Wgtlobal, but
non-zero values of th@nteger paramet&iglobaldefs override\global specifications:
if \globaldefs is positive every assignment is implicitly prefixed witglobal, and if
\globaldefs is negative\global is ignored. Ordinarily this parameter is zero.

Some assignment are always global: {global assignmeis are

(font assignmenj assignments involvin§fontdimen, \hyphenchar, and\skewchar.
(hyphenation assignment \hyphenation and\patterns commands (see Chapfer 19).
(box size assignment altering box dimensions witkht, \dp, and\wd (see Chapter|5).
(interaction mode assignment run modes for agX job (see Chaptdr 32).

(intimate assignmen} assignments to &special integeror (special dimeji see pages

57 and 64,

10.3 Group delimiters

A group can be delimited by character tokens of category code 1 for ‘beginning of group’
and code 2 for ‘end of group’, or control sequence tokens thatlase to such characters,

the \bgroup and\egroup in plain TgX. Implicit and explicit braces can match to delimit

a group.

Groups can also be delimited Bypegingroup and \endgroup. These two control se-
quences must be used together: they cannot be matched with implicit or explicit braces,
nor can they function as the braces surrounding, for instance, boxed material.

Delimiting with \begingroup and \endgroup can provide a limited form of run-time
error checking. In between these two group delimiters an excess open or close brace would
resultin

\begingroup ... } ... \endgroup
or
\begingroup ... { ... \endgroup

In both casesgX gives an error message about improper balancing. Usitiagoup and
\egroup here would make an error much harder to find, because of the incorrect matching
that would occur. This idea is used in the environment macros of several formats.

The choice of the brace characters for the beginning and end of group characters is not
hard-wired in EX. It is arranged like this in the plain format:

\catcode‘\{=1 7 left brace is begin-group character
\catcode‘\}=2 ¥, right brace is end-group character

Implicit braces have also been defined in the plain format:
\let\bgroup={ \let\egroup=}
Special cases are the following:

80 Victor Eijkhout — EX by Topic

10.4. More about braces

° The replacement text of a macro must be enclosed in explicit beginning and end
of group character tokens.
. The open and close braces for boxesadjust, and\insert can be implicit.

This makes it possible to define, for instance
\def\openbox#1{\setbox#1=\hbox\bgroup}
\def\closebox#1{\egroup\box#1}
\openbox{15}Foo bar\closebox{15}

. The right-hand side of a token list assignment and the argument of the commands
\write, \message, \errmessage, \uppercase, \lowercase, \special, and
\mark is a(general text, defined as

(general text — (filler){(balanced tex{right brace

meaning that the left brace can be implicit, but the closing right brace must be an
explicit character token with category code 2.

In cases where an implicit left brace suffices, and where expansion is not explicitly inhi-
bited, X will expand tokens until a left brace is encountered. This is the basis for such
constructs aduppercase\expandafter{\romannumeral80}, which in this unexpan-

ded form do not adhere to the syntax. If the first unexpandable token is not a left prace T
gives an error message.

The grammar of gX (see Chapt6) usekeft brace and(right brace for explicit cha-
racters, thatis, character tokens, drahd} for possibly implicit characters, that is, control
sequences that have bedret to such explicit characters.

10.4 More about braces
10.4.1 Brace counters

TeX has two counters for keeping track of grouping levels:rtraster counteand theba-

lance counterBoth of these counters are syntactic counters: they count the explicit brace
character tokens, but are not affected by implicit braces (sushg@sup) that are seman-
tically equivalent to an explicit brace.

The balance counter handles braces in all cases except in alignment. Its workings are intui-
tively clear: it goes up by one for every opening and down for every closing brace that is
not being skipped. Thus

\iffalse{\fi

increases the balance counter if this statement is merely scanned (for instance if it appears
in a macro definition text); if this statement is executed the brace is skipped, so there is no
effect on the balance counter.

The master counter is more tricky; it is used in alignments instead of the balance counter.
This counter records all braces, even when they are skipped suchia&fiul se{\fi. For

this counter uncounted skipped braces are still possible: the alphabetic conftants }

have no effect on this counter when they are use by the execution processouasoe};

they do affect this counter when they are seen by the input processor (which merely sees
characters, and not the context).

10.4.2 The brace as a token

Explicit braces are character tokens, and as such they are unexpandable. This implies that
they survive until the last stages i processing. For example,

Victor Eijkhout — EX by Topic 81

Chapter 10. Grouping

\count255=1{2}

will assign 1 to\count255, and print ‘2’, because the opening brace functions as a deli-
miter for the number 1. Similarly

f{f}

will prevent eX from forming an ‘ff’ ligature.

From the fact that braces are unexpandable, it follows that their nesting is independent of
the nesting of conditionals. For instance

\iftrue{\else}\fi

will give an open brace, as conditionals are handled by expansion. The closing brace is
simply skipped as part of thigalse tex}; any consequences it has for grouping only come
into play in a later stage ofgK processing.

Undelimited macro arguments are either single tokens or groups of tokens enclosed in
explicit braces. Thus it is not possible for an explicit open or close brace to be a macro
argument. However, braces can be assigned \iigt, for instance as in

\let\bgroup={
This is used in the plainfootnote macro (see page 101).

10.4.3 Open and closing brace control symbols

The control sequenced and\} do not really belong in this chapter, not being concerned
with grouping. They have been defined withet as synonyms of1brace and\rbrace
respectively, and these control sequences @@ imiter instructions (see Chapfer|21).

The Computer Modern Roman font has no braces, but there are braces in the typewriter
font, and for mathematics there are braces of different sizes — and extendable ones —in the
extension font.

82 Victor Eijkhout — EX by Topic

Chapter 11

Macros

Macros are EX’s abbreviation mechanism for sequences of commands that are needed
more than once, somewhat like procedures in ordinary programming languglisspd-
rameter mechanism, however, is quite unusual. This chapter explains @owndcros

work. It also treats the commaniset and\futurelet.

\def Start a macro definition.

\gdef Synonym for\global\def.

\edef Start a macro definition; the replacement text is expanded at definition time. This
command is treated also in the next chapter.

\xdef Synonym for\global\edef.

\csname Start forming the name of a control sequence.

\endcsname Stop forming the name of a control sequence.

\global Make the next definition, arithmetic statement, or assignment global.

\outer Prefix indicating that the macro being defined can be used on the ‘outer’ level
only.

\long Prefix indicating that the arguments of the macro being defined may comptain
tokens.

\let Define a control sequence to be equivalent to the next token.

\futurelet Define a control sequence to be equivalent to the token after the next token.

11.1 Introduction

A macro is basically a sequence of tokens that has been abbreviated into a control sequence.
Statements starting with (among othexagf are callednacro definitionsand writing
\def\abc{\de f\g}

defines the macrdabc, with the replacement textde f\g. Macros can be used in this

way to abbreviate pieces of text or sequences of commands that have to be given more than
once. Any time that @X's expansion processor encounters the control sequestee, it
replaces it by the replacement text.

If a macro should be sensitive to the context where it is used, it can be defined with para-
meters:

\def\PickTwo#1#2{(#1,#2)}

takes two arguments and reproduces them in parentheses. Th@alTwo 12 gives
‘1,2).

The activity of substituting the replacement text for a macro is cafladro expansion

83

Chapter 11. Macros

11.2

Layout of a macro definition

A macro definition consists of, in sequence,

1.
2.
3.
4

5.

any number okglobal, \long, and\outer prefixes,

a(def) control sequence, or anything that has bgesat to one,

a control sequence or active character to be defined,

possibly aparameter textspecifying among other things how many parameters
the macro has, and

a replacement text enclosed in explicit character tokens with category codes 1
and 2, by defaul{ and} in plain TeX.

The ‘expanding’ definitiondedef and\xdef are treated in Chaptprj12.

11.3

Prefixes

There are three prefixes that alter the status of the macro definition:
\global If the definition occurs inside a group, this prefix makes the definition global.

\outer

This prefix can also be used for assignments other than macro definitions; in fact,
for macro definitions abbreviations exist obviating the usggafobal:

\gdef\foo... isequivalentto \global\def\foo...
and

\xdef\foo... Iisequivalentto \global\edef\foo...
If the parametehglobaldefs is positive, all assignments are implicitly global;
if \globaldefs is negative anj\global prefixes are ignored, antkdef and
\xdef make local definitions (see Chapftef 10).
The mechanism of ‘outer’ macros is supposed to facilitate locating (among other
errors) unbalanced braces: ®uter macro is supposed to appear only in non-
embedded contexts. To be precise, it is not allowed to occur
e in macro replacement texts (but it can appear in for instaveeef after
\noexpand, and afteAmeaning),
in parameter texts,
in skipped conditional text,
in alignment preambles, and
in the (balanced tejtof a \message, \write, et cetera.
For certain applications, however, it is inconvenient that some of the plain macros
are outer, in particular macros such\agwskip. One remedy is to redefine them,
without the ‘outer’ option, which is done for instance #igX, but cleverer tricks
are possible.

\long Ordinarily, macro parameters are not supposed to coRtaintokens. This restric-

84

tion is useful (much more so than theuter definitions) in locating forgotten
closing braces. For examplegX will complain about a ‘runaway argument’ in
the following sequence:

\def\a#1{ ... #1 ... }
\a {This sentence should be in braces.

And this is not supposed to be part of the argument

The empty line generates\a@ar, which most of the times means that a closing
brace has been forgotten.

Victor Eijkhout — EX by Topic

11.4. The definition type

If arguments to a particular macro should be allowed to conipéir tokens, then
the macro must be declared to Yiong.

The \ifx test for equality of tokens (see Chapftel 13) takes prefixes into account when
testing whether two tokens have the same definition.

11.4 The definition type

There are four{def) control sequences ingX: \def, \gdef, \edef, and \xdef. The
control sequenc&gdef is a synonym for\global\def and \xdef is a synonym for
\global\edef. The ‘expanding definitior\edef is treated in Chaptér 12.

The difference between the various types of macro definitions is only relevant at the time
of the definition. When a macro is called there is no way of telling how it was defined.

11.5 The parameter text

Between the control sequence or active character to be defined and the opening brace of
the replacement text, @arameter textcan occur. This specifies whether the macro has
parameters, how many, and how they are delimited. (flagameter textcannot contain
explicit braces.

A macro can have at most nine parameters. A parameter is indicated by a parameter token,
consisting of a macro parameter character (that is, a character of category code 6, in plain
TeX #) followed by a digit1—9. For instance#6 denotes the sixth parameter of a macro.
Parameter tokens cannot appear outside the context of a macro definition.

In the parameter text, parameters must be numbered consecutively, starting at 1. A space
after a parameter token is significant, both in the parameter text and the replacement text.

Parameters can be delimited or undelimited. A parameter is called undelimited if it is fol-
lowed immediately by another parameter in tjparameter textor by the opening brace
of the replacement text; it is called delimited if it is followed by any other token.

The tokens (zero or more) that are substituted for a parameter when a macro is expanded
(or ‘called’) are called the ‘argument’ corresponding to that parameter.

11.5.1 Undelimited parameters

When a macro with an undelimited parameter, for instance a mefere with one para-
meter

\def\foo#1{ ... #1 ...}

is expanded,g@X scans ahead (without expanding) until a non-blank token is found. If this
token is not an explici{left brace, it is taken to be the argument corresponding to the
parameter. Otherwise(@alanced textis absorbed by scanning until the matching explicit
(right brace has been found. This balanced text then constitutes the argument.

An example with three undelimited parameters follows: with
\def\foo#1#2#3{#1 (#2)#3}

the macro cal\foo123 gives ‘1(2)3’; but\foo 1 2 3 also gives the same result. In the
call

Victor Eijkhout — EX by Topic 85

Chapter 11. Macros

\foo1.,2,,3

the first space is skipped in the input processorgX.TThe argument corresponding to
the first parameter is then the In order to find the second parametgXThen skips all
blanks, in this case exactly one. As second paramebérfifds then the2. Similarly the
third parameter i8.

In order to pass several tokens as one undelimited argument one can use braces. With the
above definition of\foo the call\foo a{bcl}d gives ‘a(bc)d’. When the argument of a
macro is a balanced text instead of a single token, the delimiting braces are not inserted
when the argument is inserted in the replacement text. For example:

\def\foo#1{\countO=1#1\relax}
\foo{23}

will expand to\count0=123\relax, which assigns the value of 123 to the counter. On
the other hand, the statement

\count0=1{23}
would assign 1 and print 23.

11.5.2 Delimited parameters

Apart from enclosing it in braces there is another way to pass a sequence of tokens as a
single argument to a macro, namely by using delimited parameters.

Any non-parameter tokens in tifparameter textoccurring after a macro parameter (that

is, after the parameter number following the parameter character) act as a delimiter for
that parameter. This includes space tokens: a space after a parameter number is significant.
Delimiting tokens can also occur between the control sequence being defined and the first
parameter token1.

Character tokens acting as delimiters in the parameter text have both their character code
and category code stored; the delimiting character tokens of the actual arguments have to
match both. Category codes of such characters may include some that can normally only
appear in special contexts; for instance, after the definition

\def\foo#1_#2"{...}

the macro\foo can be used outside math mode.

When looking for the argument corresponding to a delimited paramegférafisorbs all
tokens without expansion (but balancing braces) until the (exact sequence of) delimiting

tokens is encountered. The delimiting tokens are not part of the argument; they are removed
from the input stream during the macro call.

11.5.3 Examples with delimited arguments

As a simple example,
\def\DoASentence#1#2. {{#1#2.}}

defines a macro with an undelimited first parameter, and a second parameter delimited by
a period. In the call

\DoASentence \bf This sentence is the argument.

the arguments are:

86 Victor Eijkhout — EX by Topic

11.5. The parameter text

#1<-\bf

#2<-This sentence is the argument

Note that the closing period is not in the argument, but it has been absorbed,; it is no longer
in the input stream.

A commonly used delimiter iSpar:

\def\section#1. #2\par{\medskip\noindent {\bf#1. #2\parl}}

This macro has a first parameter that is delimited hy,'and a second parameter that is
delimited by\par. The call

\section 2.5. Some title

The text of the sectiom...
will give

#1<-2.5

#2<-Some title,

Note that there is a space at the end of the second argument generated by the line end. If
this space is unwanted one might define

\def\section#l. #2 \par{...}

with | \par delimiting the second argument. This approach, however, precludes the user’s
writing the \par explicitly:

\section 2.5 Some title\par

One way out of this dilemma is to writ#2\unskip on all places in the definition text
where the trailing space would be unwanted.

Control sequences acting as delimiters need not be defined, as they are absorbed without
expansion. Thus

\def\control#1\sequence{...}

is a useful definition, even Ksequence is undefined.

The importance of category codes in delimited arguments is shown by the following exam-
ple:

\def\a#1 #2.{ ... }
\catcode‘\ =12

\a b c

d.

which gives

\a #1 #2.-> ..
#1<- b ¢
#2<-d

Explanation: the delimiter between parameters 1 and 2 is a space of category 10. In between
a andb there is a space of category 12; the first space of category 10 is the space that is
generated by the line end.

For a ‘real-life’ application of matching of category codes, see the explanativmesfi f
in Chaptef IB, and the example on ppage 13.

Victor Eijkhout — EX by Topic 87

Chapter 11. Macros

11.5.4 Empty arguments

If the user specifies éalanced textin braces whengX expects a macro argument, that
text is used as the argument. Thus, specifyihgvill give an argument that is an empty list
of tokens; this is called an ‘empty argument’.

Empty arguments can also arise from the use of delimited parameters. For example, after
the definition

\def\mac#1\ro{ ... }

the call

\mac\ro

will give an empty argument.

11.5.5 The macro parameter character

When EX’s input processor scans a macro definition text, it inserts a parameter token for
any occurrence of a macro parameter character followed by a digit. In effect, a parameter
token in the replacement text states ‘insert parameter number such and such here’. Two
parameter characters in a row are replaced by a single one.

The latter fact can be used for nested macro definitions. Thus

\def\a{\def\b#1{...}}

gives an error message becaugewas defined without parameters, and yet there is a
parameter token in its replacement text.

The following
\def\a#1{\def\b#1{...}}

defines a macria that defines a macrit. However\b still does not have any parameters:
the call

\a z

defines a macrdb without parameters, that has to be followed by.aNote that this
does not attempt to define a madnez, because the control sequengehas already been
formed in BX’s input processor when that input line was read.

Finally,

\def\a{\def\b##1{...}}

defines a macrdb with one parameter.

Let us examine the handling of the parameter character in some detail. Consider
\def\a#1{ .. #1 .. \def\b##1{ ... }}

When this is read as input, the input processor

. replaces the charactets by (parameter toker, and
. replaces the charactets by #

A macro call of\a will then let the input processor scan
\def\b#1{ ... }
in which the two charactenst are replaced by a parameter token.

88 Victor Eijkhout — EX by Topic

11.6. Construction of control sequences

11.5.6 Brace delimiting

Ordinarily, it is not possible to have left or right braces in tparameter textof a defini-
tion. There is a special mechanism, however, that can make the last parameter of a macro
act as if it is delimited by an opening brace.

If the last parameter token is followed by a parameter charag}ewhich in turn is fol-
lowed by the opening brace of the replacement tgxX makes the last parameter be de-
limited by a beginning-of-group character. Furthermore, unlike other delimiting tokens in
parameter texts, this opening brace is not removed from the input stream.

Consider an example. Suppose we want to have a Maeiery that can fill token lists as
follows:

\every par{abc} \every display{def}

This macro can be defined as

\def\every#1#{\csname every#1l\endcsname}

In the first call above, the argument corresponding to the paramet@icjsso the call
expands to

\csname everypar\endcsname{abc}

which gives the desired result.

11.6 Construction of control sequences

The commands$.csname and\endcsname can be used to construct a control sequence.
For instance

\csname hskip\endcsname 5pt

is equivalent to\hskip5pt.

During this construction process all macros and other expandable control sequences bet-
ween\csname and\endcsname are expanded as usual, until only unexpandable character
tokens remain. A variation of the above example,

\csname \ifhmode h\else v\fi skip\endcsname 5pt

performs an\hskip or \vskip depending on the mode. The final result of the expansion
should consist of only character tokens, but their category codes do not matter. An unex-
pandable control sequence gives an error hg2éwill insert an\endcsname right before

it as an attempt at error recovery.

With \csname it is possible to construct control sequences that cannot ordinarily be written,
because the constituent character tokens may have another category than 11, letter. This
principle can be used to hide inner control sequences of a macro package from the user.

\def\newcounter#1{\expandafter\newcount

\csname #1:counter\endcsname}
\def\stepcounter#1{\expandafter\advance

\csname #1:counter\endcsname 1\relax}
In the second definition theexpandafter is superfluous, but it does no
harm, and it is conceptually clearer.

The name of the actual counter created\hgwcounter contains a colon, so that it takes
some effort to write this control sequence. In effect, the counter is now hidden from the

Victor Eijkhout — EX by Topic 89

Chapter 11. Macros

user, who can only access it through control sequences sughtagcounter. By the
way, the macrdnewcount is defined\outer in the plain format, so the above definition
of \newcounter can only be written aftexnewcount has been redefined.

If a control sequence formed witsname. . . \endcsname has not been defined before,
its meaning is set threlax. Thus if\xx is an undefined control sequence, the command

\csname xx\endcsname

will not give an error message, as it is equivalerttelax. Moreover, after this execution
of the\csname. . . \endcsname Statement, the control sequenes is itself equivalent to
\relax, so it will no longer give an ‘undefined control sequence’ error (see alsq pape 103).

11.7 Token assignments bylet and \futurelet

There are twdlet assignmens in TeX. Their syntax is

\1let(control sequengéequal$(one optional spagétoken
\futurelet(control sequengétoker) (token

In the syntax of & futurelet assignment no optional equals sign appears.

11.7.1 \let

The primitive commandlet assigns the current meaning of a token to a control sequence
or active character.

For instance, in the plain formaendgraf is defined as
\let\endgraf=\par

This enables macro writers to redefikgar, while still having the functionality of the
primitive \par command available. For example,

\everypar={\bgroup\it\def\par{\endgraf\egroup}}

The case where thigoken to be assigned is not a control sequence but a character token
instead has been treated in Chapfer 3.

11.7.2 \futurelet

As was explained above, the sequence Witht
\let(control sequencétoken)(token,) (token;)(token - -)

assigns (the meaning offoken;) to the control sequence, and the remaining input stream
looks like

(token,) (token) (token - -)
That is, the(token) has disappeared from the stream.

The command futurelet works slightly differently: given the input stream
\futurelet(control sequengétoken) (tokern)(tokery)(token - -)

it assigns (the meaning offoken;) to the control sequence, and the remaining stream
looks like

(token,) (token) (token) (token - -)

90 Victor Eijkhout — EX by Topic

11.8. Assorted remarks

That is, neither(token) nor (tokern,) has been lifted from the stream. However, now
(token) ‘knows’ what (token) is, without having had to absorb it as a macro parame-
ter. See an example below.

If a character token has be&fiuturelet to a control sequence, its category code is fixed.
The subsequeritoken) cannot change it anymore.

11.8 Assorted remarks
11.8.1 Active characters

Character tokens of category 13, ‘active characters’, can be defined just like control se-
qguences. If the definition of the character appears inside a macro, the character has to be
active at the time of the definition of that macro.

Consider for example the following definition (taken from Chapter 2):

{\catcode‘\""M=13 %
\gdef\obeylines{\catcode‘\~"M=13 \def""M{\par}}’%
}

The unusual category of theM character has to be set during the definitionafeylines,
otherwise EX would think that the line ended aft&def.

11.8.2 Macros versus primitives

The distinction between primitive commands and user macros is not nearly as important in
TeX as it is in other programming languages.

° The user can use primitive commands under different names:
\let\StopThisParagraph=\par

. Names of primitive commands can be used for user macros:
\def\par{\hfill\bullet\endgraf}

. Both user macros and a number @XTprimitives are subject to expansion, for

instance all conditionals, and commands suchmasber and\ jobname.

11.8.3 Tail recursion

Macros in EX, like procedures in most modern programming languages, are allowed to
be recursive: that is, the definition of a macro can contain a call to this same macro, or to
another macro that will call this macro. Recursive macros tend to cluttegXip femory

if too many ‘incarnations’ of such a macro are active at the same time. Howgyeis T

able to prevent this in one frequently occurring case of recursion: tail recursion.

In order to appreciate what goes on here, some background knowledge is needed. When
TeX starts executing a macro it absorbs the parameters, and places an item pointing to
the replacement text on the input stack, so that the scanner will next be directed to this
replacement. Once it has been processed, the item on the input stack can be removed.
However, if the definition text of a macro contains further macros, this process will be
repeated for them: new items may be placed on the input stack directing the scanner to
other macros even before the first one has been completed.

Victor Eijkhout — EX by Topic 91

Chapter 11. Macros

In general this ‘stack build-up’ is a necessary evil, but it can be prevented if the nested
macro call is thelast token in the replacement text of the original macro. After the last
token no further tokens need to be considered, so one might as well clear the top item from
the input stack before a new one is put there. This is wgdtdbes.

The\loop macro of plain EX provides a good illustration of this principle. The definition
is

\def\loop#1\repeat{\def\body{#1}\iterate}
\def\iterate{\body \let\next=\iterate
\else \let\next=\relax\fi \next}

and this macro can be called for example as follows:

\loop \message{\number\MyCount}
\advance\MyCount by 1
\ifnum\MyCount<100 \repeat

The macro\iterate can call itself and, when it does so, the recursive call is performed
by the last token in the list. It would have been possible to defirerate as

\def\iterate{\body \iterate\fi}

but then BX would not have been able to resolve the recursion as tha cedirate is not

the last token in the replacement text\dfterate. Assigning\let\next=\iterate is
here a way to let the recursive call be the last token in the list.

Another way of resolving tail recursion is to usexpandafter (see pagg 118): in
\def\iterate{\body \expandafter\iterate\fi}

it removes th&fi token. Tail recursion would also be resolved if the last tokens in the list
were arguments for the recursive macro.

An aside: by definingiiterate as

\def\iterate{\let\next\relax
\body \let\next\iterate \fi \next}

it becomes possible to write
\loop ... \if... ... \else ... \repeat

11.9 Macro techniques
11.9.1 Unknown number of arguments

In some applications, a macro is needed that can have a number of arguments that is not
specified in advance.

Consider the problem of translating a position on a chess board (for full macros and fonts,
seel[37] and [47]), given like

\White(Kel,Qd1,Nal,e2,f4)

to a sequence of typesetting instructions

\WhitePiece{K}{el1} \WhitePiece{Q}{d1} \WhitePiece{N}{al}
\WhitePiece{P}{e2} \WhitePiece{P}{f4}

92 Victor Eijkhout — EX by Topic

11.9. Macro techniques

Note that for pawns the ‘P’ is omitted in the list of positions.

The first problem is that the list of pieces is of variable length, so we append a terminator
piece:

\def\White (#1) {\xWhite#1,6xxx,}

\def\endpiece{xxx}

for which we can test. Next, the mackaWhite takes one position from the list, tests
whether it is the terminator, and if not, subjects it to a test to see whether it is a pawn.

\def\xWhite#1,{\def\temp{#1}J
\ifx\temp\endpiece
\else \WhitePieceOrPawn#1XYY
\expandafter\xWhite
\fi}
An \expandafter command is necessary to remove tei (see pag¢ 118), so that
\xWhite will get the next position as argument instead\of.

Positions are either two or three characters long. The calltiatePieceOrPawn, a four-
parameter macro, appended a terminator s&ingn the case of a pawn, therefore, argu-
ment 3 is the charactérand argument 4 is empty; for all other pieces argument 1 is the
piece, 2 and 3 are the position, and argument¥ is

\def\WhitePieceOrPawn#1#2#3#4Y{
\if#3X \WhitePiece{P}{#1#2}Y
\else \WhitePiece{#1}{#2#3}\fi}

11.9.2 Examining the argument

It may be necessary in some cases to test whether a macro argument contains some element.
For a real-life example, consider the following (see also\thiesplayEquation example

on pag¢ 181).
Suppose the title and author of an article are given as

\title{An angle trisector}
\author{A.B. Cee\footnote*{Research supported by the
Very Big Company of Americal}l}

with multiple authors given as

\author{A.B. Cee\footnote*{Supported by NSF grant 1}
\and
X.Y. Zee\footnote{**}{Supported by NATO grant 2}}

Suppose further that thecitle and\author macros are defined as
\def\title#1{\def\TheTitle{#1}} \def\author#1{\def\TheAuthor{#1}}
which will be used as

\def\ArticleHeading{ ... \TheTitle ... \TheAuthor ... }

For some journals it is required to have the authorship and the title of the article in all
capitals. The implementation of this could be

Victor Eijkhout — EX by Topic 93

Chapter 11. Macros

\def\ArticleCapitalHeading
{ ...
\uppercase\expandafter{\TheTitle}

\uppercase\expandafter{\TheAuthor}

}
Now the\expandafter commands will expand the title and author into the actual texts,
and the\uppercase commands will capitalize them. However, for the authors this is
wrong, since thé\uppercase command will also capitalize the footnote texts. The pro-
blem is then to uppercase only the parts of the title in between the footnotes.
As a first attempt, let us take the case of one author, and let the basic call be
\expandafter\UCnoFootnote\TheAuthor
This expands into
\UCnoFootnote A.B. Cee\footnote*{Supported ... }
The macro

\def\UCnoFootnote#1\footnote#2#3{\uppercase{#1}\footnote{#2}{#3}}
will analyse this correctly:

#1<-A.B. Cee

#2<—%

#3<-Supported ...

However, if there is no footnote, this macro is completely wrong.

As a first refinement we add a footnote ourselves, just to make sure that one is present:

\expandafter\UCnoFootnote\TheAuthor\footnote 00
Now we have to test what kind of footnote we find:

\def\stopper{0}
\def\UCnoFootnote#1\footnote#2#3{\uppercase{#1}\def\tester{#21}/,
\ifx\stopper\tester
\else\footnote{#2}{#3}\fi}
With \ifx we test the delimiter footnote sign against the actual sign encountered. Note
that a solution with

\ifx0#2
would be wrong if the footnote sign consists of more than one token, for ins{asge

The macro so far is correct if there was no footnote, but if there was one it is wrong:
the terminating tokens remain to be disposed of. They are taken care of in the following
version:

\def\stopper{0}
\def\UCnoFootnote#1\footnote#2#3{\uppercase{#1}\def\tester{#21}/,
\ifx\stopper\tester
\else\footnote{#2}{#3}\expandafter\UCnoFootnote
\fi}

94 Victor Eijkhout — EX by Topic

11.9. Macro techniques

A repeated call td.UCnoFootnote removes the delimiter tokens (thexpandafter first
removes th&fi), and as an added bonus, this macro is also correct for multiple authors.

11.9.3 Optional macro parameters with\futurelet
One standard application &futurelet is implementing optional parameters of macros.
The general course of action is as follows:

\def\Com{\futurelet\testchar\MaybeOptArgCom}

\def\MaybeOptArgCom{\ifx[\testchar \let\next\OptArgCom
\else \let\next\NoOptArgCom \fi \next}

\def\OptArgCom[#1]#2{ ... }\def\NoOptArgCom#1{ ... }

Note that\ifx is used even though it tests for a character. The reason is of course that, if
the optional argument is omitted, there might be an expandable control sequence behind
the\Com.

The macro\Com how has one optional and one regular argument; it can be called as
\Com{argument}

or as

\Com[optional] {argument}

Often the call without the optional argument will insert some default value:
\def\NoOptArgCom#1{\OptArgCom [defaull {#1}}

This mechanism is widely used in formats such/@gX.and LAMSTEX; see also[[49].

11.9.4 Two-step macros

Often what looks to the user like one macro is in reality a two-step process, where one
macro will set up conditions, and a second macro will do the work.

As an example, here is a macyPickToEol with an argument that is delimited by the line
end. First we write a macro without arguments that changes the category code of the line
end, and then calls the second macro.

\def\PickToEol{\begingroup\catcode‘\""M=12 \xPickToEol}
The second macro can then take as an argument everything up to the end of the line:
\def\xPickToEol#1~"M{ ... #1 ... \endgroup}

There is one problem with this definition: theM character should have category 12. We
arrive at the following:

\def\PickToEol{\begingroup\catcode‘\""M=12 \xPickToEol}
{\catcode‘\""M=12 %

\gdef\xPickToEol#1""M{ ... #1 ... \endgroup}’

}

where the category code ofM is changed for the sake of the definition\ofPickToEol.

Note that the "M in \PickToEol occurs in a control symbol, so there the category code

is irrelevant. Therefore that definition can be outside the group where the category code of
~~Mis redefined.

Victor Eijkhout — EX by Topic 95

Chapter 11. Macros

11.9.5 A comment environment

As an application of the above idea of two-step macros, and in order to illustrate tail recur-
sion, here are macros for a ‘comment’ environment.

Often it is necessary to remove a part gKlinput temporarily. For this one would like to
write

\comment

\endcomment

The simplest implementation of this,

\def\comment#1\endcomment{}

has a number of weaknesses. For instance, it cannot cope with outer macros or input that
does not have balanced braces. Its worst shortcoming, however, is that it reads the complete

comment text as a macro argument. This limits the size of the comment to thgX'sf T
input buffer.

It would be a better idea to take on the out-commented text one line at a time. For this we
want to write a recursive macro with a basic structure

\def\comment#1~"M{ ... \comment }

In order to be able to write this definition at all, the category code of the line end must be
changed; as above we will have

\def\comment{\begingroup \catcode‘\""M=12 \xcomment}
{\catcode‘\""M=12 \endlinechar=-1 Y%
\gdef\xcomment#1~"M{ ... \xcomment}
}
Changing thé.endlinechar is merely to prevent having to put comment characters at the
end of every line of the definition.

Of course, the process must stop at a certain time. To this purpose we investigate the line
that was scooped up as macro argument:

{\catcode‘\""M=12 \endlinechar=-1 Y
\gdef\xcomment#1~"M{\def\test{#1}
\ifx\test\endcomment \let\next=\endgroup
\else \let\next=\xcomment \fi
\next}
}
and we have to defingendcomment:
\def\endcomment{\endcomment}
This command will never be executed: it is merely for purposes of testing whether the end
of the environment has been reached.

We may want to comment out text that is not syntactically correct. Therefore we switch to
a verbatim mode when commenting. The following macro is given in pigia T

\def\dospecials{\do\ \do\\\do\{\do\}\do\$\do\&%
\do\#\do\~"\do\""K\do_\do\~~A\do\%\do\"}

We use it to defin@comment as follows:

\def\makeinnocent#1{\catcode ‘#1=12 }
\def\comment{\begingroup

96 Victor Eijkhout — EX by Topic

11.9. Macro techniques

\let\do=\makeinnocent \dospecials

\endlinechar‘\""M \catcode‘\""M=12 \xcomment}
Apart from the possibility mentioned above of commenting out text that is not syntactically
correct, for instance because of unmatched braces, this solution can handle outer macros.

The former implementation dfxcomment would cause agX error if one occurred in the
comment text.

However, using verbatim mode poses the problem of concluding the environment. The
final line of the comment is now not the control sequexeedcomment, but the characters
constituting it. We have to test for these then:

{\escapechar=-1
\xdef\endcomment{\string\\endcomment}

}
The sequencgstring\\ gives a backslash. We could not have used
\edef\endcomment{\string\endcomment}

because the letters of the wosddcomment would then have category code 12, instead of
the 11 that the ones on the last line of the comment will have.

Victor Eijkhout — EX by Topic 97

Chapter 12

Expansion

Expansion in EX is rather different from procedure calls in most programming languages.
This chapter treats the commands connected with expansion, and gives a number of (non-
trivial) examples.

\relax Do nothing.

\expandafter Take the next two tokens and place the expansion of the second after the
first.

\noexpand Do not expand the next token.

\edef Start a macro definition; the replacement text is expanded at definition time.

\aftergroup Save the next token for insertion after the current group.

\afterassignment Save the next token for execution after the next assignment.

\the Expand the value of various quantities gXTinto a string of character tokens.

12.1 Introduction

TeX’s expansion processor accepts a stream of tokens coming out of the input processor,
and its result is again a stream of tokens, which it feeds to the execution processor. For
the input processor there are two kinds of tokens: expandable and unexpandable ones. The
latter category is passed untouched, and it contains largely assignments and typesettable
material; the former category is expanded, and the result of that expansion is examined
anew.

12.2 Ordinary expansion

The following list gives those constructs that are expanded, unless expansion is inhibited:

macros

conditionals

\number, \romannumeral

\string, \fontname, \ jobname, \meaning, \the

\csname ... \endcsname

\expandafter, \noexpand

\topmark, \botmark, \firstmark, \splitfirstmark, \splitbotmark
\input, \endinput

This is the list of all instances where expansion is inhibited:

98

12.3. Reversing expansion order

° when EX is reading a token to be defined by
— a(let assignment that is, by\let or \futurelet,
— a(shorthand definition that is, byAchardef or \mathchardef, or a(register
def), thatis,\\countdef, \dimendef, \skipdef, \muskipdef, Or \toksdef,
— a(definition), that is a macro definition withdef, \gdef, \edef, or \xdef,
— the(simple assignmejs \read and\font;
° when a(parameter textor macro arguments are being read; also when the re-
placement text of a control sequence being defineldwft, \gdef, or \read is
being read;
. when the token list for &oken variabl&or \uppercase, \lowercase, or\write
is being read; however, the token list forrite will be expanded later when it is
shipped out;
when tokens are being deleted during error recovery;
when part of a conditional is being skipped;
in two instances whengk has to know what follows
— after aleft quote in a context where that is used to denote an integer (thus in
\catcode ‘\a the\a is not expanded), or
— after a math shift character that begins math mode to see whether another
math shift character follows (in which case a display opens);
. when an alignment preamble is being scanned; however, in this case a token pre-
ceded by\span and the tokens in &tabskip assignment are still expanded.

12.3 Reversing expansion order

Every once in a while you need to change the normal order of expansion of tok&ns. T
provides several mechanisms for this. Some of the control sequences in this section are not
strictly concerned with expansion.

12.3.1 One step expansioryexpandafter

The most obvious tool for reversed expansion ord&eisgpandafter. The sequence
\expandafter(token)(token)

expands to
(token) (the expansion of tokeh

Note the following.

° If (token,) is a macro, it is replaced by its replacement text, not by its final expan-
sion. Thus, if
\def\tokentwo{\ifsomecondition this \else that \fi}
\def\tokenone#1{ ... }
the call
\expandafter\tokenone\tokentwo
will give \ifsomecondition as the parameter ftokenone:
\tokenone #1-> ...
#1<-\ifsomecondition

° If the \tokentwo iS a macro with one or more parameters, sufficiently many sub-
sequent tokens will be absorbed to form the replacement text.

Victor Eijkhout — EX by Topic 99

Chapter 12. Expansion

12.3.2 Total expansioniedef

Macros are usually defined Bydef, but for the cases where one wants the replacement
text to reflect current conditions (as opposed to conditions at the time of the call), there is
an ‘expanding define'\edef, which expands everything in the replacement text, before
assigning it to the control sequence.

\edef\modedef{This macro was defined in

‘\ifvmode verticallelse \ifmmode math

\else horizontal\fi\fi’ mode}

The mode tests will be executed at definition time, so the replacement
text will be a single string.
As a more useful example, suppose that in a file that wil heput the
category code of the will be changed. One could then write
\edef\restorecat{\catcode‘@=\the\catcode‘@}
at the start, and
\restorecat
at the end. See pafe 109 for a fully worked-out version of this.

Contrary to the ‘one step expansion’ \xdxpandafter, the expansion inside aredef is
complete: it goes on until only unexpandable character and control sequence tokens remain.
There are two exceptions to this total expansion:

any control sequence preceded\apexpand is not expanded, and,

if \sometokenlist is atoken list, the expression

\the\sometokenlist

is expanded to the contents of the list, but the contents are not expanded any further
(see Chaptdr 14 for examples).

On certain occasions thedef can conveniently be abused, in the sense that one is not in-
terested in defining a control sequence, but only in the result of the expansion. For example,
with the definitions

\def\othermacro{\ifnum1>0 {this}\else {that}\fi}
\def\somemacro#i{ ... }

the call

\expandafter\somemacro\othermacro

gives the parameter assignment

#1<-\ifnum

This can be repaired by calling
\edef\next{\noexpand\somemacro\othermacro}\next

Conditionals are completely expanded inside\atdef, so the replacement text Shext
will consist of the sequence

\somemacro{this}

and a subsequent call tmext executes this statement.

12.3.3 \afterassignment

The command takes one token and sets it aside for insertion in the token stream after the
next assignment or macro definition. If the first assignment is of a box to a box register, the
token will be inserted right after the opening brace of the box (see[page 42).

100 Victor Eijkhout — EX by Topic

12.3. Reversing expansion order

Only one token can be saved this way; a subsequent token saved tyrassignment
will override the first.

Let us consider an example of the usé\afterassignment. It is often desirable to have
a macro that will

o assign the argument to some variable, and then
° do a little calculation, based on the new value of the variable.

The following example illustrates the straightforward approach:
\def\setfontsize#1{\thefontsize=#1pt\relax

\baselineskip=1.2\thefontsize\relax}
\setfontsize{10}
A more elegant solution is possible usiNgfterassignment:
\def\setbaselineskip

{\baselineskip=1.2\thefontsize\relax}

\def\fontsize{\afterassignment\setbaselineskip

\thefontsize}
\fontsize=10pt
Now the macro looks like an assignment: the equals sign is even optional. In reality its ex-
pansion ends with a variable to be assigned to. The control seqeatiaselineskip
is saved for execution after the assignmenittbhefontsize.

Examples of\afterassignment in plain TeX are the\magnification and\hglue ma-
cros. See[31] for another creative application of this command.

12.3.4 \aftergroup

Several tokens can be saved for insertion after the current group with an
\aftergroup(token
command. The tokens are inserted after the group in the sequencefthwergroup com-

mands were given in. The group can be delimited either by implicit or explicit braces, or
by \begingroup and\endgroup.

{\aftergroup\a \aftergroup\b}

is equivalent to

\a \b
This command has many applications. One can be found intteetvcenter macro on
pagq 11ID; another one is provided by the footnote mechanism of pigin T

The footnote command of plairgX has the layout

\footnote(footnote symbdK (footnote text}
which looks like a macro with two arguments. However, it is undesirable to scoop up the
footnote text, since this precludes for instance category code changes in the footnote.
What happens in the plain footnote macro is (globally) the following.

. The\footnote command opens an insert,
\def\footnote#1{ ...#1... Ytreat the footnote sign
\insert\footins\bgroup
. In the insert box a group is opened, and\aiftergroup command is given to
close off the insert properly:
\bgroup\aftergroup\@foot

Victor Eijkhout — EX by Topic 101

Chapter 12. Expansion

This command is meant to wind up after the closing brace of the text that the user
typed to end the footnote text; the opening brace of the user’s footnote text must
be removed by
\let\next=}J),end of definition \footnote
which assigns the next token, the brace\dext.
. The footnote text is set as ordinary text in this insert box.
. After the footnote the comman@foot defined by
\def\@foot{\strut\egroup}
will be executed.

12.4 Preventing expansion

Sometimes it is necessary to prevent expansion in a place where it normally occurs. For
this purpose the control sequend@sring and\noexpand are available.

The use of\string is rather limited, since it converts a control sequence token into a string
of characters, with the value &kscapechar used for the character of category code 0. It
is eminently suitable for use inarrite, in order to output a control sequence name (see
also Chaptdr 30); for another application see the explanatidnesfif in Chaptef IB.

All characters resulting fromstring have category code 12, ‘other’, except for space
characters; they receive code 10. See also Chiapter 3.

12.4.1 \noexpand

The \noexpand command is expandable, and its expansion is the following token. The
meaning of that token is made temporarily equaltelax, so that it cannot be expanded
further.

For \noexpand the most important application is probably \edef commands (but in

write statements it can often replacetring). Consider as an example
\edef\one{\def\noexpand\two{\the\prevdepth}}

Without the\noexpand, TeX would try to expand\two, thus giving an ‘undefined control

sequence’ error.

A (rather pointless) illustration of the fact thatoexpand makes the following token ef-

fectively into a\relax is

\def\a{b}

\noexpand\a

This will not produce any output, because the effect of theexpand is to make the
control sequencka temporarily equal tdrelax.

12.4.2 \noexpand and active characters

The combination\noexpand(toker) is equivalent td\relax, even if the token is an active
character. Thus,

\csname\noexpand~\endcsname

102 Victor Eijkhout — EX by Topic

12.5. \relax

will not be the same aschar ¢\ ~. Instead it will give an error message, because unexpan-
dable commands — such 8selax — are not allowed to appear in betweetsname and
\endcsname. The solution is to uskstring instead; see page 109 for an example.

In another context, however, the sequeiaeexpand(active charactéris equivalent to
the character, but in unexpandable form. This is when the conditighaland\ifcat are
used (for an explanation of these, see Chdpter 13). Compare

\if\noexpand~\relax % is false

where the character code of the tilde is tested, with
\def\a{ ... } \if\noexpand\a\relax % is true
where two control sequences are tested.

12.5 \relax

The control sequencerelax cannot be expanded, but when it is executed nothing hap-
pens.
This statement sounds a bit paradoxical, so consider an example. Let counters

\newcount\MyCount
\newcount\MyOtherCount \MyOtherCount=2

be given. In the assignment
\MyCount=1\number\MyOtherCount3\relax4

the commandnumber is expandable, andrelax is not. When EX constructs the number
that is to be assigned it will expand all commands, either until a non-digit is found, or until
an unexpandable command is encountered. Thus it reads thexpands the sequence
\number\MyOtherCount, which gives2; it reads thes; it sees th\relax, and as this is
unexpandable it halts. The number to be assigned istbgnand the whole call has been
expanded into

\MyCount=123\relax4

Since the\relax token has no effect when it is executed, the result of this line isitb&t
is assigned tdMyCount, and the digit 4 is printed.

Another example of howrelax can be used to indicate the end of a command is

\everypar{\hskip Ocm plus 1fil }
\indent Later that day,

This will be misunderstood:gZX will see
\hskip Ocm plus 1fil L

andfil Lis a valid, if bizarre, way of writingfi11 (see Chaptgr 36). One remedy is to
write

\everypar{\hskip Ocm plus 1fil\relax}

12.5.1 \relax and \csname

Ifa \csname ... \endcsname command forms the name of a previously undefined con-
trol sequence, that control sequence is made equatdbax, and the whole statement is
also equivalent tarelax (see also page B9).

However, this assignment dtelax is only local:

Victor Eijkhout — EX by Topic 103

Chapter 12. Expansion

{\xdef\test{\expandafter\noexpand\csname xx\endcsnamel}}
\test

gives an error message for an undefined control sequence

Consider as an example tH8gX environments, which are delimited by
\begin{...} ... \end{...}
The begin and end commands are (in essence) defined as follows:

\def\begin#1{\begingroup\csname#1\endcsname}
\def\end#1{\csname end#1\endcsname \endgroup}

Thus, for the list environment the commandsist and\endlist are defined, but any
command can be used as an environment name, even if no correspdeding . has
been defined. For instance,

\begin{it} ... \end{it}
is equivalent to
\begingroup\it ... \relax\endgroup

See pagle 80 for the rationale behind usibggingroup and\endgroup instead of\bgroup
and\egroup.

12.5.2 Preventing expansion withrelax

Becausérelax cannot be expanded, a control sequence can be prevented from being ex-
panded (for instance in atedef or a\write) by making it temporarily equal terelax:

{\let\somemacro=\relax \write\outfile{\somemacro}}

will write the string \somemacro’ to an output file. It would write the expansion of the ma-
cro\somemacro (Or give an error message if the macro is undefined) if\the: statement
had been omitted.

12.5.3 TEXinserts a\relax

TeX itself inserts\relax on some occasions. For instanseelax is inserted if EX en-
counters anor, \else, or \fi while still determining the extent of the test.

\ifvoidl\else ... \fi

is changed into
\ifvoidl\relax \else ...\fi
internally.

Similarly, if one of the test§if, \ifcat is given only one comparand, as in
\ifl\else ...

a\relax token is inserted. Thus this test is equivalent to
\if1\relax\else ...

Another place whergrelax is used is the following. While a control sequence is being de-
fined in a(shorthand definition— that is, ®isterdef or \chardef or \mathchardef —
its meaning is temporarily made equahte1ax. This makes it possible to writechardef \foo=123\foo.

104 Victor Eijkhout — EX by Topic

12.6. Examples

12.5.4 The value of non-macros\the

Expansion is a precisely defined activity igXT The full list of tokens that can be expanded
was given above. Other tokens than those in the above list may have an ‘expansion’ in an
informal sense. For instance one may wish to ‘expand’\tb&€rindent into its value,
say20pt.

Converting the value of (among others) @mteger parametéra (glue parameter (dimen
parameteror a({token parametéiinto a string of character tokens is done by the expansion
processor. The commarkthe is expanded whenever expansion is not inhibited, and it
takes the value of various sorts of parameters. Its result (in most cases) is a string of tokens
of category 12, except that spaces have category code 10.

Here is the list of everything that can be prefixed withe.

(parameter) or (register) If the parameter or register is of type integer, glue, dimen or
muglue, its value is given as a string of character tokens; if it is of type token list
(for instance\everypar or \toks5), the result is a string of tokens. Box registers
are excluded here.

(codename(8-bit number) See pagg 27.

(special registel The integer registersprevgraf, \deadcycles, \insertpenalties
\inputlineno, \badness, \parshape, \spacefactor (only in horizontal mode),
or \prevdepth (only in vertical mode). The dimension registéysagetotal,
\pagegoal, \pagestretch, \pagefilstretch, \pagefillstretch, \pagefilllstretch,
\pageshrink, or \pagedepth.

Font properties: \fontdimen(parameter numbgffont), \skewchar(font), \hyphenchar(font).

Last quantities: \lastpenalty, \lastkern, \lastskip.

(defined charactety Any control sequence defined Byhardef or \mathchardef; the
result is the decimal value.

In some casesthe can give a control sequence token or list of such tokens.

(font) The result is the control sequence that stands for the font.
(token variable) Token list registers an¢token parametgs can be prefixed withthe;
the result is their contents.

Let us consider an example of the uséehe. If in a file that is to bé\input the category
code of a character, say the at sign, is changed, one could write

\edef\restorecat{\catcode‘@=\the\catcode‘@}

and call\restorecat at the end of the file. If the category code was\dgstorecat is
defined equivalent to

\catcode ‘@=11
See pagp 109 for more elaborate macros for saving and restoring catcodes.

12.6 Examples
12.6.1 Expanding after

The most obvious use dkxpandafter is to reach over a control sequence:

\def\stepcounter
#1{\expandafter\advance\csname
#1:counter\endcsname 1\relax}
\stepcounter{foo}

Victor Eijkhout — EX by Topic 105

Chapter 12. Expansion

Here thé\expandafter lets the\csname command form the control sequeng®o: counter;
after\expandafter is finished the statement has reduced to

\advance\foo:counter 1\relax
Itis possible to reach over tokens other than control sequences: in
\uppercase\expandafter{\romannumeral \year}

it expands\romannumeral on the other side of the opening brace.

You can expand after two control sequences:

\def\globalstepcounter
#1{\expandafter\global\expandafter\advance
\csname #1:counter\endcsname 1\relax}

If you think of \expandafter as reversing the evaluation ordertefo control sequences,
you can reverséiree by

\expandafter\expandafter\expandafter\a\expandafter\b\c
which reaches across the three control sequences

\expandafter \a \b
to expand\c first.

There is even an unexpected useXekpandafter in conditionals; with
\def\bold#1{{\bf #1}}

the sequence

\ifnum1>0 \bold \fi {word}

will not give a boldface ‘word’, but

\ifnum1>0 \expandafter\bold \fi {word}

will. The \expandafter lets TEX see the\fi and remove it before it tackles the macro
\bold (see also pade I]18).

12.6.2 Defining inside ar\edef

There is one gX command that is executed instead of expanded that is worth pointing out
explicitly: the primitive commanddef (and all otherdefy commands) is not expanded.
Thus the call

\edef\next{\def\thing{text}}

will give an ‘undefined control sequence’ fothing, even though aftexdef expansion is
ordinarily inhibited (see page P8). After

\edef\next{\def\noexpand\thing{text}}

the ‘meaning’ of\next will be

macro: \def \thing {text}

The definition
\edef\next{\def\noexpand\thing{text}\thing}

will again give an ‘undefined control sequence’ faihing (this time on its second occur-
rence), as it will only be defined whewmext is called, not whennext is defined.

106 Victor Eijkhout — EX by Topic

12.6. Examples

12.6.3 Expansion and\write

The argument token list ofwrite is treated in much the same way as the replacement text
of an\edef; that is, expandable control sequences and active characters are completely
expanded. Unexpandable control sequences are treatedrtiye as if they are prefixed

by \string.

Because of the expansion performed\y ite, some care has to be taken when outputting
control sequences witkwrite. Even more complications arise from the fact that the ex-
pansion of the argument &firite is only performed when it is shipped out. Here follows
a worked-out example.
Suppos@somecs is a macro, and you want to write the string

\def\othercs{the expansion ofsomecs}
to afile.

The first attempt is
\write\myfile{\def\othercs{\somecs}}
This gives an error ‘undefined control sequence’Xothercs, because thgwrite will
try to expand that token. Note that theomecs is also expanded, so that part is right.
The next attempt is
\write\myfile{\def\noexpand\othercs{\somecsl}}
This is almost right, but not quite. The statement written is
\def\othercs{expansion oksomecs}
which looks right.
However, writes — and the expansion of their argument — are not executed on the spot, but
saved until the part of the page on which they occur is shipped out (see Jhgpter 30). So, in
the meantime, the value 4komecs may have changed. In other words, the value written
may not be the value at the time therite command was given. Somehow, therefore, the
current expansion must be inserted in the write command.
The following is an attempt at repair:

\edef\act{\write\myfile{\def\noexpand\othercs{\somecs}}}
\act

Now the write command will be
\write\myfile{\def\othercs{value of \somecs}}

The\noexpand prevented thdedef from expanding th&othercs, but after the defini-
tion it has disappeared, so that execution of the write will again give an undefined control
sequence. The final solution is

\edef\act{\write\myfile
{\def \noexpand\noexpand \noexpand\othercs{\somecs}}}
\act

In this case the write command caused by the expansidaaf will be
\write\myfile{\def\noexpand\othercs{currentvalue of\somecs}

and the string actually written is
\def\othercs{current value of\somecs}

This mechanism is the basis for cross-referencing macros in several macro packages.

Victor Eijkhout — EX by Topic 107

Chapter 12. Expansion

12.6.4 Controlled expansion inside anedef

Sometimes you may need &adef to evaluate current conditions, but you want to expand
something in the replacement text only to a certain level. Suppose that

\def\a{\b} \def\b{c} \def\d{\e} \defl\e{f}

is given, and you want to defing as\a expanded one step, followed kg fully expanded.
The following works:

\edef\g{\expandafter\noexpand\a \d}

Explanation: thé\.expandafter reaches over thenoexpand to expand\a one step, after
which the sequencenoexpand\b is left.

This trick comes in handy when you need to construct a control sequenc& axitiAme
inside an\edef. The following sequence inside apdef
\expandafter\noexpand\csname name\endcsname

will expand exactly td\name, but not further. As an example, suppose
\def\condition{true}

has been given, then

\edef\setmycondition{\expandafter\noexpand
\csname mytest\condition\endcsname}

will let \setmycondition expand tO\mytesttrue.

12.6.5 Multiple prevention of expansion

As was pointed out above, prefixing a command Witldexpand prevents its expansion
in commands such agdef and\write. However, if a sequence of tokens passes through
more than one expanding command stronger measures are needed.

The following trick can be used: in order to protect a command against expansion it can be
prefixed with\protect. During the stages of processing where expansion is not desired
the definition of\protect is

\def\protect{\noexpand\protect\noexpand}

Later on, when the command is actually needgdotect is defined as
\def\protect{}

Why does this work? The expansion of

\protect\somecs

is at first

\noexpand\protect\noexpand\somecs

Inside an\edef this sequence is expanded further, and the subsequent expansion is
\protect\somecs

That is, the expansion is equal to the original sequence.

12.6.6 More examples with\relax

Above, a first example was given in whilrelax served to preventgK from scanning
too far. Here are some more examples, usinglax to bound numbers.

After

108 Victor Eijkhout — EX by Topic

12.6. Examples

\countdef\pageno=0 \pageno=1
\def\Par{\par\penalty2003}

the sequence

\Par\number\pageno

is misunderstood as

\par\penalty2001

In this case it is sufficient to define
\def\Par{\par\penalty200 }

as an{optional spackgis allowed to follow a number.

Sometimes, however, such a simple escape is not possible. Consider the definition
\def\ifequal#1#2{\ifnum#1=#2 1\else O\fil}

The question is whether the space afteis necessary, superfluous, or simply wrong. Calls
such as\ifequal{27}{28} that compare two numbers (denotations) will correctly give
or 0, and the space is necessary to prevent misinterpretation.

However\ifequal\somecounter\othercounter will give 1 if the counters are equal,
in this case the space could have been dispensed with. The solution that works in both cases
is

\def\ifequal#1#2{\ifnum#1=#2\relax 1\else O\fi}
Note that\relax is not expanded, so
\edef\foo{1l\ifequal\counta\countb}

will define \foo as either\relax1 or 10.

12.6.7 Example: category code saving and restoring

In many applications it is necessary to change the category code of a certain character
during the execution of some piece of code. If the writer of that code is also the writer of
the surrounding code, s/he can simply change the category code back and forth. However,
if the surrounding code is by another author, the value of the category code will have to be
stored and restored.

Thus one would like to write

\storecat@
. some code ...
\restorecat®@

or maybe
\storecat\},

for characters that are possibly a comment character (or ignored or invalid). The basic idea
is to define

\def\storecat#1{%
\expandafter\edef\csname restorecat#1\endcsname
{\catcode‘#1=\the\catcode ‘#1}}

so that, for instancé\storecat$ will define the single control sequencerestorecat$’
(one control sequence) as

\catcode‘$=3

Victor Eijkhout — EX by Topic 109

Chapter 12. Expansion

The macro\restorecat can then be implemented as

\def\restorecat#1{%
\csname restorecat#l\endcsname}

Unfortunately, things are not so simple.

The problems occur with active characters, because these are expanded insidashe ... \endcsname
pairs. One might be tempted to wrteoexpand#1 everywhere, but this is wrong. As was

explained above, this is essentially equal\telax, which is unexpandable, and will the-

refore lead to an error message when it appears bet\earame and\endcsname. The

proper solution is then to usestring#1. For the case where the argument was given as a

control symbol (for exampl&?), the escape character has to be switched off for a while.

Here are the complete macros. Wi orecat macro gives its argument a default category
code of 12.

\newcount\tempcounta 7% just a temporary
\def\csarg#1#2{\expandafter#1\csname#2\endcsname}
\def\storecat#1%
{\tempcountal\escapechar \escapechar=-1
\csarg\edef{restorecat\string#1}/,
{\catcode‘\string#l=
\the\catcode\expandafter ‘\string#1}/,
\catcode\expandafter ‘\string#1=12\relax
\escapechar\tempcounta}
\def\restorecat#1%
{\tempcounta\escapechar \escapechar=-1
\csname restorecat\string#1\endcsname
\escapechar\tempcounta}

12.6.8 Combining\aftergroup and boxes

At times, one wants to construct a box and immediately after it has been constructed to
do something with it. Th&aftergroup command can be used to put both the commands
creating the box, and the ones handling it, in one macro.

As an example, here is a mactoextvcenter which defines a variant of thevcenter
box (see page 1}2) that can be used outside math mode.

\def\textvcenter
{\hbox \bgroup$\everyvbox{\everyvbox{}%
\aftergroup$\aftergroup\egroup}\vcenter}

The idea is that the macro inseksbox {$, and that the matching} gets inserted by the
\aftergroup commands. In order to get the.f tergroup commands inside the box, an
\everyvbox command is used.

This macro can even be used witlileox specificatiop (see pagBS), for example
\textvcenter spread 8pt{\hbox{a}\vfil\hbox{bl}}
and because it is really just &hbozx, it can also be used in\&setbox assignment.

12.6.9 More expansion

There is a particular charm to macros that work purely by expansion. See the articles by
[11], [16], and [32].

110 Victor Eijkhout — EX by Topic

Chapter 13

Conditionals

Conditionals are an indispensible tool for powerful macrgX fias a large repertoire of
conditionals for querying such things as category codes or processing modes. This chapter
gives an inventory of the various conditionals, and it treats the evaluation of conditionals in
detail.

\if Test equality of character codes.

\ifcat Test equality of category codes.

\ifx Test equality of macro expansion, or equality of character code and category code.
\ifcase Enumerated case statement.

\ifnum Test relations between numbers.

\ifodd Test whether a number is odd.

\ifhmode Test whether the current mode is (possibly restricted) horizontal mode.
\ifvmode Test whether the current mode is (possibly internal) vertical mode.
\ifmmode Test whether the current mode is (possibly display) math mode.
\ifinner Testwhether the current mode is an internal mode.

\ifdim Compare two dimensions.

\ifvoid Test whether a box register is empty.

\ifhbox Test whether a box register contains a horizontal box.

\ifvbox Test whether a box register contains a vertical box.

\ifeof Test for end of input stream or non-existence of file.

\iftrue A testthatis always true.

\iffalse A testthatis always false.

\fi Closing delimiter for all conditionals.

\else Select(false tex} of a conditional or default case &fifcase.

\or Separator for entries of i fcase.

\newif Create a new test.

13.1 The shape of conditionals

Conditionals in X have one of the following two forms

\if...(test token¥(true texj\fi
\if...(test tokeng(true tex}j\else(false texf\fi

where the(test tokens are zero or more tokens, depending on the particular conditional;
the (true tex} is a series of tokens to be processed if the test turns out true, arflite

111

Chapter 13. Conditionals

text) is a series of tokens to be processed if the test turns out false. Boftnubeext and
the (false text can be empty.

The exact process of howX expands conditionals is treated below.

13.2 Character and control sequence tests

Three tests exist for testing character tokens and control sequence tokens.

13.2.1 \if

Equality of character codes can be tested by
\if (token)(token)

In order to allow the tokens to be control sequenceX, dssigns character code 256 to
control sequences, the lowest positive number that is not the character code of a character
token (remember that the legal character codes are 0-255).

Thus all control sequences are equal as faridsis concerned, and they are unequal to all
character tokens. As an example, this fact can be used to define
\def\ifIsControlSequence#1{\if\noexpand#1i\relax}

which tests whether a token is a control sequence token instead of a character token (its
result is unpredictable if the argument i a. . } group).

After \if TpX will expand until two unexpandable tokens are obtained, so it is necessary
to prefix expandable control sequences and active charactersawitfipand when testing
them with\1if.
After
\catcode‘\b=13 \catcode‘\c=13 \def b{a} \def c{a} \let\d=a
we find that
\if bc is true, because bothandc expand toa,
\if\noexpand b\noexpand c is false, and
\if b\d is true because expands to the characterand\d
is an implicit character tokea.

13.2.2 \ifcat

The\if testignores category codes; these can be tested by
\ifcat(token)(token,)

This test is a lot like\if: TEX expands after it until unexpandable tokens remain. For this
test control sequences are considered to have category code 16 (ordinarily, category codes
are in the range 0-15), which makes them all equal to each other, and different from all
character tokens.

13.2.3 \ifx

Equality of tokens is tested in a stronger sense than the above by
\ifx(token)({token)

112 Victor Eijkhout — EX by Topic

13.3. Mode tests

° Character tokens are equal fetfx if they have the same character code and
category code.
. Control sequence tokens are equal if they represent the sgxhprimitive, or

have been similarly defined Byfont, \countdef, or some such. For example,
\let\boxhor=\hbox \ifx\boxhor\hbox %is true
\font\a=cmr10 \font\b=cmr10 \ifx\a\b %is true

. Control sequences are also equal if they are macros with the same parameter text
and replacement text, and the same status with respg&etiter and\long. For
example,
\def\a{z} \def\b{z} \def\ci{z} \def\d{\a}
\ifx\a\b %is true
\ifx\a\c %is false
\ifx\a\d %is false

Tokens following this test are not expanded.

By way of example of the use afifx consider string testing. A simple implementation of
string testing in EX is as follows:

\def\ifEqString#1#2{\def\testa{#1}\def\testb{#2}/
\ifx\testa\testb}

The two strings are used as the replacement text of two macros, and equality of these

macros is tested. This is about as efficient as string testing cangewill traverse the
definition texts of the macrostesta and\testb, which has precisely the right effect.

As another example, one can test whether a control sequence is defined by

\def\ifUnDefinedCs#1{\expandafter
\ifx\csname#1\endcsname\relax}

\ifUnDefinedCs{parindent} %is not true

\ifUnDefinedCs{undefined} %is (one hopes) true

This uses the fact that\a&csname . . . \endcsname command is equivalent tarelax if the
control sequence has not been defined before. Unfortunately, this test also turns out true if
a control sequence has begret to \relax.

13.3 Mode tests

In order to determine in which of the six modes (see Chaptep)Scurrently operating,
the testS\ifhmode, \ifvmode, \ifmmode, and\if inner are available.

° \ifhmode is true if TeX is in horizontal mode or restricted horizontal mode.
° \ifvmode is true if TEX is in vertical mode or internal vertical mode.
. \ifmmode is true if TeX is in math mode or display math mode.

The\ifinner testis true if X is in any of the three internal modes: restricted horizontal
mode, internal vertical mode, and non-display math mode.

13.4 Numerical tests

Numerical relations betwegmumbejfs can be tested with

Victor Eijkhout — EX by Topic 113

Chapter 13. Conditionals

\ifnum(numbes) (relatior) (numbes)

where the relation is a character=, or >, of category 12.

Quantities such as glue can be used as a number here through the conversion to scaled
points, and gX will expand in order to arrive at the twmumbejs.

Testing for odd or even numbers can be done Withodd: the test

\ifodd(numbe}

is true if the(numbey} is odd.

13.5 Other tests
13.5.1 Dimension testing

Relations betweefdimen) values (Chapt€r]|8) can be tested withtdim using the same
three relations as iRifnum.

13.5.2 Boxtests

Contents of box registers (Chapf¢r 5) can be tested with
\ifvoid(8-bit numbey

which is true if the register contains no box,
\ifhbox(8-bit numbey

which is true if the register contains a horizontal box, and
\ifvbox(8-bit numbey

which is true if the register contains a vertical box.

13.5.3 /O tests

The status of input streams (Chaptefr 30) can be tested with the end-of-filetest (numbe},
which is only false if the number is in the range 0-15, and the corresponding stream is open
and not fully read. In particular, this test is true if the file name connected to this stream
(through\openin) does not correspond to an existing file. See the example or] pape 213.

13.5.4 Case statement
The X case statement is calléd fcase; its syntax is

\ifcase(numbe}({casg)\or. ..\or(case)\else(other casesfi

where forn cases there arne — 1 \or control sequences. Each of ttease) parts can be
empty, and thaelse(other caséspart is optional.

114 Victor Eijkhout — EX by Topic

13.6. The\newif macro

13.5.5 Special tests

The tests\iftrue and\iffalse are always true and false respectively. They are mainly
useful as tools in macros.

For instance, the sequences

\iftrue{\else}\fi

and

\iffalse{\else}\fi

yield a left and right brace respectively, but they have balanced braces, so they can be used
inside a macro replacement text.

The\newif macro, treated below, provides another usa ifftrue and\iffalse. On
page 260 of thegX book these control sequences are also used in an interesting manner.

13.6 The\newif macro

The plain format defines an (outer) madwewif by which the user can define new con-
ditionals. If the user defines

\newif\iffoo

TeX defines three new control sequencegeotrue and\foofalse with which the user
can set the condition, and ffoo which tests the ‘foo’ condition.

The macro calknewif\iffoo expands to

\def\footrue{\let\iffoo=\iftrue} \def\foofalse{\let\iffoo=\iffalse}
\foofalse

The actual definition, especially the part that ensures thaXtti¢oo indeed starts with

\if, is a pretty hack. An explanation follows here. This uses concepts from Chapters 11
and12.

The macro\newif starts as follows:

\outer\def\newif#1{\count@\escapechar \escapechar\m@ne

This saves the current escape characteycibunt@, and sets the value Ofescapechar

to -1. The latter action has the effect that no escape character is used in the output of
\string(control sequenge

An auxiliary macro\i£@ is defined by

{\uccode‘1=‘i \uccode‘2=‘f \uppercase{\gdef\if@12{}}}

Since the uppercase command changes only character codes, and not category codes, the
macro\if@ now has to be followed by the charactersof category 12. Ordinarily, these
characters have category code 11. In effect this macro then eats these two characters, and
TpX complains if they are not present.

Next there is a macryeif defined by
\def\@if#1#2{\csname\expandafter\if@\string#1#2\endcsname}

which will be called like\@if\iffoo{true} and\@if\iffoo{false}.

Let us examine the calleif\iffoo{true}.

Victor Eijkhout — EX by Topic 115

Chapter 13. Conditionals

° The \expandafter reaches over th&if@ to expand\string first. The part
\string\iffoo expands taiffoo because the escape character is not printed,
and all characters have category 12.
The\if@ eats the first two charactets, 15 of this.
As a result, the final expansion §8if\iffoo{true} is then
\csname footrue\endcsname

Now we can treat the relevant parts\afewif itself:

\expandafter\expandafter\expandafter
\edef\@if#1{true}{\let\noexpand#1=\noexpand\iftruel}/,

The three\expandafter commands may look intimidating, so let us take one step at a
time.

. One \expandafter is necessary to reach over thedef, such that\eif will
expand:
\expandafter\edef\@if\iffoo{true}
gives
\edef\csname footrue\endcsname
. Then anothekexpandafter is necessary to activate thesname:

\expandafter \expandafter \expandafter \edef \Q@if ...
% new old new

° This makes the final expansion
\edef\footrue{\let\noexpand\iffoo=\noexpand\iftrue}

After this follows a similar statement for tifalse case:

\expandafter\expandafter\expandafter
\edef\@if#1{false}{\let\noexpand#1=\noexpand\iffalsel}

The conditional starts out false, and the escape character has to be reset:
\@if#1{false}\escapechar\count@}

13.7 Evaluation of conditionals

TeX's conditionals behave differently from those in ordinary programming languages. In
many instances one may not notice the difference, but in certain contexts it is important to
know precisely what happens.

When EX evaluates a conditional, it first determines what is to be tested. This in itself may
involve some expansion; as we saw in the previous chapter, only afterfantest does

TeX not expand. After all other testgX will expand tokens until the extent of the test and

the tokens to be tested have been determined. On the basis of the outcome of this test the
(true tex} and the(false tex} are either expanded or skipped.

For the processing of the parts of the conditional let us consider some cases separately.

° \if... ... \fi and the result of the test is false. After the teggXWill start
skipping material without expansion, without counting braces, but balancing ne-
sted conditionals, until &f i token is encountered. If thefi is not found an error
message results at the end of the file:

Incomplete \if...; all text was ignored after line ...

116 Victor Eijkhout — EX by Topic

13.8. Assorted remarks

where the line number indicated is that of the line wheg¢ Jtarted skipping, that
is, where the conditional occurred.

. \if... \else ... \fi and the result of the test is false. Any material in bet-
ween the condition and thes1se is skipped without expansion, without counting
braces, but balancing nested conditionals.

The\fi token can be the result of expansion; if it never turns gy Will give a
diagnostic message

\end occurred when \if... on line ... was incomplete
This sort of error is not visible in the output.
This point plus the previous may jointly be described as follows: after a false con-
dition TeX skips until an\else or \fi is found; any material in betweeyelse
and\fi is processed.

° \if... ... \fi and the result of the test is trugeX will start processing the
material following the condition. As above, th&i token may be inserted by
expansion of a macro.

° \if... \else ... \fiand the result of the testis true. Any material following
the condition is processed until thelse is found; then EX skips everything
until the matching\fi is found.

This point plus the previous may be described as follows: after a truegXst T
starts processing material until Aelse or \fi is found; if an\else is found
TeX skips until it finds the matchinyfi.

13.8 Assorted remarks
13.8.1 The test gobbles up tokens

A common mistake is to write the following:
\ifnum\x>0\someaction \else\anotheraction \fi

which has the effect that thesomeaction is expanded, regardless of whether the test
succeeds or not. The reason for this is th2€ &valuates the input stream until it is certain
that it has found the arguments to be tested. In this case it is perfectly possible for the
\someaction to yield a digit, so it is expanded. The remedy is to insert a space or a
\relax control sequence after the last digit of the number to be tested.

13.8.2 The test wants to gobble up thielse or \fi

The same mechanism that underlies the phenomenon in the previous point can lead to
even more surprising effects iEX bumps into an\else, \or, or \fi while still busy
determining the extent of the test itself.

Recall that\pageno is a synomym fohcount0, and consider the following examples:
\newcount\nct \nct=1\ifodd\pageno\else 2\fi 1

and

\newcount\nct \nct=1\ifodd\countO\else 2\fi 1

The first example will assign either 11 or 121\act, but the second one will assign 1
or 121. The explanation is that in cases like the second, whekelse is encountered
while the test still has not been delimited\selax is inserted. In the case thatount0

is odd the result will thus berelax, and the example will yield

Victor Eijkhout — EX by Topic 117

Chapter 13. Conditionals

\nct=1\relax?2
which will assign 1 to\nct, and print 2.

13.8.3 Macros and conditionals; the use ofexpandafter

Consider the following example:

\def\bold#1{{\bf #1}} \def\slant#1{{\sl #1}}
\ifnum1>0 \bold \else \slant \fi {some textl} ...

This will make not only ‘some text’, butill subsequent text bold. Also, at the end of
the job there will be a notice that ‘end occurred inside a group at level 1’. Switching on
\tracingmacros reveals that the argument §bold was\else. This means that, after
expansion of\bold, the input stream looked like

\ifnum1>0 {\bf \else }\fi {some text} rest of the text

so the closing brace was skipped as part of(fatse texy. Effectively, then, the resulting
stream is

{\bf {some text} rest of the text
which is unbalanced.

One solution to this sort of problem would be to write

\ifnum1>0 \let\next=\bold \else \let\next=\slant \fi \next

but a solution usin§expandafter is also possible:

\ifnum1>0 \expandafter \bold \else \expandafter \slant \fi

This works, because thesxpandafter commands let X determine the boundaries of
the (true tex} and the(false tex}.

In fact, the second solution may be preferred over the first, since conditionals are handled
by the expansion processor, and et statements are tackled only by the execution
processor; that is, they are not expandable. Thus the second solution will (and the first will
not) work, for instance, inside axedef.

Another example withexpandafter is the sequence

\def\get#i\get{ ... }

\expandafter \get \ifoddl \ifodd3 5\fi \fi \get
This gives

#1<- \ifodd3 5\fi \fi

and

\expandafter \get \ifodd2 \ifodd3 5\fi\fi \get
gives

#1<-

This illustrates again that the result of evaluating a conditional is not the final expansion,
but the start of the expansion of tkteue tex} or (false tex}, depending on the outcome of
the test.

A detail should be noted: witkRexpandafter it is possible that th&else is encountered
before the'true texi has been expanded completely. This raises the question as to the exact
timing of expansion and skipping. In the example

\def\hello{\message{Hello!}}
\ifnum1>0 \expandafter \hello \else \message{goodbye} \bye

118 Victor Eijkhout — EX by Topic

13.8. Assorted remarks

the error message caused by the missing is given without\hello ever having been
expanded. The conclusion must be that {fadse tex} is skipped as soon as it has been
located, even if this is at a time when ttteue tex} has not been expanded completely.

13.8.4 Incorrect matching
TeX's matching of\if, \else, and\f1i is easily upset. For instance, theXTbook warns
you that you should not say

\let\ifabc=\iftrue
inside a conditional, because if this text is skippgX $ees at least onei f to be matched.
The reason for this is that whepgX is skipping it recognizes aNif. . ., \or, \else, and
\fi tokens, and everything that has been declared a synonym of such a tokeethy
In \let\ifabc=\iftrue TpX will therefore at least see theiftrue as the opening of a
conditional, and, if the current meaning\affabc was for instancdiffalse, it will also
be considered as the opening of a conditional statement.
As another example, if

\csname if\sometest\endcsname \someaction \fi
is skipped as part of conditional text, thei will unintentionally close the outer conditio-
nal.

It does not help to enclose such potentially dangerous constructs inside a group, because
grouping is independent of conditional structure. Burying such commands inside macros
is the safest approach.

Sometimes another solution is possible, however. Yheop macro of plain EX (see
pagq 9P) is used as

\loop ... \if ... \repeat

where theé\repeat is not an actually executable command, but is merely a delimiter:
\def\loop#1\repeat{ ... }

Therefore, by declaring

\let\repeat\fi

the\repeat balances th&if. .. that terminates the loop, and it becomes possible to have
loops in skipped conditional text.

13.8.5 Conditionals and grouping

It has already been mentioned above that group nestingdisindependent of conditional
nesting. The reason for this is that conditionals are handled by the expansion g&¢t iof T

that stage braces are just unexpandable tokens that require no special treatment. Grouping
is only performed in the later stage of execution processing.

An example of this independence is now given. One may write a macro that yields part of
a conditional:

\def\elsepart{\else \dosomething \fi}

The other way around, the following macros yield a left brace and a right brace respectively:

\def\leftbrace{\iftrue{\else}\fi}
\def\rightbrace{\iffalse{\else}\fi}

Note that braces in these definitions are properly nested.

Victor Eijkhout — EX by Topic 119

Chapter 13. Conditionals

13.8.6 Atrick

In some contexts it may be hard to get rid\aflse or \fi tokens in a proper manner.
The above approach witexpandafter works only if there is a limited number of tokens
involved. In other cases the following trick may provide a way out:

\def\hop#1\fi{\fi #1}
Using this as
\if... \hop (lots of tokens\fi
will place the tokens outside the conditional. This is for instance useédin [11].

As a further example of this sort of trick, consider the problem (suggested to me and sol-
ved by Alan Jeffrey) of implementing a conditionalfLessThan#1#2#3#4 such that the
arguments corresponding #@ or #4 result, depending on whetheét is less thar#2 or

not.

The problem here is how to get rid of thelse and the\fi. The — or at least, one —
solution is to scoop them up as delimiters for macros:

\def\ifLessThan#1#2{\ifnum#1<#2\relax\taketrue \else \takefalse \fi}
\def\takefalse\fi#1#2{\fi#2}
\def\taketrue\else\takefalse\fi#1#2{\fi#1}

Note that\ifLessThan has only two parameters (the things to be tested); however, its
result is a macro that chooses between the next two arguments.

13.8.7 More examples of expansion in conditionals

Above, the macrd ifEqString was given that compares two strings:

\def\ifEqString#1#2
{\def\csa{#1}\def\csb{#2}\ifx\csa\csb }

However, this macro relies oxdef, which is not an expandable command. If we need a
string tester that will work, for instance, inside &adef, we need some more ingenuity
(this solution was taken from [11]). The basic principle of this solution is to compare the
strings one character at a time. Macro delimiting\iy. is used; this was explained above.

Firstof all, the\ifEqString call is replaced by a sequentcefAllChars ...\Are ...\TheSame,
and both strings are delimited by a dollar sign, which is not supposed to appear in the strings
themselves.

\def\ifEqString
#1#2{\ifAl1Chars#1$\Are#2$\TheSame}

The test for equality of characters first determines whether either string has ended. If both
have ended, the original strings were equal; if only one has ended, they were of unequal
length, hence unequal. If neither string has ended, we test whether the first characters are
equal, and if so, we make a recursive call to test the remainder of the string.

\def\ifAllChars#1#2\Are#3#4\TheSame
{\if#1$\if#3$\say{truel
\else \say{false}\fi
\else \if#1#3\ifRest#2\TheSame#4\else
\say{false}\fi\fi}

120 Victor Eijkhout — EX by Topic

13.8. Assorted remarks

\def\ifRest#1\TheSame#2\else#3\fi\fi
{\fi\fi \ifAllChars#1\Are#2\TheSame}

The\say macro is supposed to give ftrue for \say{true} and\iffalse for \say{false}
Observing that all calls to this macro occur two conditionals deep, we use the ‘hop’ trick
explained above as follows.

\def\say#1#2\fi\fi
{\fi\fi\csname if#1\endcsname}

Similar to the above example, let us write a macro that will test lexicographic (‘dictionary’)
precedence of two strings:

\let\ex=\expandafter
\def\ifbefore
#1#2{\ifallchars#1$\are#2$\before}
\def\ifallchars#1i#2\are#3#4\before
{\if#1$\say{true\ex}\else
\if#3$\say{false\ex\ex\ex}\else
\ifnum‘#1>‘#3 \say{false),
\ex\ex\ex\ex\ex\ex\ex}\else
\ifnum‘#1<‘#3 \say{true’,
\ex\ex\ex\ex\ex\ex\ex
\ex\ex\ex\ex\ex\ex\ex\ex}\else
\ifrest#2\before#4\fi\fi\fi\fi}
\def\ifrest#1\before#2\fi\fi\fi\fi
N\Lfi\fi\fi\fi
\ifallchars#1\are#2\before}
\def\say#1{\csname if#1\endcsname}

In this macro a slightly different implementation \day is used.

Simplified, a call to\ifbefore will eventually lead to a situation that looks (in the ‘true
case) like

\ifbefore{...}{...}

\if... %% some comparison that turns out true
\csname iftrue\expandafter\endcsname
\else \fi
... %% commands for the ‘before’ case
\else
... %% commands for the ‘not-before’ case
\fi
When the comparison has turned out trugX Will start processing thétrue tex}, and
make a mental note to remove akylse ... \fi part once ar\else token is seen.

Thus, the sequence
\csname iftrue\expandafter\endcsname \else ... \fi
is replaced by

\csname iftrue\endcsname

as the\else is seen while X is still processing\csname. . . \endcsname.

Victor Eijkhout — EX by Topic 121

Chapter 13. Conditionals

Calls to \say occur inside nested conditionals, so the numbekedpandafter com-
mands necessary may be larger than 1: for level two it is 3, for level three it is 7, and for
level 4 itis 15. Slightly more compact implementations of this macro do exist.

122 Victor Eijkhout — EX by Topic

Chapter 14

Token Lists

TeX has only one type of data structure: the token list. There are token list registers that
are available to the user, angXThas some special token lists: thevery. . . variables,
\errhelp, and\output.

\toks Prefix for a token list register.

\toksdef Define a control sequence to be a synonym fateks register.
\newtoks Macro that allocates a token list register.

14.1 Token lists

Token lists are the only type of data structure thgX Knows. They can contain charac-
ter tokens and control sequence tokens. Spaces in a token list are significant. The only
operations on token lists are assignment and unpacking.

TeX has 256 token list registeks oksnnn that can be allocated using the makt@wtoks,
or explicitly assigned b¥toksdef; see below.

14.2 Use of token lists

Token lists are assigned by(gariable assignmeptwhich is in this case takes one of the
forms

(token variablg(equals(general text
(token variablg(equals(filler) (token variablég

Here a(token variablgis an explicit\toksnnn register, something that has been defined
to such a register bytoksdef (probably hidden innewtoks), or one of the specigtoken
parameter lists below. A(general text has an explicit closing brace, but the open brace
can be implicit.

Examples of token lists are (the first two lines are equivalent):

\toksO=\bgroup \a \b cd}
\toksO={\a \b cd}
\toks1=\toks2

123

Chapter 14. Token Lists

Unpacking a token list is done by the commande: the expansion ofthe (token variablé
is the sequence of tokens that was in the token list.

Token lists have a special behaviouniedef: when prefixed bywthe they are unpacked,
but the resulting tokens are not evaluated further. Thus

\toksO={\a \b} \edef\SomeCs{\the\toksO}
gives
\SomeCs: macro:-> \a \b

This is in contrast to what happens ordinarily in\aief; see pagg 100.

14.3 (token parameter)

There are in X a number of token lists that are automatically inserted at certain points.
These(token parametes are the following:

\output this token list is inserted whenevepX decides it has sufficient material for a
page, or when the user forces activation by a pendlty10 000 in vertical mode
(see Chaptgr 28);

\everypar is inserted whengX switches from external or internal vertical mode to un-
restricted horizontal mode (see Chapter 16);

\everymath is inserted after a single math-shift character that starts a formula;

\everydisplay is inserted after a double math-shift character that starts a display for-
mula;

\everyhbox is inserted when akhbox begins (see Chaptef 5);

\everyvbox is inserted when a vertical box begins (see Chdpter 5);

\everyjob is inserted when a job begins (see Chaptér 32);

\everycr is inserted in alignments aft&er or a non-redundarcrcr (see Chaptér 25);

\errhelp contains tokens to supplement@rrmessage (see Chaptér 35).

A (token parametemehaves the same as an expligibksnnn list, or a quantity defined
by \toksdef.

14.4 Token list registers
Token lists can be stored Ntoks registers:

\toks(8-bit numbey

which is a({token variablé. Synonyms for token list registers can be made by(tbgisterdef
command\toksdef in a (shorthand definition

\toksdef (control sequengéequals(8-bit numbey

A control sequence defined this way is calledt@ksdef tokel, and this is also a token
variable (the remaining third kind of token variable is theken parametey.

The plain BX macro\newtoks uses\toksdef to allocate unused token list registers. This
macro is\outer.

124 Victor Eijkhout — EX by Topic

14.5. Examples

145 Examples

Token lists are probably among the least obvious componentsofifiost X users will

never find occasion for their use, but format designers and other macro writers can find
interesting applications. Following are some examples of the sorts of things that can be
done with token lists.

14.5.1 Operations on token lists: stack macros

The number of primitive operations available for token lists is rather limited: assignment
and unpacking. However, these are sufficient to implement other operations such as appen-
ding.

Let us say we have allocated a token register

\newtoks\list \list={\c}

and we want to add tokens to it, using the syntax

\Prepend \a \b (to:)\list

such that

\showthe\list

gives

> \a \b \c .

For this the original list has to be unpacked, and the new tokens followed by the old contents
have to assigned again to the register. Unpacking can be dona&stighinside an\edef,
so we arrive at the following macro:

\def\Prepend#1 (to:)#2{\toks0={#1}},
\edef\act{\noexpand#2={\the\toksO \the#2}}J,
\act}

Note that the tokens that are to be added are first packed into a temporary token list, which
is then again unpacked inside thedef. Including them directly would have led to their
expansion.

Next we want to use token lists as a sort of stack: we want a ‘pop’ operation that removes
the first element from the list. Specifically,

\Pop\list(into:)\first
\show\first \showthe\list

should give

> \first=macro:
->\a .

and for the remaining list

>\b \c .

Here we make creative use of delimited and undelimited parameters. Wikbdat we
unpack the list, and the auxiliary macxBplit0ff scoops up the elements as one undeli-
mited argument, the first element, and one delimited argument, the rest of the elements.

Victor Eijkhout — EX by Topic 125

Chapter 14. Token Lists

\def\Pop#1 (into:)#2{%
\edef\act{\noexpand\SplitOff\the#1,
(head:)\noexpand#2(tail:) \noexpand#1}/,
\act}
\def\SplitOff#1#2(head:)#3(tail:)#4{\def#3{#1} #4={#2}}

14.5.2 Executing token lists

The\the operation for unpacking token lists was used above only insideaef. Used

on its own it has the effect of feeding the tokens of the lisig'I expansion mechanism. If

the tokens have been added to the list in a uniform syntax, this gives rise to some interesting
possibilities.

Imagine that we are implementing the bookkeeping of external files for a format. Such
external files can be used for table of contents, list of figures, et cetera. If the presence of
such objects is under the control of the user, we need some general routines for opening
and closing files, and keeping track of what files we have opened at the user’s request.

Here only some routines for bookkeeping will be described. Let us say there is a list of
auxiliary files, and an auxiliary counter:

\newtoks\auxlist \newcount\auxcount
First of all there must be an operation to add auxiliary files:

\def\NewAuxFile#1{\AddToAuxList{#1}%
% plus other actions

}

\def\AddToAuxList#1{\let\\=\relax
\edef\act{\noexpand\auxlist={\the\auxlist \\{#1}}}%
\act}

This adds the name to the list in a uniform format:

\NewAuxFile{toc} \NewAuxFile{lof}
\showthe\auxlist
> \\{tocH\\{lof}.

using the control sequené&& which is left undefined.

Now this control sequence can be used for instance to count the number of elements in the
list:

\def\ComputeLengthOfAuxList{\auxcount=0
\def\\##1{\advance\auxcounti\relax}/,
\the\auxlist}

\ComputeLengthOfAuxList \showthe\auxcount

> 2.

Another use of this structure is the following: at the end of the job we can now close all
auxiliary files at once, by

\def\CloseAuxFiles{\def\\##1{\CloseAuxFile{##1}}/
\the\auxlist}

126 Victor Eijkhout — EX by Topic

14.5. Examples

\def\CloseAuxFile#1{\message{closing file: #1. 1},
% plus other actions

}
\CloseAuxFiles

which gives the output

closing file: toc. closing file: lof.

Victor Eijkhout — EX by Topic

127

Chapter 15

Baseline Distances

Lines of text are in most cases not of equal height or depth. Therefdteadds inter-
line glue to keep baselines at a uniform distance from one another. This chapter treats the
computation of such interline glue.

\baselineskip The ‘ideal’ baseline distance between neighbouring boxes on a vertical
list. Plain BX default: 12pt.

\lineskiplimit Distance to be maintained between the bottom and top of neighbouring
boxes on a vertical list. PlairgX default: Opt.

\lineskip Glue added if the distance between bottom and top of neighbouring boxes is
less tharhlineskiplimit. Plain EX default: 1pt.

\prevdepth Depth of the last box added to a vertical list as it is perceivedgy T

\nointerlineskip Macro to prevent interline glue insertion once.

\offinterlineskip Macro to prevent interline glue globally henceforth.

\openup Increas@baselineskip, \lineskip, and\lineskiplimit by specified amount.

15.1 Interline glue

TEX tries to keep a certain distance between the reference points of boxes that are added
to a vertical list; in particular it tries to keep the baselines of ordinary text at a constant
distance, th&baselineskip. Actually, the\baselineskip is a(glue), so line distances

can stretch or shrink. However, the natural sizes, as well as the stretch and the shrink, are
the same between all lines.

When boxes, whether they are lines of a paragraph or explicit boxes, are appended to a
vertical list, glue is added usually so that the depth of the preceding box and the height of
the current one add up to th@aselineskip. This has the effect of keeping the reference
points of subsequent lines at regular intervals.

128

15.1. Interline glue

However, this process can bring the bottom and top of two subsequent boxes to be less than
\lineskiplimit apart:

In that case\lineskip glue is added: Note that this will usually increase the distance
between the baselines of the boxes to more thahtheelineskip.

The exact process is this:

if \prevdepth is -1000pt or less, no glue is added, otherwise

° TeX calculates the distance between the bottom of the previous box and the top of
the current one as the natural width of tlitaselineskip minus\prevdepth
(the depth of the last box) and minus the height of the current box;

. if this distance is at leastlineskiplimit, glue is added with the calculated
distance as natural size, and with the stretch and shrink ofttheelineskip,

° otherwise\lineskip glue is added.

. \prevdepth is set to the depth of the current item.

There are two exceptional situations: no interline glue is added before and after a rule,
and the\prevdepth is not updated by aRunvbox or \unvcopy command. After a rule
interline glue is prevented by a value-ef000pt of the \prevdepth.

The above process is carried out, irrespective of what extra glue may have been inserted
in between the boxes. Thus a skip in between boxes in vertical mode will not affect the
distance calculated from the baseline distances, and therefore also not the amount of base-
lineskip glue. The same holds for glue added Witlad just inside a paragraph.

\baselineskip=10pt \lineskiplimit=2pt \lineskip=2pt
\setbox0=\vbox{\hbox{\vrule depthdpt}
\hbox{\vrule height 3pt}}
\showbox0
gives
\box0=
\vbox (10.0+0.0)x0.4
.\hbox(0.0+4.0)x0.4
..\rule(*+4.0)x0.4
.\glue(\baselineskip) 3.0
.\hbox (3.0+0.0)x0.4
..\rule(3.0+*)x0
Bringing the boxes to withinlineskiplimit of each other, that is

\setboxO\vbox{\hbox{\vrule depthdpt}
\hbox{\vrule height 5pt}}

\showbox0

gives

\box0=

\vbox(11.0+0.0)x0.4

.\hbox(0.0+4.0)x0.4

..\rule(x+4.0)x0.4

.\glue(\lineskip) 2.0

.\hbox(5.0+0.0)x0.4

..\rule(5.0+*)x0.4

where\lineskip glue has been inserted instead of the uSbakelineskip

glue.

Victor Eijkhout — EX by Topic 129

Chapter 15. Baseline Distances

The plain BX default values are
\lineskiplimit=0Opt lineskip=1pt
so, when boxes start to touch each other, they are moved one point apart.

15.2 The perceived depth of boxes

The decision process for interline glue usgegevdepth as the perceived depth of the
preceding box on the vertical list. Th@revdepth parameter can be used only in vertical
mode.

The\prevdepth is set to the depth of boxes added to the vertical list, but it is not affected
by \unvbox or \unvcopy. After an\hrule it is set to-1000pt to prevent interline glue
before the next box.

At the beginning of a vertical listprevdepth is set to-1000pt, except in a\halign
and\noalign code contained therein, where it is carried over from the surrounding list. At
the end of the alignment the value \®¥revdepth set by the last alignment row is carried
to the outer list.

In order to prevent interline glue just once, all that is needed is to alté(ghevdepth.

This is done in the macrgnointerlineskip:
\def\nointerlineskip{\prevdepth=-1000pt}

The\offinterlineskip macro is much more drastic: it prevent$ interline glue from

the moment of its call onwards, or, if it is used inside a paragraph, from the start of that
paragraph. Its definition is

\baselineskip=-1000pt \lineskip=0pt

\lineskiplimit\maxdimen

where the second line is the essential one: it caugésdradd\1ineskip glue (which is

zero) always. Settings fobaselineskip do not matter any more then.

The\offinterlineskip macro has an important application in alignments (see Chap-
ter[29).

By setting

\lineskiplimit=-\maxdimen

you can force gX to apply the\baselineskip always, regardless of whether this would
bring boxes too close together or, indeed, if this would make them overlap.

15.3 Terminology

In hot metal typesetting, all letters of a particular font were on a ‘body’ of the same size.
Thus every line of type had the same height and depth, and the resulting distance between
the baselines would be some suitable value for that type. If for some reason this distance
should be larger (see [b2] for a discussion of this), strips of lead would be inserted. The
extra distance was called the ‘leading’ (pronounced ‘ledding’).

With phototypesetting, when the baseline distance was sometimes called the ‘film trans-
port’, this terminology blurred, and the term ‘leading’ was also used for the baseline di-
stance. Some of this confusion is also presengift The parametexbaselineskip Speci-

fies the baseline distance, but in the trace output (see the examples above) the glue inserted
to make the baseline distance equalbaselineskip is called\baselineskip.

130 Victor Eijkhout — EX by Topic

15.4. Additional remarks

15.4 Additional remarks

In general, for documents longer than one page it is desirable to have the same baseline
distance throughout. However, for one-page documents you may add stretchability to the
baselineskip, for instance if the text has to be flush bottom.

Increasing the distance between just one pair of lines can be donéwéthjust. The
argument of this command is vertical material that will be inserted in the vertical list right
after the line where this command was given. The second line of this paragraph, for in-
stance, contains the commaXxehd just{\kern2pt}.

The amount of leading cannot be changed in the middle of a paragraph, because the va-
lue for \baselineskip that is used is the one that is current when the paragraph is fi-
nally broken and added to the main vertical list. The same holds foxtheeskip and
\lineskiplimit.

The plain BX macro\openup increases thgbaselineskip, \1lineskip, and\lineskiplimit
by the amount of the argument to the macro. In effect, this increases line distances by this
amount regardless of whether they are governeitlagelineskip or \lineskip.

Victor Eijkhout — EX by Topic 131

Chapter 16

Paragraph Start

At the start of a paragrapheX inserts a vertical skip as a separation from the preceding

paragraph, and a horizontal skip as an indentation for the current paragraph. This chapter

explains the exact sequence of actions, and it discussesgtsvdecisions can be altered.

\indent Switch to horizontal mode and insert a box of widfarindent.

\noindent Switch to horizontal mode with an empty horizontal list.

\parskip Amount of glue added to the surrounding vertical list when a paragraph starts.
Plain X default:0Opt plus 1pt.

\parindent Size of the indentation box added in front of a paragraph. Pfg{rd&fault:20pt.

\everypar Token list inserted in front of paragraph text;

\leavevmode Macro to switch to horizontal mode if necessary.

16.1 When does a paragraph start

TpeX starts a paragraph whenever it switches from vertical mode to (unrestricted) horizontal
mode. This switch can be effected by one of the commanéddent and\noindent, for
example

{\bf And now~\dots}
\vskip3pt
\noindent It’s~\dots

or by any(horizontal command Horizontal commands include characters, in-line formu-
las, and horizontal skips, but not boxes. Consider the following examples. The character ‘I
is a horizontal command:

\vskip3pt

It’s~\dots

A single$ is a horizontal command:

x is supposed”\dots

The control sequencéiskip is a horizontal command:

\hskip .5\hsize Long indentation~\dots

The full list of horizontal commands is given on pggé 49.

Upon recognizing a horizontal command in vertical mogeX Will perform an\indent

command (and all the actions associated with it; see below), and after that it will reexamine
the horizontal command, this time executing it.

132

16.2. What happens when a paragraph starts

16.2 What happens when a paragraph starts

The \indent and\noindent commands cause a paragraph to be started\ident
command can either be placed explicitly by the user or a macro, or it can be inserted by
TeX when a(horizontal commandoccurs in vertical mode; &noindent command can

only be placed explicitly.

After either command is encounterégharskip glue is appended to the surrounding ver-
tical list, unless EX is in internal vertical mode and that list is empty (for example, at the
start of a\vbox or \vtop). TeX then switches to unrestricted horizontal mode with an
empty horizontal list. In the case §indent (which may be inserted implicitly) an empty
\hbox of width \parindent is placed at the start of the horizontal list; afteroindent

no indentation box is inserted.

The contents of th&everypar (token parameterare then inserted into the input (see
some applications below). After that, the page builder is exercised (see (hgpter 27). Note
that this happens in horizontal mode: this is to move\gherskip glue to the current page.

If an \indent command is given whilegX is already in horizontal mode, the indentation
box is inserted just the same. This is not very useful.

16.3 Assorted remarks

16.3.1 Starting a paragraph with a box

An \hbox does not imply horizontal mode, so an attempt to start a paragraph with a box,
for instance

\hbox to Ocm{\hss\bullet\hskiplem}Text

will make the text following the box wind up one line below the box. It is necessary to
switch to horizontal mode explicitly, using for instanagindent or \leavevmode. The
latter is defined usin§unhbox, which is a horizontal command.

16.3.2 Starting a paragraph with a group
If the first (horizontal commandof a paragraph is enclosed in braces, tegerypar is
evaluated inside the group. This may give unexpected results. Consider this example:

\everypar={\setbox0=\vbox\bgroup\def\par{\egroup}}
{\bf Start} a paragraph ... \par

The (horizontal commanydstarting the paragraph is the character ‘'S’, so whererypar
has been inserted the input is essentially

{\bf \indent\setbox0=\vbox\bgroup
\def\par{\egroup}Start} a paragraph ... \par

which is equivalent to
{\bf \setboxO=\vbox{Start} a paragraph ... \par

The effect of this is rather different from what was intended. AlgX Will probably end
the job inside a group.

Victor Eijkhout — EX by Topic 133

Chapter 16. Paragraph Start

16.4 Examples
16.4.1 Stretchable indentation

Considering thatparindent is a(dimen, not a(glue), it is not possible to declare
\parindent=1cm plus 1fil

in order to get a variable indentation at the start of a paragraph. This problem may be solved
by putting

\everypar={\nobreak\hskip lcm plus 1fillrelax}

The\nobreak serves to prevent (in rare cases) a line break at the stretchable glue.

16.4.2 Suppressing indentation

Inserting{\setbox0=\1astbox} in the horizontal list at the beginning of the paragraph
removes the indentation: indentation consists of a box, which is available thx@aghbox.
Assigning it effectively removes it from the list.

However, this command sequence has to be inserted at a moment phéas already
switched to horizontal mode, so explicit insertion of these commands in front of the first
(horizontal commandof the paragraph does not work. The moment of insertion of the
\everypar tokens is a better candidate: specifying

\everypar={{\setbox0=\1lastbox}}
leads to unindented paragraphs, evexpdrindent is not zero.

16.4.3 An indentation scheme
The above idea of letting the indentation box be removedldwerypar can be put to use
in a systematic approach to indentation, where two conditionals

\newif\ifNeedIndent %as a rule
\newif\ifneedindent Jspecial cases

control whether paragraphs should indent as a rule, and whether in special cases indentation
is needed. This section is taken frdm [8].

We take a fixed\everypar:

\everypar={\ControlledIndentation}

which executes in some cases the madenoveIndentation

\def\RemoveIndentation{{\setbox0=\1lastbox}}
The implementation ofControlledIndentation is:

\def\ControlledIndentation

{\ifNeedIndent \ifneedindent

\else \RemoveIndentation\needindenttrue \fi
\else \ifneedindent \needindentfalse
\else \RemoveIndentation
\fi \fi}

In order to regulate indentation for a whole document, the user now once specifies, for
instance,

134 Victor Eijkhout — EX by Topic

16.4. Examples

\NeedIndenttrue
to indicate that, in principle, all paragraphs should indent. Macros sutheasion can
then prevent indentation in individual cases:

\def\section#1{ ... \needindentfalse}

16.4.4 A paragraph skip scheme

The use of\everypar to control indentation, as was sketched above, can be extended to
the paragraph skip.

A visible white space between paragraphs can be created hp#rekip parameter, but,

once this parameter has been set to some value, it is difficult to prevent paragraph skip in
certain places elegantly. Usually, white space above and below environments and section
headings should be specifiable independently of the paragraph skip. This section sketches
an approach whergparskip is set to zero directly above and below certain constructs,
while the\everypar is used to restore former values. This section is taken from [9].

First of all, here are two tools. The control sequekegarg will be used only inside other
macros; a typical call will look like

\csarg\vskip{#1Parskip}

Here is the definition:

\def\csarg#1#2{\expandafter#1\csname#2\endcsname}

Next follows a generalization dfvskip: the macro\vspace will not place its argument

if the previous glue item is larger; otherwise it will eliminate the preceding glue, and place
its argument.

\newskip\tempskipa
\def\vspace#l{\tempskipa=#1\relax

\ifvmode \ifdim\tempskipa<\lastskip

\else \vskip-\lastskip \vskip\tempskipa \fi

\else \vskip\tempskipa \fi}
Now assume that any construfeto with surrounding white space starts and ends with ma-
cro calls\StartEnvironment{foo} and\EndEnvironment{foo} respectively. Further-
more, assume that to this environment there correspond three glue registefedfeartskip
(glue above the environmenyfooParskip (the paragraph skip inside the environment),
and the\fooEndskip (glue below the environment).

For restoring the value of the paragraph skip a conditional and a glue register are needed:

\newskip\TempParskip \newif\ifParskipNeedsRestoring
The basic sequence for the starting and ending macros for the environments is then

\TempParskip=\parskip\parskip=0cm\relax
\ParskipNeedsRestoringtrue

The implementations can now be given as:

\def\StartEnvironment#1{\csarg\vspace{#1Startskip}

Victor Eijkhout — EX by Topic 135

Chapter 16. Paragraph Start

\begingroup % make changes local

\csarg\TempParskip{#1Parskip} \parskip=Ocm\relax

\ParskipNeedsRestoringtrue}
\def\EndEnvironment#1{\csarg\vspace{#1Endskip}

\endgroup % restore global values

\ifParskipNeedsRestoring

\else \TempParskip=\parskip \parskip=Ocm\relax

\ParskipNeedsRestoringtrue

\fi}
The \EndEnvironment macro needs a little comment: if an environment is used inside
another one, and it occurs before the first paragraph in that environment, the value of the
paragraph skip for the outer environment has already been saved. Therefore no further
actions are required in that case.

Note that both macros start with a vertical skip. This prevents\thgingroup and
\endgroup statements from occurring in a paragraph.

We now come to the main point: if necessary, Yeeerypar will restore the value of the
paragraph skip.
\everypar={\ControlledIndentation\ControlledParskip}
\def\ControlledParskip
{\ifParskipNeedsRestoring
\parskip=\TempParskip \ParskipNeedsRestoringfalse
\fi}

136 Victor Eijkhout — EX by Topic

Chapter 17

Paragraph End

TeX's mechanism for ending a paragraph is ingenious and effective. This chapter explains
the mechanism, the role §par in it, and it gives a number of practical remarks.

\par Finish off a paragraph and go into vertical mode.

\endgraf Synonym for\par: \let\endgraf=\par

\parfillskip Glue thatis placed between the last element of the paragraph and the line
end. Plain X default:0pt plus 1fil.

17.1 The way paragraphs end
A paragraph is terminated by the primitixgar command, which can be explicitly typed
by the user (or inserted by a macro expansion):

. last words.\par
A new paragraph ...

It can be implicitly generated in the input processor gk by an empty line (see Chap-

ter[2):

. last words.

A new paragraph ...

The\par can be inserted becausévertical commangoccurred in unrestricted horizontal
mode:

. last words.\vskip6pt
A new paragraph ...

Also, a paragraph ends if a closing brace is found in horizontal mode ixsider, \insert,
or \output.

After the \par command EX goes into vertical mode and exercises the page builder (see
page 19p). If the\par was inserted because a vertical command occurred in horizontal
mode, the vertical command is then examined anew.\pae does not insert any vertical
glue or penalties itself. Apar command also clears the paragraph shape parameters (see

Chaptef IB).

137

Chapter 17. Paragraph End

17.1.1 The\par command and the\par token

Itis important to distinguish between thgar token and the primitiv&par command that

is the initial meaning of that token. Thear token is inserted when the input processor
sees an empty line, or when the execution processor fif\rtical commangin horizon-

tal mode; thé\par command is what actually closes off a paragraph. Decoupling the token
and the command is an important tool for special effects in paragraphs (see some examples

in Chapter$ b and 9).

17.1.2 Paragraph filling: \parfillskip

After the last element of the paragraptXTimplicitly inserts the equivalent of
\unskip \penalty10000 \hskip\parfillskip

The\unskip serves to remove any spurious glue at the paragraph end, such as the space
generated by the line end if thgar was inserted by the input processor. For example:

end.

\noindent Begin
results in the tokens
end. \par Begin
With the sequence inserted by thear this becomes
end. \unskip\penalty10000\hskip ...
which in turn gives
end.\penalty ...

The\parfillskip is in plain X first-order infinite Opt plus 1£fil), so ending a pa-
ragraph with\hfil\bullet\par will give a bullet halfway between the last word and
the line end; witi\hfi11\bullet\par it will be flush right.

17.2 Assorted remarks
17.2.1 Ending a paragraph and a group at the same time

If a paragraph is set in a group, it may be necessary to ensure thatthending the para-

graph occurs inside the group. The parameters influencing the typesetting of the paragraph,
such as thdleftskip and the\baselineskip, are only looked at when the paragraph is
finished. Thus finishing off a paragraph with

. last words.}\par
causes the values to be used that prevail outside the group, instead of those inside.

Better ways to end the paragraph are
. last words.\par}

or
. last words.\medskip}

In the second example the vertical commanddskip causes th&par token to be inser-
ted.

138 Victor Eijkhout — EX by Topic

17.2. Assorted remarks

17.2.2 Ending a paragraph with\hfill\break

The sequencehfill\break is a way to force a ‘newline’ inside a paragraph. If you end a
paragraph with this, however, you will probably gettarderfull \hbox error. Surprisin-

gly, the underfull box is not the broken line — after all, that one was filled — but a completely
empty box following it (actually, it does contain theéeftskip and\rightskip).

What happens? The paragraph ends with
\hfill\break\par

which turns into
\hfill\break\unskip\nobreak\hskip\parfillskip

The\unskip finds no preceding glue, so thereak is followed by a penalty item and a
glue item, both of which disappear after the line break has been chosen\attk. Ho-
wever, EX has already decided that there should be an extra line, that\apas to \hsize.
And there is nothing to fill it with, so an underfull box results.

17.2.3 Ending a paragraph with a rule

See pagg 17 for paragraphs ending with rule leaders instead of the defarfti11skip
white space.

17.2.4 No page breaks in between paragraphs

The\par command does not insert any glue in the vertical list, so in the sequence

. last words.\par \nobreak \medskip
\noindent First words ...

no page breaks will occur between the paragraphs. The vertical list generated is

\hbox (6.94444+0.0)x ... % last line of paragraph
\penalty 10000 % \nobreak

\glue 6.0 plus 2.0 minus 2.0 % \medskip

\glue (\parskip) 0.0 plus 1.0 Y \parskip
\glue(\baselineskip) 5.05556 J interline glue

\hbox (6.94444+0.0)x ... % first line of paragraph

TeX will not break this vertical list above thenedskip, because the penalty value prohibits
it; it will not break at any other place, because it can only break at glue if that glue is
preceded by a non-discardable item.

17.2.,5 Finite\parfillskip

In plain TgX, \parfillskip has a (first-order) infinite stretch component. All other glue
in the last line of a paragraph will then be set at natural width. INperfillskip has

only finite (or possibly zero) stretch, other glue will be stretched or shrunk. A display
formula in a paragraph with such a last line will be surrounded dtyvedisplayskip
and\belowdisplayskip, even if\abovedisplayshortskip glue would be in order.

The reason for this is that glue setting is slightly machine-dependent, and any such proces-
ses should be kept out ofX’s global decisions.

Victor Eijkhout — EX by Topic 139

Chapter 17. Paragraph End

17.2.6 A precaution for paragraphs that do not indent

If you are setting a text with both the paragraph indentation and the white space between
paragraphs zero, you run the risk that the start of a new paragraph may be indiscernible
when the last line of the previous paragraph ends almost or completely flush right. A sen-
sible precaution for this is to set thearfillskip to, for instance

\parfillskip=1cm plus 1fil
instead of the usudlcm plus 1fil.

On the other hand, you may let yourself be convinced by [46] that paragraphs should always
indent.

140 Victor Eijkhout — EX by Topic

Chapter 18

Paragraph Shape

This chapter treats the parameters and commands that influence the shape of a paragraph.

\parindent Width of the indentation box added in front of a paragraph. Plgidefault:20pt.

\hsize Line width used for typesetting a paragraph. PlagiX default:6.51in.

\leftskip Glue thatis placed to the left of all lines of a paragraph.

\rightskip Glue thatis placed to the right of all lines of a paragraph.

\hangindent If positive, this indicates indentation from the left margin; if negative, this
is the negative of the indentation from the right margin.

\hangafter [f positive, this denotes the number of lines before indenting starts; if nega-
tive, the absolute value of this is the number of indented lines starting with the first
line of the paragraph. Default:

\parshape Command for general paragraph shapes.

18.1 The width of text lines

When EX has finished absorbing a paragraph, it has formed a horizontal list, starting with
an indentation box, and ending wiXparfillskip glue. This listis then broken into lines

of length\hsize. Each line of a paragraph is padded left and right with certain amounts of
glue, the\leftskip and\rightskip, which are taken into account in reachixigsize.

The values of\leftskip and\rightskip are taken into account in the line-breaking
algorithm. Thus the main point about tkeaggedright macro in plain X and the ATpX
‘flushleft’ environment is that they set the-ightskip to zero plus some stretch.

The command&parshape and\hangindent also affect line width. They work by alte-
ring the\hsize and afterwards shifting the boxes containing the lines.

18.2 Shape parameters
18.2.1 Hanging indentation

A simple, and frequently occurring, paragraph shape is that with a number of starting or
trailing lines indented. @X can realize such shapes using two parametérsngafter
and\hangindent. Both can assume positive and negative values.

The\hangindent controls the amount of indentation:

141

Chapter 18. Paragraph Shape

° \hangindent > 0: the paragraph is indented at the left margin by this amount.
. \hangindent < 0: the paragraph is indented at the right margin by the absolute
value of this amount.

For example (assumearindent=0pt),

adaaaaaaaaaaa...

\hangindent=10pt
aaaaaaaaaaaa ...

\hangindent=-10pt
aaaaaaaaaaaa ...
The default value ofhangindent is Opt.

The\hangafter parameter determines the number of lines that is indented:

° \hangafter > 0: after this number of lines the rest of the lines will be indented:;
in other words, this many lines from the start of the paragraph will not be indented.

. \hangafter < 0: the absolute value of this is the number of lines that will be
indented starting at the beginning of the paragraph.

For example,

d aaaaaaaaaaa...

\hangindent=10pt \hangafter=2
aaaaaaaaaaaa ...

\hangindent=10pt \hangafter=-2
aaaaaaaaaaaa ...

The default value fokhangafter is 1.

With both parameters having the possibility to be positive and negative, four ways of han-
ging indentation result. See below for hanging indentation into the margin (‘outdent’).

Hanging indentation is implemented as follows. The amount of hanging indentation is sub-
tracted from théhsize for the lines that indent; after the paragraph has been broken into
horizontal boxes, the lines that should indent on the left are shifted right.

Regular indentation of sizgparindent is not influenced by hanging indentation. Thus
you should start a paragraph with hanging indentation explicitlydwindent if the extra
indentation is unwanted.

The default values ofhangindent and\hangafter are restored after evelypar com-
mand.

18.2.2 General paragraph shapes\parshape

Quite general paragraph shapes can be implemented\ysirghape. With this command
line lengths and indentation for the firatlines of a paragraph can be specified. Thus
this command take®n + 1 parameters: the number of lines followed byn pairs of an
indentation and a line length.

142 Victor Eijkhout — EX by Topic

gives

aaaaa
aaaaa
aa...
aaaaa
aaaaa
aa...
aaaa
aaaa
aaaa...

aac
aasc

18.3. Assorted remarks

\parshape(equalg n iy ¢; ..., ¢y
The specification for the last line is repeated if the paragraph following has more:than
lines. If there are fewer tham lines the remaining specifications are ignored. The default
value is (naturally\parshape = 0.

A \parshape command takes precedence ovethangindent if both have been speci-
fied. Regulahparindent, \leftskip, and\rightskip are still obeyed if\parshape
is in effect.

The \parshape parameter is, like\hangindent, \hangafter, and \looseness (See
Chaptef 1P), cleared afteN@ar command. Since every empty line generategar token,

one should not leave an empty line between a paragraph shape (or hanging indentation)
declaration and the following paragraph.

The control sequenceparshape is an(internal integey. its value is the number of lines
n with which it was set.

18.3 Assorted remarks
18.3.1 Centred last lines

Equal stretch and shrink amounts for tieeftskip and\rightskip give centred texts,

in the sense that each line is centred. For proper centring of the first and last lines of a pa-
ragraph the\parindent and\parfillskip have to be made zero. However, the margins
are ragged.

A surprising application ofleftskip and\rightskip leads to paragraphs with flush
margins and a centred last line.

\leftskip=0Ocm plus 0.5fil \rightskip=0Ocm plus -0.5fil
\parfillskip=Ocm plus 1fil

For all lines of a paragraph but the last one the stretch components add up to zero so the
\leftskip and\rightskip inserted are zero. On the last line thgarfillskip adds

plus 1fil of stretch; therefore there is a totalglfus 0.5fi1 of stretch at both the left

and right end of the line.

It would have been incorrect to specify

\leftskip=0Ocm plus 0.5fil \rightskip=0Ocm minus 0.5fil

TpX gives an error about this: it complains about ‘infinite shrinkage’.

Centring not only the last line, but also the first line of a paragraph can be done by the
parameter settings

\parindent=0pt \everypar{\hskip Opt plus -1fil}

\leftskip=Opt plus .5fil

\rightskip=Opt plus -.5fil

This time a horizontal skip inserted Bgverypar combines with th& leftskip to give

the same amount of stretchability on both sides of the first line of the paragraph.

18.3.2 Indenting into the margin
Suppose you want a hanging indentiafn into the left margin after the first two lines

of a paragraph. Specifyinghangindent=-1cm will give a hanging indentation of one

Victor Eijkhout — EX by Topic 143

Chapter 18. Paragraph Shape

centimetre from theight margin, so another approach is necessary. The following does the
job:
\leftskip=-1cm \hangindent=1cm \hangafter=-2

The only problem with this is that the leftskip needs to be reset after the paragraph. Suitable
redefinition of\par removes this objection:

\def\hangintomargin{\bgroup
\leftskip=-1cm \hangindent=1cm \hangafter=-2
\def\par{\endgraf\egroup}}

The redefinition of\par is here local to the paragraph that should be outdented.

Another, elegant, solution us&parshape:

\dimenO=\hsize \advance\dimenO by 1lcm

\parshape=3 % three lines:
Ocm\hsize % first 1line specification
Ocm\hsize % second line specification
-1cm\dimenO % third line specification

18.3.3 Hang a paragraph from an object

The BTEX format has a macrdy@hangfrom, to have one paragraph of text hanging from
some object, usually a box or a short line of text.

Example This paragraph is an example of ¥angfrom macro defined below. In the
IATEX document styles, the@hangfrom macro (which is similar to this) is used
for multi-line section headings.

Consider then the macikhangfrom:

\def\hangfrom#1{\def\hangobject{#1}\setboxO=\hbox{\hangobject}’
\hangindent \wdO \noindent \hangobject \ignorespaces}

Because of the defaulhangafter=1, this will produce one line of widthhsize, after
which the rest of the paragraph will be left indented by the width of\tiengobject.

18.3.4 Another approach to hanging indentation

Hanging indentation can also be attained by a combination of shifting the left margin and
outdenting. Itemized lists can for instance be implemented in this manner:

\newdimen\listindent
\def\itemize{\begingroup
\advance\leftskip by \listindent
\parindent=-\listindent}
\def\stopitemize{\par\endgroup}
\def\item#1{\par\leavevmode
\hbox to \listindent{#1\hfil}\ignorespaces
}

If an item should encompass more than one paragraph, the implementation could be

144 Victor Eijkhout — EX by Topic

18.3. Assorted remarks

\newdimen\listindent \newdimen\listparindent
\def\itemize{\begingroup
\advance\leftskip by \listindent
\parindent=\listparindent}
\def\stopitemize{\par\endgroup}
\def\item#1{\par\noindent
\hbox to Ocm{\kern-\listindent #1\hfil}\ignorespaces
}

\itemize\item{1l.}First item\par
Is two paragraphs long.
\item{2.}Second item.\stopitemize
gives
1. First item
Is two paragraphs long.
2. Second item.

18.3.5 Hanging indentation versus\leftskip shifting

From the above examples it would seem that hanging indentation and modifyibetheskip
and\rightskip are interchangeable. They are, but only to a certain extent.

Setting\leftskip to some positive value for a paragraph means tha\Hwdze stays

the same, but every line starts with a glue item. Hanging indentation, on the other hand,
is implemented by decreasing thasize value for the lines that hang, and shifting the
finished horizontal boxes horizontally in the surrounding vertical list.

The difference between the two approaches becomes visible mainly in the fact that display
formulas are not shifted when th@eftskip is altered. See Chaptef 9 for an example
showing how leaders are affected by margin shifting.

18.3.6 More examples

Some more examples of paragraph shapes (effected by various means) can be found in [10].
One example from that article appears on fade 46.

Victor Eijkhout — EX by Topic 145

Chapter 19

Line Breaking

This chapter treats line breaking and the concept of ‘badness’gatSes to decide how

to break a paragraph into lines, or where to break a page. The various penalties contributing

to the cost of line breaking are treated here, as is hyphenation. Page breaking is treated in

Chaptef 2.

\penalty Specify desirability of not breaking at this point.

\linepenalty Penalty value associated with each line break. Plgdefault: 10.

\hyphenpenalty Penalty associated with break at a discretionary item in the general
case. Plain gX default: 50.

\exhyphenpenalty Penalty for breaking a horizontal line at a discretionary item in the
special case where the prebreak text is empty. PdEfault: 50.

\adjdemerits Penalty for adjacent visually incompatible lines. PlaiX @efault: 10 000.

\doublehyphendemerits Penalty for consecutive lines ending with a hyphen. Plg T
default:10 000.

\finalhyphendemerits Penalty added when the penultimate line of a paragraph ends
with a hyphen. PlaingX default: 5000.

\allowbreak Macro for creating a breakpoint by insertinggenaltyo.

\pretolerance Tolerance value for a paragraph without hyphenation. P{default: 100.

\tolerance Tolerance value forlinesin a paragraph with hyphenation. P{rd€&fault:200.

\emergencystretch (TgX3 only) Assumed extra stretchability in lines of a paragraph.

\looseness Number of lines by which this paragraph has to be made longer than it would
be ideally.

\prevgraf The number of lines in the paragraph last added to the vertical list.

\discretionary Specify the way a character sequence is split up at a line break.

\- Discretionary hyphen; this is equivalent\@iscretionary{-}{}{}.

\hyphenchar Number of the hyphen character of a font.

\defaulthyphenchar Value of\hyphenchar when afontisloaded. PlaigX default: < \-.

\uchyph Positive to allow hyphenation of words starting with a capital letter. Plgia T
default:1.

\lefthyphenmin (TpX3 only) Minimal number of characters before a hyphenation. Plain
TeX default: 2.

\righthyphenmin (TgX3 only) Minimum number of characters after a hyphenation. Plain
TeX default: 3.

\patterns Define a list of hyphenation patterns for the current valuglefguage; al-
lowed only in IniEX.

\hyphenation Define hyphenation exceptions for the current valuglefnguage.

\language Choose a set of hyphenation patterns and exceptions.

146

19.1. Paragraph break cost calculation

\setlanguage Reset the current language.

19.1 Paragraph break cost calculation

A paragraph is broken such that the amodntf demerits associated with breaking it

is minimized. The total amount of demerits for a paragraph is the sum of those for the
individual lines, plus possibly some extra penalties. Considering a paragraph as a whole
instead of breaking it on a line-by-line basis can lead to better line breakgxgcdn
choose to take a slightly less beautiful line in the beginning of the paragraph in order to
avoid bigger trouble later on.

For each line demerits are calculated from badness b of stretching or shrinking the line
to the break, and thpenalty p associated with the break. The badness is not allowed to
exceed a certain prescribed tolerance.

In addition to the demerits for breaking individual linegXTassigns demerits for the way
lines combine; see below.

The implementation of @X’s paragraphbreaking algorithm is explained[ini[27].

19.1.1 Badness

From the ratio between the stretch or shrink present in a line, and the actual stretch or shrink
taken, the ‘badness’ of breaking a line at a certain point is calculated. This badness is an
important factor in the process of line breaking. See page 69 for the formula for badness.

In this chapter badness will only be discussed in the context of line breaking. Badness is
also computed when a vertical list is stretched or shrunk (see Chapter 27).

The following terminology is used to describe badness:

tight (3) is any line that has shrunk with a badnéss 13, that is, by using at least one-half
of its amount of shrink (see pafe|69 for the computation).

decent (2) is any line with a badnegs< 12.

loose (1) is any line that has stretched with a badnkss 13, that is, by using at least
one-half of its amount of stretch.

very loose (0) is any line that has stretched with a badniss 100, that is, by using its
full amount of stretch or more. Recall that glue can stretch, but not shrink more
than its allowed amount.

The numbering is used in trace output (Chaptdr 34), and it is also used in the following
definition: if the classifications of two adjacent lines differ by more than 1, the lines are
said to bevisually incompatible. See below for thdadjdemerits parameter associated
with this.

Overfull horizontal and vertical boxes are passed unnoticed if their excess width or height
is less thanhfuzz or \vfuzz respectively; they are not reported if the badness is less than
\hbadness or \vbadness (see Chaptér]5).

19.1.2 Penalties and other break locations

Line breaks can occur at the following places in horizontal lists:

Victor Eijkhout — EX by Topic 147

Chapter 19. Line Breaking

1. At a penalty. The penalty value is the ‘aesthetic cost’ of breaking the line at that
place. Negative penalties are considered as bonuses. A penalty@ or more
inhibits, and a penalty of 10 000 or less forces, a break.

Putting more than one penalty in a row is equivalent to putting just the one with
the minimal value, because that one is the best candidate for line breaking.
Penalties in horizontal mode are inserted by the user (or a user macro). The only
exception is th&nobreak inserted before thgparfillskip glue.

2. At a glue, if it is not part of a math formula, and if it is preceded by a non-
discardable item (see Chapfér 6). There is no penalty associated with breaking
at glue.

The condition about the non-discardable precursor is necessary, because otherwise
breaking in between two pieces of glue would be possible, which would cause
ragged edges to the paragraph.

3. At a kern, if it is not part of a math formula and if it is followed by glue. There is
no penalty associated with breaking at a kern.
4, At a math-off, if that is followed by glue. Since math-off (and math-on) act as

kerns (see Chapter23), this is very much like the previous case. There is no penalty
associated with breaking at a math-off.

5. Atadiscretionary break. The penalty is ig/phenpenalty or the\exhyphenpenalty.
This is treated below.

Any discardable material following the break — glue, kerns, math-on/off and penalties — is
discarded. If one considers a line break at glue (kern, math-on/off) to occur at the front end
of the glue item, this implies that that piece of glue disappears in the break.

19.1.3 Demerits

From the badness of a line and the penalty, if any, the demerits of the line are calculated.
Let/ be the value oflinepenalty, b the badness of the ling,the penalty at the break;
then the demeritg are given by

(140)%+p*> if 0<p< 10000
d=<% (I+0b)?—p? if =10000<p <0
(1+0b)? if p < —10000
Both this formula and the one for the badness are describedlin [27] as ‘quite arbitrary’, but
they have been shown to lead to good results in practice.

The demerits for a paragraph are the sum of the demerits for the lines, plus

. the\adjdemerits for any two adjacent lines that are not visually compatible (see
above),

. \doublehyphendemerits for any two consecutive lines ending with a hyphen,
and the

. \finalhyphendemerits if the penultimate line of a paragraph ends with a hy-
phen.

At the start of a paragrapheX acts as if there was a preceding line which was ‘decent’.
Therefore\adjdemerits will be added if the first line is ‘very loose’. Also, the last line

of a paragraph is ordinarily also ‘decent’ — all spaces are set at natural width owing to the
infinite stretch in the\parfillskip — so\adjdemerits are added if the preceding line

is ‘very loose’.

148 Victor Eijkhout — EX by Topic

19.2. The process of breaking

Note that the penalties at which a line break is chosen weigh about as heavily as the badness
of the line, so they can be relatively small. However, the three extra demerit parameters have
to be of the order of the square of penalties and badnesses to weigh equally heavily.

19.1.4 The number of lines of a paragraph

After a paragraph has been completed (or partially completed prior to a display), the varia-
ble \prevgraf records the number of lines in the paragraph. By assigning to this variable
— and because this is(apecial integérsuch an assignment is automatically globapxs
decision processes can be influenced. This may be useful in combination with hanging
indentation oA\parshape specifications (see Chapfer| 18).

Some direct influence of the linebreaking process on the resulting number of lines exists.
One factor is thé\linepenalty which is included in the demerits of each line. By incre-
asing the line penaltygX can be made to minimize the number of lines in a paragraph.

Deviations from the optimal number of lines, that is, the number of lines stemming from
the optimal way of breaking a paragraph into lines, can be forced by the user by means of
the\looseness parameter. This parameter, which is reset every time the shape parameters
are cleared (see Chapfer 18), indicates by how many lines the current paragraph should be
made longer than is optimal. A negative value\@boseness will attempt to make the
paragraph shorter by a number of lines that is the absolute value of the parameter.

TeX will still observe the values okpretolerance and\tolerance (see below) when
lengthening or shortening a paragraph under influencglebseness. Therefore, EX

will only lengthen or shorten a paragraph for as far as is possible without exceeding these
parameters.

19.1.5 Between the lines

TeX’s paragraph mechanism packages lines into horizontal boxes that are appended to the
surrounding vertical list. The resulting sequence of vertical items is then a repeating se-
quence of

° a box containing a line of text,

. possibly migrated vertical material (see page 52),

. a penalty item reflecting the cost of a page break at that point, which is normally
the\interlinepenalty (see Chaptdr 27), and

. interline glue, which is calculated automatically on basis of\theevdepth (see
Chaptef Ip).

19.2 The process of breaking

TeX tries to break paragraphs in such a way that the badness of each line does not exceed
a certain tolerance. If there exists more than one solution to this, the one with the fewest
demerits is taken.

By setting\tracingparagraphs to a positive value, gX can be made to report the cal-
culations of the paragraph mechanism in the log file. Some implementatiopX ahdy
have this option disabled to makgXrun faster.

Victor Eijkhout — EX by Topic 149

Chapter 19. Line Breaking

19.2.1 Three passes

First an attempt is made to split the paragraph into lines without hyphenating, that is, wi-
thout inserting discretionary hyphens. This attempt succeeds if none of the lines has a
badness exceedingretolerance.

Otherwise, a second pass is made, inserting discretionaries and\usihgrance. If
\pretolerance IS negative, the first pass is omitted.

TeX can be made to make a third pass if the first and second pass faémdtrgency-
stretch is a positive dimension,gK will assume this much extra stretchability in each

line when badness and demerits are calculated. Thus solutions that only slightly exceeded
the given tolerances will now become feasible. However, no glue oksizergencystretch

is actually present, so underfull box messages may still occur.

19.2.2 Tolerance values

How much trouble X will have typesetting a piece of text depends partly on the tolerance
value. Therefore it is sensible to have some idea of what badness values mean in visual
terms.

For lines that are stretched, the badness is 100 times the cube of the stretch ratio. A badness
of 800 thus means that the stretch ratio is 2. If the space is, as in the ten-point Computer
Modern Font,

3.33pt plus 1.67pt minus 1.11pt
a badness of 800 means that spaces have been stretched to
3.33pt 4+ 2 x 1.67pt = 6.66pt
that s, to exactly double their natural size. It is up to you to decide whether this is too large.

19.3 Discretionaries

A discretionary item\discretionary{..}{..}{..} marks a place where a word can
be broken. Each of the three arguments igi@neral text (see Chaptdr 36): they are, in
sequence,

. the pre-break text, which is appended to the part of the word before the break,
° the post-break text, which is prepended to the part of the word after the break, and
o theno-break text, which is used if the word is not broken at the discretionary item.

For exampleab\discretionary{g}{h}{cd}ef is the wordabcdef, but it can be hy-
phenated withabg before the break anisef after. Note that there is no automatic hyphen
character.

All three texts may contain any sorts of tokens, but any primitive commands and macros
should expand to boxes, kerns, and characters.

19.3.1 Hyphens and discretionaries

Internally, BX inserts the equivalent of
\discretionary{\char\hyphenchar\font}{}{}

150 Victor Eijkhout — EX by Topic

19.4. Hyphenation

at every place where a word can be broken. No such discretionary is insetg@lifenchar\font
is not in the range 0-255, or if its position in the font is not filled. When a font is loaded,
its \hyphenchar value is set td.defaulthyphenchar. The\hyphenchar value can be
changed after this.

In plain TeX the \defaulthyphenchar has the valu€\-, so for all fonts character 45
(theascii hyphen character) is the hyphen sign, unless it is specified otherwise.

The primitive command\- (called a ‘discretionary hyphen’) is equivalent to the above
\discretionary{\char\hyphenchar\font}{}{}. Breaking at such a discretionary, whe-
ther inserted implicitly by EX or explicitly by the user, has a cost ®iyphenpenalty.

In unrestricted horizontal mode an empty discretionedyscretionary{}{}{} is au-
tomatically inserted after characters whose character code ishifighenchar value of

the font, thus enabling hyphenation at that point. The penalty for breaking a line at such
a discretionary with an empty pre-break tex\ixhyphenpenalty, that is, the ‘explicit
hyphen’ penalty.

If a word contains discretionary breaks, for instance because of explicit hyphen characters,
TeX will not consider it for further hyphenation. People have solved the ensuing problems
by tricks such as
\def\={\penalty10000 \hskipOpt -\penaltyO \hskipOpt\relax}

. integro\=differential equations...
The skips before and after the hyphen legH hto treating the first and second half of the
compound expression as separate words; the penalty before the first skip inhibits breaking
before the hyphen.

19.3.2 Examples of discretionaries

Languages such as German or Dutch have words that change spelling when hyphenated
(German: ‘backen’ becomes ‘bak-ken’; Dutch: ‘autootje’ becomes ‘auto-tje’). This pro-
blem can be solved withgK’s discretionaries.

For instance, for German (this is inspired by|[36]):

\catcode‘\"=\active
\def"#1{\ifx#1k\discretionary{k-}{k}{ck}\fi}

which enables the user to writa"ken.

In Dutch there is a further problem which allows a nice systematic solution. Umlaut cha-
racters (‘trema’ is the Dutch term) should often disappear in a break, for instance ‘na’apen’
hyphenates as ‘na-apen’, and ‘onbe”invioedbaar’ hyphenates as ‘onbe-invioedbaar'. A so-
lution (inspired byl[5]) is

\catcode ‘\"=\active
\def"#1{\ifx#1i\discretionary{-}{i}{\"\i}%
\else \discretionary{-F{#1}{\"#1}\fi}

which enables the user to type"apen andonbe"invloedbaar.

19.4 Hyphenation

TeX’s hyphenation algorithm uses a list of patterns to determine at what places a word that
is a candidate for hyphenation can be broken. Those aspects of hyphenation connected with

Victor Eijkhout — EX by Topic 151

Chapter 19. Line Breaking

these patterns are treated in appendix H of g€ Hook; the method of generating hyphe-
nation patterns automatically is described in [30]. People have been known to generate lists
of patterns by hand; see for instantel[28]. Such hand-generated lists may be superior to
automatically generated lists.

Here it will mainly be described howgK declares a word to be a candidate for hyphena-
tion. The problem here is how to cope with punctuation and things such as quotation marks
that can be attached to a word. Alsmiplicit kerns, that is, kerns inserted because of font
information, must be handled properly.

19.4.1 Start of aword

TeX starts at glue items (if they are not in math mode) looking fattaating letter of

a word: a character with non-zekd ccode, or a ligature starting with such a character
(upper/lowercase codes are explained on page 25). Looking for this starting Igker, T
bypasses any implicit kerns, and characters with x@txode (this includes, for instance,
punctuation and quotation marks), or ligatures starting with such a character.

If no suitable starting letter turns up, that is, if something is found that is not a character or
ligature, X skips to the next glue, and starts this algorithm anew. Otherwise a trial word is
collected consisting of all following characters with non-zgtecode from the same font

as the starting letter, or ligatures consisting completely of such characters. Implicit kerns
are allowed between the characters and ligatures.

If the starting letter is from a font for which the value \iyphenchar is invalid, or for

which this character does not exist, hyphenation is abandoned for this word. If the starting
letter is an uppercase letter (that is, it is not equal to its §rode), TeX will abandon
hyphenation unlessuchyph is positive. The default value for this parameter is 1 in plain
TeX, implying that capitalized words are subject to hyphenation.

19.4.2 End of aword

Following the trial word can be characters (from another font, or with 2a@rxode),
ligatures or implicit kerns. After these items, if any, must follow

glue or an explicit kern,

a penalty,

a whatsit, or

a\mark, \insert, or \vadjust item.

In particular, the word will not be hyphenated if it is followed by a

box,

rule,

math formula, or
discretionary item.

Since discretionaries are inserted after Yhgphenchar of the font, occurrence of this
character inhibits further hyphenation. Also, placement of accents is implemented using
explicit kerns (see Chaptef 3), so axyccent command is considered to be the end of a
word, and inhibits hyphenation of the word.

152 Victor Eijkhout — EX by Topic

19.5. Switching hyphenation patterns

19.4.3 EX2 versus X3

There is a noticeable difference in the treatment of hyphenated fragments bep&en T
and BX3. TeX2 insists that the part before the break should be at least two characters, and
the part after the break three characters, long. Typographically this is a sound decision: this
way there are no two-character pieces of a word stranded at the end or beginning of the
line. Both before and after the break there are at least three characters.

In TEX3 two integer parameters have been introduced to control the length of these frag-
ments:\lefthyphenmin and\righthyphenmin. These are set to 2 and 3 respectively

in the plain format for gX3. If the sum of these two is 63 or more, all hyphenation is
suppressed.

Another addition in X3, the possibility to have several sets of hyphenation patterns, is
treated below.

19.4.4 Patterns and exceptions

The statements

\patterns(general text
\hyphenation(general text

are (hyphenation assignmeust which are(global assignmei$. The \patterns com-
mand, which specifies a list of hyphenation patterns, is allowed only iptni3ee Chap-
ter[33), and all patterns must be specified before the first paragraph is typeset.

Hyphenation exceptions can be specified at any time with statements such as
\hyphenation{oxy-mo-ron gar-goyle}

which specify locations where a word may be hyphenated. Subsejhgpiienation
statements are cumulative.

In TeX3 these statements are taken to hold for the language that is the current value of the
\language parameter.

19.5 Switching hyphenation patterns

When typesetting paragraphgXT(version 3) can use several sets of patterns and hyphe-
nation exceptions, for at most 256 languages.

If a \patterns or \hyphenation command is given (see abovepXTstores the patterns

or exceptions under the current value of ¥lenguage parameter. Th&patterns com-

mand is only allowed in InigX, and patterns must be specified before any typesetting is
done. Hyphenation exceptions, however, can be specified cumulatively, and not only in

INiTEX.

In addition to thé\language parameter, which can be set by the usgK fias internally a
‘current language’. This is set to zero at the start of every paragraph. For every character that
is added to a paragraph the current language is compared with the valLengfiage, and

if they differ a whatsit element is added to the horizontal list, resetting the current language
to the value of\language.

Atthe start of a paragraph, this whatsit is inserted aftek#verypar tokens, buhlastbox
can still access the indentation box.

Victor Eijkhout — EX by Topic 153

Chapter 19. Line Breaking

As an example, suppose that a format has been created such that language 0 is English, and
language 1 is Dutch. English hyphenations will then be used if the user does not specify
otherwise; if a job starts with

\language=1

the whole document will be set using Dutch hyphenations, becg&eill insert a com-

mand changing the current language at the start of every paragraph. For example:

\language=1

T...

gives

.\hbox (0.0+0.0)x20.0 % indentation
.\setlanguagel (hyphenmin 2,3) % language whatsit
\tenrm T % start of text

The whatsit can be inserted explicitly, without changing the valuelefiguage, by spe-
cifying

\setlanguage(numbey
However, this will hardly ever be needed. One case where it may be necessary is when the
contents of a horizontal box are unboxed to a paragraph: inside the box no whatsits are
added automatically, since inside such a box no hyphenation can take place. Se€| page 44
for another problem with text in horizontal boxes.

154 Victor Eijkhout — EX by Topic

Chapter 20

Spacing

The usual interword space irgX is specified in the font information, but the user can
override this. This chapter explains the rules by whigh Talculates interword space.

\char32 Control space. Insert the same amount of space as a space token wegpktiéfactor =
1000.

\spaceskip Interword glue if non-zero.

\xspaceskip Interword glue if non-zero antspacefactor > 2000.

\spacefactor 1000 times the ratio by which the stretch (shrink) component of the inter-
word glue should be multiplied (divided).

\sfcode Value for\spacefactor associated with a character.

\frenchspacing Macro to switch off extra space after punctuation.

\nonfrenchspacing Macro to switch on extra space after punctuation.

20.1 Automatic interword space

For every space token in horizontal mode the interword glue of the current font is inserted,
with stretch and shrink components. This allows, for instance, lines to be right justified.
The size of the interword space is determined\byntdimen parameters. To be specific,
font dimension 2 is the normal interword space, dimension 3 is the amount of stretch of
the interword space, and 4 is the amount of shrink. Font dimension 7 is called the ‘extra
space’; see below (the list of all the font dimensions appears or{ page 31).

Ordinarily all spaces between words (in one font) would be of equal size. To allow for dif-
ferently sized spaces — for instance a typeset equivalent of the double spacing after punc-
tuation in typewritten documents -gX associates with each character a so-called ‘space
factor’.

When a character is added to the current horizontal list, the current value of the space
factor (\spacefactor) becomes the space factor codef{code) of that character, except

that when that code is zero, the space factor does not change. Also, when the space factor
code of the last characteris1000 and the current space factordd 000, the space factor
becomes 1000. The maximum space fact@rig67.

The stretch component of the interword space is multiplied by the space factor divided by
1000; the shrink component is divided by this factor. The extra space (font dimension 7) is
added to the natural component of the interword space when the space faet@0ix).

155

Chapter 20. Spacing

20.2 User interword space

The user can override the interword space contained inthatdimen parameters by
setting the\spaceskip and the\xspaceskip to non-zero values. Kspaceskip is non-
zero, it is taken instead of the normal interword spad@ftdimen2 plus\fontdimen3
minus\fontdimen4), but a non-zerdxspaceskip is used as interword space if the space
factor is > 2000.

If the \spaceskip is used, its stretch and shrink components are multiplied and divided
respectively by\spacefactor/1000.

Note that, if\spaceskip and\xspaceskip are defined in terms afm, they change with
the font.

Let the following macros be given:

\def\a.{\vrule height10pt width4pt\spacefactor=1000\relax}
\def\b.{\vrule height10pt width4pt\spacefactor=3000\relax}
\def\c{\vrule height10Opt width4pt\relax}
then
\vbox{
\fontdimen2\font=4pt % normal space
\fontdimen7\font=3pt % extra space
\a. \b. \c\par
% zero extra space
\fontdimen7\font=0pt
\a. \b. \c\par gives
% set \spaceskip for normal space
\spaceskip=2\fontdimen2\font
\a. \b. \c\par
% set \xspaceskip
\xspaceskip=2pt
\a. \b. \c\par

In all of these Iinés the glue is set at natural width. In the first line
the high space factor value aftgb causes the extra spatontdimen7

to be added. If this is zero (second line), the only difference between
space factor values is the stretch/shrink ratio. In the third line the
\spaceskip is taken for all space factor values. If thespaceskip

is nonzero, it is taken (fourth line) instead of tkepaceskip for the
high value of the space factor.

20.3 Control space and tie

Control space),, is a horizontal command which inserts a space, acting as if the cur-
rent space factor is 1000. It can therefore be used after abbreviations\wbefrenchspacing
(see below) is in effect. For example:

\hbox spread 9pt{\nonfrenchspacing
The Reverend Dr. Drofnats}

gives

156 Victor Eijkhout — EX by Topic

20.4. More on the space factor

The Reverend Dr. Drofnats
while

\hbox spread 9pt{\nonfrenchspacing
The Reverend Dr.\ Drofnats}

gives
The Reverend Dr. Drofnats
The spread 9pt is used to make the effect more visible.

The active character (in the plain format) tildg, uses control space: it is defined as

\catcode‘\~=\active
\def~{\penalty10000\ }

Such an active tilde is called a ‘tie’; it inserts an ordinary amount of space, and pro-
hibits breaking at this space.

20.4 More on the space factor
20.4.1 Space factor assignments

The space factor of a particular character can be assigned as
\sfcode(8-bit numbey(equals(numbey

IniTEX assigns a space factor code of 1000 to all characters except uppercase charac-
ters; they get a space factor code of 999. The plain format then assigns space factor
codes greater than 1000 to various punctuation symbols, for instafe®de <\ .=3000,

which triples the stretch and shrink after a full stop. Also, for all space factor values
> 2000 the extra space is added; see above.

20.4.2 Punctuation

Because the space factor cannot jump from a value below 1000 to one above, a punc-
tuation symbol after an uppercase character will not have the effect on the interword
space that punctuation after a lowercase character has.

a’% \sfcode‘a=1000, space factor becomes 1000
.% \sfcode‘.=3000, spacefactor becomes 3000
% subsequent spaces will be increased.

A%, \sfcode‘A=999, space factor becomes 999
.% \sfcode‘.=3000, space factor becomes 1000
% subsequent spaces will not be increased.

Thus, initials are not mistaken for sentence ends. If an uppercase character does end a
sentence, for instance

. and NASA.
there are several solutions:

. NASA\spacefactor=1000.
or

. NASA\hbox{}.

Victor Eijkhout — EX by Topic 157

Chapter 20. Spacing

which abuses the fact that after a box the space factor is set to 10004TE{emacro
\@ is equivalent to the first possibility.

In the plain format two macros are defined that switch between uniform interword
spacing and extra space after punctuation. The mittenchspacing sets the space
factor code of all punctuation to 1000; the madmwonfrenchspacing Sets it to va-
lues greater than 1000.

Here are the actual definitions froplain.tex:

\def\frenchspacing{\sfcode‘\.\@m \sfcode‘\7\@m
\sfcode‘\!\@m \sfcode‘\:\@m
\sfcode‘\;\@m \sfcode‘\,\@m}
\def\nonfrenchspacing{\sfcode‘\.3000 \sfcode‘\73000
\sfcode‘\!3000 \sfcode‘\:2000
\sfcode‘\;1500 \sfcode‘\,1250 }

where
\mathchardef\@m=1000
is given in the plain format.

French spacing is a somewhat controversial issue: giebbok acts as if non-French
spacing is standard practice in printing, but for instance_in [14] one finds ‘The space
of the line should be used after all points in normal text’. Extra space after punctuation
may be considered a ‘typewriter habit’, but this is not entirely true. It used to be a lot
more common than it is nowadays, and there are rational arguments against it: the full
stop (point, period) at the end of a sentence, where extra punctuation is most visible,
is rather small, so it carries some extra visual space of its own above it. This book
does not use extra space after punctuation.

20.4.3 Other non-letters

The zero value of the space factor code makes characters that are not a letter and not
punctuation ‘transparent’ for the space factor.

a’% \sfcode‘a=1000, space factor becomes 1000

.% \sfcode‘.=3000, spacefactor becomes 3000

% subsequent spaces will be increased.

a’% \sfcode‘a=1000, space factor becomes 1000
.% \sfcode‘.=3000, space factor becomes 3000
)% \sfcode)=0, space factor stays 3000

% subsequent spaces will be increased.

20.4.4 Other influences on the space factor

The space factor is 1000 wheX starts forming a horizontal list, in particular after
\indent, \noindent, and directly after a display. It is also 1000 after\arule,
an accent, or abox) (in horizontal mode), but it is not influenced Byunhbox or
\unhcopy commands

In the first column of a\valign the space factor of the surrounding horizontal list is
carried over; similarly, after a vertical alignment the space factor is set to the value
reached in the last column.

158 Victor Eijkhout — EX by Topic

Chapter 21

Characters in Math Mode

In math mode every character specifies by\imthcode what position of a font to
access, among other things. For delimiters this story is a bit more complicated. This
chapter explains the concept of math codes, and shows winiplements variable

size delimiters.

\mathcode Code of a character determining its treatment in math mode.

\mathchar Explicit denotation of a mathematical character.

\mathchardef Define a control sequence to be a synonym for a math character code.

\delcode Code specifying how a character should be used as delimiter.

\delimiter Explicit denotation of a delimiter.

\delimiterfactor 1000 times the fraction of a delimited formula that should be
covered by a delimiter. Plaingk default: 901

\delimitershortfall Size of the part of a delimited formula that is allowed to go
uncovered by a delimiter. PlaingX default: 5pt

\nulldelimiterspace Width taken for empty delimiters. PlaingX default: 1.2pt

\left Use the following character as an open delimiter.

\right Use the following character as a closing delimiter.

\big One line high delimiter.

\Big One and a half line high delimiter.

\bigg Two lines high delimiter.

\Bigg Two and a half lines high delimiter.

\bigl etc. Left delimiters.

\bigm etc. Delimiters used as binary relations.

\bigr etc. Right delimiters.

\radical Command for setting things such as root signs.

\mathaccent Place an accent in math mode.

\skewchar Font position of an after-placed accent.

\defaultskewchar Value of \skewchar when a font is loaded.

\skew Macro to shift accents on top of characters explicitly.

\widehat Hat accent that can accommodate wide expressions.

\widetilde Tilde accent that can accommodate wide expressions.

21.1 Mathematical characters

Each of the 256 permissible character codes has an assotiad€tcode, which can
be assigned by

159

Chapter 21. Characters in Math Mode

\mathcode(8-bit numbejf(equal$(15-bit numbey

When processing in math modegX replaces all characters of categories 11 and 12,
and \char and\chardef characters, by their associated mathcode.

The 15-bit math code is most conveniently denoted hexadecimall\xgsz, where

x < 7 is the class (see pafe 171),
y is the font family number (see Chapfer] 22), and
zz is the position of the character in the font.

Math codes can also be specified directly bynaath character which can be

\mathchar(15-bit numbey;
. (mathchardef token a control sequence that was defined by
\mathchardef (control sequengéequal$(15-bit numbey
or
. a delimiter command
\delimiter(27-bit numbey
where the last 12 bits are discarded.

The commandS\mathchar and \mathchardef are analogous tdchar and \char-
def in text mode. Delimiters are treated below.(Aathchardef tokeéncan be used as
a (numbe}, even outside math mode.

In IniTeX all letters receive\mathcode "71zz and all digits receive"70zz, where

"zz is the hexadecimal position of the character in the font. Thus, letters are initially
from family 1 (math italic in plain EX), and digits are from family O (roman). For

all other characters, IngK assigns

\mathcode x = =z,

thereby placing them also in family 0.

If the mathcode is'8000, the smallest integer that is not(a5-bit numbey, the cha-
racter is treated as an active character with the original character code. Blin T
assigns a\mathcode of "8000 to the space, underscore and prime.

21.2 Delimiters

After \left and \right commands gX looks for a delimiter. A delimiter is either
an explicit\delimiter command (or a macro abbreviation for it), or a character with
a non-zero delimiter code.

The \left and \right commands implicitly delimit a group, which is considered as

a subformula. Since the enclosed formula can be arbitrarily large, the quest for the
proper delimiter is a complicated story of looking at variants in two different fonts,
linked chains of variants in a font, and building extendable delimiters from repeatable
pieces.

The fact that a group enclosed Wieft...\right is treated as an independent sub-
formula implies that a sub- or superscript at the start of this formula is not considered
to belong to the delimiter. For examplepX acts as if\left(_2 is equivalent to
\left ({}_2. (A subscript after a\right delimiter is positioned with respect to that
delimiter.)

160 Victor Eijkhout — EX by Topic

21.2. Delimiters

21.2.1 Delimiter codes

To each character code there corresponds a delimiter code, assigned by
\delcode(8-bit numbef(equal$(24-bit numbey
A delimiter code thus consists of six hexadecimal diditsrvxyy, where

uvv is the small variant of the delimiter, and
xyy is the large variant;

u, x are the font families of the variants, and
vv, yy are the locations in those fonts.

Delimiter codes are used afteleft and \right commands. InigX sets all delimiter
codes to—1, except\delcode‘.=0, which makes the period an empty delimiter. In
plain TeX delimiters have typicallyu = 2 and x = 3, that is, first family 2 is tried,
and if no big enough delimiter turns up family 3 is tried.

21.2.2 Explicit\delimiter commands

Delimiters can also be denoted explicitly by(27-bit numbey,
\delimiter"tuvvxyy

whereuvvxyy are the small and large variant of the delimiter as above; the extra digit
t (which is < 8) denotes the class (see pdge]|171). For instance\lhegle macro
is defined as

\def\langle{\delimiter "426830A }

which means it belongs to class 4, opening. Similaxlyangle is of class 5, closing;
and \uparrow is of class 3, relation.

After \left and \right — that is, when EX is looking for a delimiter — the class
digit is ignored; otherwise — whengX is not looking for a delimiter — the rightmost
three digits are ignored, and the four remaining digits are treated\aathchar; see
above.

21.2.3 Finding a delimiter; successors

Typesetting a delimiter is a somewhat involved affair. FingK Tetermines the sizg
of the formula to be covered, which is twice the maximum of the height and depth of
the formula. Thus the formula may not look optimal if it is not centred itself.

The size of the delimiter should be at ledstelimiterfactor x /1000 and at least

y — \delimitershortfall. TeX then tries first the small variant, and if that one is
not satisfactory (or if theavv part of the delimiter is000) it tries the large variant.

If trying the large variant does not meet with succegs{ Takes the largest delimiter
encountered in this search; if no delimiter at all was found (which can happen if the
xyy part is also000), an empty box of width\nulldelimiterspace is taken.

Investigating a variant means, in sequence,

. if the current style (see pafje 169) is scriptscriptstyle\theriptscriptfont
of the family is tried;

. if the current style is scriptstyle or smaller thecriptfont of the family is
tried;

° otherwise the\textfont of the family is tried.

Victor Eijkhout — EX by Topic 161

Chapter 21. Characters in Math Mode

The plain format puts themex10 font in all three styles of family 3.

Looking for a delimiter at a certain position in a certain font means

if the character is large enough, accept it;

if the character is extendable, accept it;

otherwise, if the character has a successor, that is, it is part of a chain of
increasingly bigger delimiters in the same font, try the successor.

Information about successors and extensibility of a delimiter is coded in the font me-
tric file of the font. An extendable character has a top, a bottom, possibly a mid piece,
and a piece which is repeated directly below the top piece, and directly above the bot-
tom piece if there is a mid piece.

21.2.4 \big, \Big, \bigg, and \Bigg
delimiter macros

In order to be able to use a delimiter outside Mieft...\right context, or to spe-
cify a delimiter of a different size thangX would have chosen, four macros for ‘big’
delimiters exist:\big, \Big, \bigg, and\Bigg. These can be used with anything that
can follow \left or \right.

Twelve further macros (for instancebigl, \bigm, and \bigr) force such delimiters

in the context of an opening symbol, a binary relation, and a closing symbol respec-
tively:

\def\bigl{\mathopen\big}

\def\bigm{\mathrel\big} \def\bigr{\mathclose\big}

The ‘big’ macros themselves put the requested delimiter and a null delimiter around
an empty vertical box:

\def\big#1{{\nulldelimiterspace=0pt \mathsurround=0pt
\hbox{$\left#1\vbox to 8.5pt{}\right.$}}}

As an approximate measure, tlBag delimiters are one and a half times as large
(11.5pt) asbig delimiters; bigg ones are twice (14.5pt), arkligg ones are two and
a half times as large (17.5pt).

21.3 Radicals

A radical is a compound of a left delimiter and an overlined math expression. The
overlined expression is set in the cramped version of the surrounding style (see_ ppge 169).

In the plain format and the Computer Modern math fonts there is only one radical:
the square root construct

\def\sqrt{\radical"270370 }

The control sequenciradical is followed by a(24-bit number which specifies a
small and a large variant of the left delimiter as was explained above. Joining the
delimiter and the rule is done by letting the delimiter have a large depth, and a height
which is equal to the desired rule thickness. The rule can then be placed on the current
baseline. After the delimiter and the ruled expression have been joined the whole is
shifted vertically to achieve the usual vertical centring (see Chapler 23).

162 Victor Eijkhout — EX by Topic

21.4. Math accents

21.4 Math accents

Accents in math mode are specified by
\mathaccent(15-bit numbey(math field

Representing the 15-bit number &syzz, only the family y and the character po-
sition zz are used: an accented expression actdmaghord expression (see Chap-

ter[23).

In math mode whole expressions can be accented, whereas in text mode only charac-
ters can be accented. Thus in math mode accents can be stacked. However, the top
accent may (or, more likely, will) not be properly positioned horizontally. Therefore
the plain format has a maciekew that effectively shifts the top accent. Its definition

is

\def\skew#1#2#3{{#2{#3\mkern#imu}\mkern-#1mu}{}}

and it is used for instance like

$\skew4\hat{\hat x}$

which givesi.

For the correct positioning of accents over single characters the symbol and extension
font have a\skewchar: this is the largest accent that adds to the width of an accen-

ted character. Positioning of any accent is based on the width of the character to be
accented, followed by the skew character.

The skew characters of the Computer Modern math italic and symbol fonts are cha-
racter"7F, ‘™, and "30, ‘0", respectively. The\defaultskewchar value is assigned

to the \skewchar when a font is loaded. In plaingX this is -1, so fonts ordinarily

have no\skewchar.

Math accents can adapt themselves to the size of the accented expregXiomill T

look for a successor of an accent in the same way that it looks for a successor of a de-
limiter. In the Computer Modern math fonts this mechanism is used in\tliéehat
and\widetilde macros. For example,

\widehat x, \widehat{xy}, \widehat{xyz}
give
T, 7y, TYZ

respectively.

Victor Eijkhout — EX by Topic 163

Chapter 22

Fonts in Formulas

For math typesetting a single current font is not sufficient, as it is for text typesetting.
Instead EX uses several font families, and each family can contain three fonts. This
chapter explains how font families are organized, and hgi determines from what
families characters should be taken.

\fam The number of the current font family.

\newfam Allocate a new math font family.

\textfont Access the textstyle font of a family.

\scriptfont Access the scriptstyle font of a family.
\scriptscriptfont Access the scriptscriptstyle font of a family.

22.1 Determining the font of a character in math mode

The characters in math formulas can be taken from several different fonts (or better,
font families) without any user commands. For instance, in plgd math formulas
use the roman font, the math italic font, the symbol font and the math extension font.

In order to determine from which font a character is to be takgX donsiders for
each character in a formula ismathcode (this is treated in Chaptér P1). Mmathcode
is a 15-bit number of the formxyzz, where the hex digits have the following mea-
ning:

x: class,

y: family,

zz: position in font.
In general only the family determines from what font a character is to be taken. The
class of a math character is mostly used to control spacing and other aspects of type-
setting. Typical classes include ‘relation’, ‘operator’, ‘delimiter’.

Class 7 is special in this respect: it is called ‘variable family’. If a character has a
\mathcode of the form "7yzz it is taken from familyy, unless the parametéyfam
has a value in the range 0-15; then it is taken from farkitym.

22.2 Initial family settings

Both lowercase and uppercase letters are defined bgXrid have math code$71zz,
which means that they are of variable family, initially from family 1. AgXTsets

164

22.3. Family definition

fam=-1, that is, an invalid value, when a formula starts, characters are indeed taken
from family 1, which in plain BX is math italic.

Digits have math code'70zz so they are initially from family O, in plain gX the
roman font. All other character codes have a mathcode assigned IpXIagr
\mathcodez = x

which puts them in class 0, ordinary, and family O, roman in plagX.T

In plain TeX, commands such assl then set both a font and a family:
\def\sl{\fam\slfam\tensl}

so putting\s1 in a formula will cause all letters, digits, and uppercase Greek charac-
ters, to change to slanted style.

In most cases, any font can be assigned to any family, but two familiegXrh@ave a
special meaning: these are families 2 and 3. For instance, their numhépmwidimen
parameters is different from the usual 7. Family 2 needs 22 parameters, and family 3
needs 13. These parameters have all a very specialized meaning for positioning in
math typesetting. Their meaning is explained below, but for the full story the reader is
referred to appendix G of thegX book.

22.3 Family definition

TeX can access 16 families of fonts in math mode; font families have numbers 0-15.
The number of the current family is recorded in the paramgtfem.

The macro\newfam gives the number of an unused family. This number is assigned
using \chardef to the control sequence.

Each font family can have a font meant for text style, script style, and scriptscript
style. Below it is explained howgK determines in what style a (sub-) formula is to
be typeset.

Fonts are assigned to a family as follows:

\newfam\MyFam
\textfont\MyFam=\tfont \scriptfont\MyFam=\sfont
\scriptscriptfont\MyFam=\ssfont

for the text, script, and scriptscript fonts of a family. In general it is not necessary to
fill all three members of a family (but it is for family 3). IfgK needs a character from

a family member that has not been filled, it uses th@llfont instead, a primitive
font that has no characters (nor.afm file).

22.4 Some specific font changes
22.4.1 Change the font of ordinary characters and uppercase Greek

All letters and the uppercase Greek characters are by default in giirofTclass 7,
variable family, so changingfam will change the font from which they are taken. For
example

{\fam=9 x}

Victor Eijkhout — EX by Topic 165

Chapter 22. Fonts in Formulas

gives anx from family 9.

Uppercase Greek characters are defineduiythchardef statements in the plain for-
mat as "70zz, that is, variable family, initially roman. Therefore, uppercase Greek
character also change with the family.

22.4.2 Change uppercase Greek independent of text font

In the Computer Modern font layout, uppercase Greek letters are part of the roman
font; see pagé 2%7. Therefore, introducing another text font (with another layout) will
change the uppercase Greek characters (or even make them disappear). One way of
remedying this is by introducing a new family in which tkar font, which contains

the uppercase Greek, resides. The control sequences accessing these characters then
have to be redefined:

\newfam\Kgreek

\textfont\Kgreek=cmr10 ...

\def\hex#1{\ifcase#10\or 1\or 2\or 3\or 4\or 5\or 6\or
7\or 8\or 9\or A\or B\or C\or D\or E\or F\fi}

\mathchardef\Gamma="0\hex\Kgreek00 % was: "0100

\mathchardef\Beta ="O\hex\KgreekO1l % was: "0101

\mathchardef\Gamma ...

Note, by the way, the absence of a either a space Wredax token after#1 in the
definition of \hex. This implies that this macro can only be called with an argument
that is a control sequence.

22.4.3 Change the font of lowercase Greek
and mathematical symbols

Lowercase Greek characters have math ctdezz, meaning they are always from

the math italic family. In order to change this one might redefine them, for instance
\mathchardef\alpha="710B, to make them variable family. This is not done in plain
TeX, because the Computer Modern roman font does not have Greek lowercase, alt-
hough it does have the uppercase characters.

Another way is to redefine them liksmathchardef\alpha="0n0OB wheren is the
(hexadecimal) number of a family compatible with math italic, containing for instance
a bold math italic font.

22.5 Assorted remarks
22.5.1 New fonts in formulas

There are two ways to access a font inside mathematics. Aftefit\newfont=. ...
it is not possible to get the ‘a’ of the new font /. ..{\newfont al}...$ because
TeX does not look at the current font in math mode. What does work is

$... \hbox{\newfont a} ...$
but this precludes the use of the new font in script and scriptscript styles.

The proper solution takes a bit more work:

166 Victor Eijkhout — EX by Topic

22.5.

Assorted remarks

\font\newtextfont=. ..

\font\newscriptfont=... \font\newsscriptfont=...
\newfam\newfontfam
\textfont\newfontfam=\newtextfont
\scriptfont\newfontfam=\newscriptfont
\scriptscriptfont\newfontfam=\newsscriptfont
\def\newfont{\newtextfont \fam=\newfontfam}

after which the font can be used as
$... {\newfont a_{b_c}} ...$
in all three styles.

22.5.2 Evaluating the families

TeX will only look at what is actually in the\textfont et cetera of the various
families at the end of the whole formula. Switching fonts in the families is thus not
possible inside a single formula. The number of 16 families may therefore turn out to

be restrictive for some applications.

Victor Eijkhout — EX by Topic

167

Chapter 23

Mathematics Typesetting

TeX has two math modes, display and non-display, and four styles, display, text, script,
and scriptscript style, and every object in math mode belongs to one of eight classes.
This chapter treats these concepts.

\everymath Token list inserted at the start of a non-display formula.

\everydisplay Token list inserted at the start of a display formula.

\displaystyle Select the display style of mathematics typesetting.

\textstyle Select the text style of mathematics typesetting.

\scriptstyle Select the script style of mathematics typesetting.

\scriptscriptstyle Select the scriptscript style of mathematics typesetting.

\mathchoice Give four variants of a formula for the four styles of mathematics ty-
pesetting.

\mathord Let the following character or subformula function as an ordinary object.

\mathop Let the following character or subformula function as a large operator.

\mathbin Let the following character or subformula function as a binary operation.

\mathrel Let the following character or subformula function as a relation.

\mathopen Let the following character or subformula function as a opening symbol.

\mathclose Let the following character or subformula function as a closing symbol.

\mathpunct Let the following character or subformula function as a punctuation sym-
bol.

\mathinner Let the following character or subformula function as an inner formula.

\mathaccent Place an accent in math mode.

\vcenter Construct a vertical box, vertically centred on the math axis.

\limits Place limits over and under a large operator.

\nolimits Place limits of a large operator as subscript and superscript expressions.

\displaylimits Restore default placement for limits.

\scriptspace Extra space after subscripts and superscripts. PndEfault: 0.5pt

\nonscript Cancel the next glue item if it occurs in scriptstyle or scriptscriptstyle.

\mkern Insert a kern measured in mu units.

\mskip Insert glue measured in mu units.

\muskip Prefix for skips measured in mu units.

\muskipdef Define a control sequence to be a synonym fowmaskip register.

\newmuskip Allocate a new muskip register.

\thinmuskip Small amount of mu glue.

\medmuskip Medium amount of mu glue.

\thickmuskip Large amount of mu glue.

\mathsurround Kern amount placed before and after in-line formulas.

168

23.1. Math modes

\over Fraction.

\atop Place objects over one another.

\above Fraction with specified bar width.

\overwithdelims Fraction with delimiters.

\atopwithdelims Place objects over one another with delimiters.

\abovewithdelims Generalized fraction with delimiters.

\underline Underline the following{math symbol or group.

\overline Overline the following{math symbdl or group.

\relpenalty Penalty for breaking after a binary relation not enclosed in a subfor-
mula. Plain EX default: 500

\binoppenalty Penalty for breaking after a binary operator not enclosed in a subfor-
mula. Plain EX default: 700

\allowbreak Macro for creating a breakpoint.

23.1 Math modes

TeX changes to math mode when it encounters a math shift character, category 3, in
the input. After such an opening math shift it investigates (without expansion) the next
token to see whether this is another math shift. In the latter cgsesfarts processing

in display math mode until a closing double math shift is encountered:

.. $$ displayed formulas$..

Otherwise it starts processing an in-line formula in non-display math mode:
.. $ in-lineformula $..

The single math shift character is(horizontal command

Exception: displays are not possible in restricted horizontal mode, so insidlabax
the sequenc@$ is an empty math formula and not the start of a displayed formula.

Associated with the two math modes are tyioken parametérregisters (see also
Chaptef I}4): at the start of an in-line formula theverymath tokens are inserted; at
the start of a displayed formula theverydisplay tokens are inserted. Display math
is treated further in the next chapter.

Math modes can be tested foxifmmode is true in display and non-display math
mode, and\ifinner is true in non-display mode, but not in display mode.

23.2 Styles in math mode

Math formulas are set in any of eight styles:

D display style,

T text style,

S script style,

SS scriptscript style,

and the four ‘cramped’ variant®’, 7', S, SS’ of these. The cramped styles differ
mainly in the fact that superscripts are not raised as far as in the original styles.

Victor Eijkhout — EX by Topic 169

Chapter 23. Mathematics Typesetting

23.2.1 Superscripts and subscripts

TeX can typeset a symbol or group as a superscript (or subscript) to the preceding
symbol or group, if that preceding item does not already have a superscript (subscript).
Superscripts (subscripts) are specified by the syntax

(superscript{math field
or
(subscript{math field

where a(superscrigt ((subscrip}) is either a character of category 7 (8), or a control
sequenceé\let to such a character. The plain format has the control sequences

\let\sp=" \let\sb=_
as implicit superscript and subscript characters.

Specifying a superscript (subscript) expression as the first item in an empty math list
is equivalent to specifying it as the superscript (subscript) of an empty expression. For
instance,

$~{...} is equivalentto ${}"{...}

For TeX’s internal calculations, superscript and subscript expressions are made wider
by \scriptspace; the value of this in plain gX is 0.5pt.

23.2.2 Choice of styles

Ordering the four stylesD, T, S, and SS, and considering the other four as mere
variants, the style rules for math mode are as follows:

. In any style superscripts and subscripts are taken from the next smaller style.
Exception: in display style they are taken in script style.

. Subscripts are always in the cramped variant of the style; superscripts are only
cramped if the original style was cramped.

° In an{..\over..} formula in any style the numerator and denominator are
taken from the next smaller style.

. The denominator is always in cramped style; the numerator is only in cramped
style if the original style was cramped.

° Formulas under &sqrt or \overline are in cramped style.

Styles can be forced by the explicit commandssplaystyle, \textstyle, \scriptstyle,
and \scriptscriptstyle.

In display style and text style thetextfont of the current family is used, in script-
style the\scriptfont is used, and in scriptscriptstyle thescriptscriptfont is
used.

The primitive command

\mathchoice{D}HT}{SHSS

lets the user specify four variants of a formula for the four stylgX donstructs all
four and inserts the appropriate one.

170 Victor Eijkhout — EX by Topic

23.3. Classes of mathematical objects

23.3 Classes of mathematical objects

Objects in math mode belong to one of eight classes. Depending on the class the ob-
ject may be surrounded by some amount of white space, or treated specially in some
way. Commands exist to force symbols, or sequences of symbols, to act as belon-
ging to a certain class. In the hexadecimal representatigizz the class is the3-bit
numbe} x.

This is the list of classes and commands that force those classes. The examples are
from the plain format (see the tables starting at 262).

1. ordinary: lowercase Greek characters and those symbols that are ‘just sym-
bols’; the commandmathord forces this class.
2. large operator: integral and sum signs, and ‘big’ objects such\asgcap or

\bigotimes; the commandmathop forces this class.Characters that are large
operators are centred vertically, and they may behave differently in display
style from in the other styles; see below.

3. binary operation: plus and minus, and things such ®sap or \otimes; the
command\mathbin forces this class.

4, relation (also calledbinary relation): equals, less than, and greater than signs,
subset and superset, perpendicular, parallel; the commanathrel forces
this class.

5. opening symbol: opening brace, bracket, parenthesis, angle, floor, ceiling; the
command\mathopen forces this class.

6. closing symbol: closing brace, bracket, parenthesis, angle, floor, ceiling; the
command\mathclose forces this class.

7. punctuation: most punctuation marks, but is a relation, the\colon is a
punctuation colon; the commandhathpunct forces this class.

8. variable family: symbols in this class change font with théam parameter; in
plain TeX uppercase Greek letters and ordinary letters and digits are in this
class.

There is one further class: thianer subformulas. No characters can be assigned to
this class, but characters and subformulas can be forced into \fnbyhinner. The
(generalized fractiors and\left...\right groups are inner formulas. Inner formu-
las are surrounded by some white space; see the table below.

Other subformulas than those that are inner are treated as ordinary symbols. In par-
ticular, subformulas enclosed in braces are ordinga#b$ looks like ‘a+b', but
$a{+}b$ looks like ‘a+b. Note, however, that iff{a+b}$ the whole subformula is
treated as an ordinary symbol, not its components; therefore the result+i$'.

23.4 Large operators and their limits

The large operators in the Computer Modern fonts come in two sizes: one for text
style and one for display style. Control sequences sucksas are simply defined by
\mathchardef to correspond to a position in a font:

\mathchardef\sum="1350

but if the current style is display stylegX looks to see whether that character has a
successor in the font.

Large operators in text style behave as if they are followed\hylimits, which
places the limits as sub/superscript expressions after the operator:

Victor Eijkhout — EX by Topic 171

Chapter 23. Mathematics Typesetting

Y1
In display style they behave as if they are followed Yyimits, which places the
limits over and under the operator:

oo

>

k=1
The successor mechanism (see 161) ftstdke a larger variant of the delimiter
here.
The integral sign has been defined in plagKTas
\mathchardef\intop="1352 \def\int{\intop\nolimits}
which places the limits after the operator, even in display style:

o 2

/ e " dr = /)2
With \lirgits\nolimits or \nolimits\limits the last specification has precedence;
the default placement can be restored\ad splaylimits. For instance,
$... \sum\limits\displaylimits ... $
is equivalent to
$... \sum ... $
and
$$... \sum\nolimits\displaylimits ... $$
is equivalent to
$$... \sum ... $$

23.5 \Vertical centring: \vcenter

Each formula has amxis, which is for an in-line formula about half the x-height of
the surrounding text; the exact value is th#ontdimen22 of the font in family 2, the
symbol font, in the current style.

The bar line in fractions is placed on the axis; large operators, delimiter§arehter
boxes are centred on it.

A \vcenter box is a vertical box that is arranged so that it is centred on the math
axis. It is possible to give apread or to specification with a\vcenter box.

The \vcenter box is allowed only in math mode, and it does not behave like other
boxes; for instance, it can not be stored in a box register. It does not qualify as
a (box). See pagé 110 for a macro that repairs this.

23.6 Mathematical spacingmu glue

Spacing around mathematical objects is measureduirunits. A mu is 1/18th part
of \fontdimen6 of the font in family 2 in the current style, the ‘quad’ value of the
symbol font.

172 Victor Eijkhout — EX by Topic

23.6. Mathematical spacingu glue

23.6.1 Classification ofu glue

The user can specifgu spacing by\mkern or \mskip, but mostmu glue is inserted
automatically by EX, based on the classes to which objects belong (see above). First,
here are some rules of thumb describing the global behaviour.

° A \thickmuskip (default value in plain gX: 5mu plus 5mu) is inserted
around (binary) relations, except where these are preceded or followed by
other relations or punctuation, and except if they follow an open, or precede
a close symbol.

° A \medmuskip (default value in plain gX: 4mu plus 2mu minus 4mu) iS
put around binary operators.
. A \thinmuskip (default value in plain gX: 3mu) follows after punctuation,

and is put around inner objects, except where these are followed by a close or
preceded by an open symbol, and except if the other object is a large operator
or a binary relation.

° No mu glue is inserted after an open or before a close symbol except where
the latter is preceded by punctuation; mo glue is inserted also before punc-
tuation, except where the preceding object is punctuation or an inner object.

The following table gives the complete definition of mu glue between math objects.

o 1. 2: 3 4 5: 6:
Ord Op Bin Rel Open Close Punct Inner

Ord 0 1 (2 3 0 0 0 Q)

Op 1 1 * @3 O 0 0 @)

Bn 1 @@ * * @ * * (2

Rel 1 (3 ©® * 0 (& * * (2

Open| 0 0O * 0 O 0 0 0

Close|] 0 1 (20 3) O 0 0 Q)

Punctf (1) (1) * (1) 1) @O @ @

Inner | (1) 1 (2 (3) (1) 0 @ @

where the symbols have the following meanings:

0, no space; 1, thin space; 2, medium space; 3, thick space;

(+), insert only in text and display mode, not in script or scriptscript mode;
cases * cannot occur, because a Bin object is converted to Ord if it is the
first in the list, preceded by Bin, Op, Open, Punct, Rel, or followed by Close,
Punct, and Rel; also, a Rel is converted to Ord when it is followed by Close
or Punct.

Stretchablenu glue is set according to the same rules that govern ordinary glue. Howe-
ver, onlymu glue on the outer level can be stretched or shrunk; mnyglue enclosed
in a group is set at natural width.

23.6.2 Muskip registers
Like ordinary gluemu glue can be stored in registers, theuskip registers, of which
there are 256 ingX. The registers are denoted by
\muskip(8-bit numbey
and they can be assigned to a control sequence by
\muskipdef (control sequengéequal3(8-bit numbey
and there is a macro that allocates unused registers:

Victor Eijkhout — EX by Topic 173

Chapter 23. Mathematics Typesetting

\newmuskip(control sequencge
Arithmetic for mu glue exists as for glue; see Chapter 8.

23.6.3 Other spaces in math mode

In math mode space tokens are ignored; however, the math code of the space character
is "8000 in plain TgX, so if its category is made ‘letter’ or ‘other character’, it will
behave like an active character in math mode. See also[page 160.

Admissible glue in math mode is of typgenathematical skip which is either ahorizontal
skip) (see Chapt6) oxmskip(muglug. Leaders in math mode can be specified with
a (mathematical skip

A glue item preceded b¥nonscript is cancelled if it occurs in scriptstyle or script-
scriptstyle.

Control space functions in math mode as it does in horizontal mode.

In-line formulas are surrounded by kerns of sieathsurround, the so-called ‘math-
on’ and ‘math-off’ items. Line breaking can occur at the front of the math-off kern if
it is followed by glue.

23.7 Generalized fractions

Fraction-like objects can be set with six primitive commands of typeneralized
fraction). Each of these takes the preceding and the following subformulas and puts
them over one another, if necessary with a fraction bar and with delimiters.

\over is the ordinary fraction; the bar thickness \$ontdimen8 of the extension
font:

$\pi\over2$ gives ‘7’

\atop is equivalent to a fraction with zero bar thickness:

$\pi\atop2$ gives 7’
\above(dimen) specifies the thickness of the bar line explicitly:

$\pi\above 1pt 2§ gives 5’

To each of these three there corresponds.a.withdelims variant that lets the
user specify delimiters for the expression. For example, the most general command,
in terms of which all five others could have been defined, is

\abovewithdelims(delim)(delimy)(dimen}.

Delimiters in these generalized fractions do not grow with the enclosed expression: in
display mode a delimiter is taken which is at leAsbntdimen20 high, otherwise it

has to be at leastfontdimen21 high. These dimensions are taken from the font in
family 2, the symbol font, in the current style.

The control sequencesover, \atop, and \above are primitives, although they could
have been defined as . .withdelims. ., that is, with two null delimiters. Because of
these implied surrounding null delimiters, there is a kern of Siz€l1delimiterspace
before and after these simple generalized fractions.

174 Victor Eijkhout — EX by Topic

23.8. Underlining, overlining

23.8 Underlining, overlining

The primitive commanddunderline and \overline take a(math field argument,

that is, a{math symbol or a group, and draw a line under or over it. The result is an
‘Under’ or ‘Over’ atom, which is appended to the current math list. The line thickness
is font dimension 8 of the extension font, which also determines the clearance between
the line and the/math field.

Various other\over... and \under... commands exist in plaingK; these are all
macros that use thegX \halign command.

23.9 Line breaking in math formulas

In-line formulas can be broken after relations and binary operators. The respective pen-
alties are thé\relpenalty and the\binoppenalty. However, BX will only break

after such symbols if they are not enclosed in braces. Other breakpoints can be created
with \allowbreak, which is an abbreviation foxpenaltyoO.

Unlike in horizontal or vertical mode where putting two penalties in a row is equiva-
lent to just placing the smallest one, in math mode a penalty placed at a break point
— that is, after a relation or binary operator — will effectively replace the old penalty
by the new one.

23.10 Font dimensions of families 2 and 3

If a font is used in text mode,gK will look at its first 7 \fontdimen parameters (see
page[3]L), for instance to control spacing. In math, however, more font dimensions are
needed. gX will look at the first 22 parameters of the fonts in family 2, and the first
13 of the fonts in family 3, to control various aspects of math typesetting. The next
two subsections have been quoted loosely froim [3].

23.10.1 Symbol font attributes

Attributes of the font in family 2 mainly specify the initial vertical positioning of parts

of fractions, subscripts, superscripts, et cetera. The position determined by applying
these attributes may be further modified because of other conditions, for example the
presence of a fraction bar.

One text font dimension, number 6, the quad, determines the size of mu glue; see
above.

Fraction numerator attributes: minimum shift up, from the main baseline, of the base-
line of the numerator of a generalized fraction,

1. numl: for display style,
2. numz2: for text style or smaller if a fraction bar is present,
3. num3: for text style or smaller if no fraction bar is present.

Fraction denominator attributes: minimum shift down, from the main baseline, of the
baseline of the denominator of a generalized fraction,

1. denoml: for display style,

Victor Eijkhout — EX by Topic 175

Chapter 23. Mathematics Typesetting

2. denom?2: for text style or smaller.

Superscript attributes: minimum shift up, from the main baseline, of the baseline of a
superscript,

1. supl: for display style,
2. sup2: for text style or smaller, non-cramped,
3. sup3: for text style or smaller, cramped.

Subscript attributes: minimum shift down, from the main baseline, of the baseline of
a subscript,

1. subl: when no superscript is present,

2. sub2: when a superscript is present.

Script adjustment attributes: for use only with non-glyph, that is, composite, objects.
1. supdrop: maximum distance of superscript baseline below top of nucleus

2. suhdrop: minimum distance of subscript baseline below bottom of nucleus.

Delimiter span attributes: height plus depth of delimiter enclosing a generalized frac-
tion,

1. deliml: in display style,

2. delim2: in text style or smaller.

A parameter with many uses, the height of the math axis,

1. axisheight: the height above the baseline of the fraction bar, and the centre

of large delimiters and most operators and relations. This position is used in
vertical centring operations.

23.10.2 Extension font attributes

Attributes of the font in family 3 mostly specify the way the limits of large operators
are set.

The first parameter, number 8, defanlte_thickness, serves many purposes. It is the
thickness of the rule used for overlines, underlines, radical extenders (square root), and
fraction bars. Various clearances are also specified in terms of this dimension: between
the fraction bar and the numerator and denominator, between an object and the rule
drawn by an underline, overline, or radical, and between the bottom of superscripts
and top of subscripts.

Minimum clearances around large operators are as follows:

1. big op_spacingl: minimum clearance between baseline of upper limit and top
of large operator; see below.

2. big op_spacing2: minimum clearance between bottom of large operator and
top of lower limit.

3. big op_spacing3: minimum clearance between baseline of upper limit and top
of large operator, taking into account depth of upper limit; see below.

4. big op_spacing4: minimum clearance between bottom of large operator and
top of lower limit, taking into account height of lower limit; see below.

5. big op_spacing5: clearance above upper limit or below lower limit of a large
operator.

The resulting clearance above an operator is the maximum of parameter 7, and para-
meter 11 minus the depth of the upper limit. The resulting clearance below an operator
is the maximum of parameter 10, and parameter 12 minus the height of the lower li-

mit.

176 Victor Eijkhout — EX by Topic

23.10. Font dimensions of families 2 and 3

23.10.3 Example: subscript lowering

The location of a subscript depends on whether there is a superscript; for instance

X1 +YE=1
If you would rather have that look like
X, +Y? =1,

it suffices to specify
\fontdimeni16\textfont2=3pt \fontdimenl7\textfont2=3pt
which makes the subscript drop equal in both cases.

Victor Eijkhout — EX by Topic 177

Chapter 24

Display Math

Displayed formulas are set on a line of their own, usually somewhere in a para-
graph. This chapter explains how surrounding white space (both above/below and to
the left/right) is calculated.

\abovedisplayskip \belowdisplayskip Glue above/below a display. PlaigX default: 12pt

plus 3pt minus 9pt

\abovedisplayshortskip \belowdisplayshortskip Glue above/below a display
if the line preceding the display was short. PlagpKTdefaults:0Opt plus 3pt
and 7pt plus 3pt minus 4pt respectively.

\predisplaypenalty \postdisplaypenalty Penalty placed in the vertical list above/
below a display. Plain gX defaults: 10 000 and 0 respectively.

\displayindent Distance by which the box, in which the display is centred, is in-
dented owing to hanging indentation.

\displaywidth Width of the box in which the display is centred.

\predisplaysize Effective width of the line preceding the display.

\everydisplay Token list inserted at the start of a display.

\egno Place a right equation number in a display formula.

\leqgno Place a left equation number in a display formula.

24.1 Displays

TeX starts building a display when it encounters two math shift characters (characters
of category 3,$ in plain TgX) in a row. Another such pair (possibly followed by one
optional space) indicates the end of the display.

Math shift is a(horizontal command but displays are only allowed in unrestricted
horizontal mode £$ is an empty math formula in restricted horizontal mode). Displays
themselves, however, are started in the surrounding (possibly internal) vertical mode in
order to calculate quantities such @srevgraf; the result of the display is appended

to the vertical list.

The part of the paragraph above the display is broken into lines as an independent
paragraph (but\prevgraf is carried over; see below), and the remainder of the pa-
ragraph is set, starting with an empty list aNdpacefactor equal to 1000. The
\everypar tokens are not inserted for the part of the paragraph after the display, nor
is \parskip glue inserted.

178

24.2. Displays in paragraphs

Right at the beginning of the display theverydisplay token list is inserted (but
after the calculation of\displayindent, \displaywidth, and \predisplaysize).
See pag¢ 181 for an example of the use\eferydisplay.

The page builder is exercised before the display (but afteN#verydisplay tokens
have been inserted), and after the display finishes.

The ‘display style’ of math typesetting was treated in Chaptér 22.

24.2 Displays in paragraphs

Positioning of a display in a paragraph may be influenced by hanging indentation or
a \parshape specification. For this, gX uses the\prevgraf parameter (see Chap-
ter[18), and acts as if the display is three lines deep.

If n is the value of\prevgraf when the display starts — so there ardines of text
above the display A\prevgraf is set to ton + 3 when the paragraph resumes. The
display occupies, as it were, lines+ 1, n + 2, andn + 3. The shift and line width
for the display are those that would hold for limet 2.

The shift for the display is recorded idisplayindent; the line width is recorded

in \displaywidth. These parameters (and th@redisplaysize explained below)
are set immediately after th$ has been scanned. Usually they are equal to zero and
\hsize respectively. The user can change the values of these parameféraillTuse

the values that hold after the math list of the display has been processed.

Note that a display is vertical material, and therefore not influenced by settings of
\leftskip and \rightskip.

24.3 \Vertical material around displays
A display is preceded in the vertical list by

. a penalty of size\predisplaypenalty (plain TeX default 10 000), and

. glue of size\abovedisplayskip oOr \abovedisplayshortskip; this glue is
omitted in cases where ¥leqno equation number is set on a line of its own
(see below).

A display is followed by

° a penalty of sizé\postdisplaypenalty (default 0), and possibly

. glue of size\belowdisplayskip Or \belowdisplayshortskip; this glue is
omitted in cases where ateqno equation number is set on a line of its own
(see below).

The ‘short’ variants of the glue are taken if there is Yieqno left equation number,

and if the last line of the paragraph above the display is short enough for the display
to be raised a bit without coming too close to that line. In order to decide this, the
effective width of the preceding line is saved Wpredisplaysize. This value is
calculated immediately after the openifig of the display has been scanned, together
with the \displaywidth and \displayindent explained above.

Remembering that the part of the paragraph above the display has already been broken
into lines, the following method for finding the effective width of the last line ensues.

Victor Eijkhout — EX by Topic 179

Chapter 24. Display Math

TeX takes the last box of the list, which is a horizontal box containing the last line,
and locates the right edge of the last box in it. T\yeredisplaysize is then the
place of that rightmost edge, plus any amount by which the last line was shifted, plus
two ems in the current font.

There are two exceptions to this. Theredisplaysize is taken to be—\maxdimen

if there was no previous line, that is, the display started the paragraph, or it followed
another display\predisplaysize is taken to be\maxdimen if the glue in the last

line was not set at its natural width, which may happen if ¥parfillskip con-
tained only finite stretch. The reason for the last clause is that glue setting is slightly
machinedependent, and such dependences should be kept gX'®fglobal decision
processes.

24.4 Glue setting of the display math list

The display has to fit indisplaywidth, but in addition to the formula there may be
an equation number. The minimum separation between the formula and the equation
number should be one em in the symbol font, that\isgntdimen6\textfont?2.

If the formula plus any equation number and separation fit kidsplaywidth, the

glue in the formula is set at its natural width. If it does not fit, but the formula con-
tains enough shrink, it is shrunk. OtherwisgXTputs any equation number on a line

of its own, and the glue in the formula is set to fit it Wlisplaywidth. With the
equation number on a separate line the formula may now very well fit in the display
width; however, if it was a very long formula the box in which it is set may still be
overfull. TeX nevers breaks a displayed formula.

24.5 Centring the display formula: displacement

Based on the width of the box containing the formula — which may not really ‘contain’
it; it may be overfull — EX tries to centre the formula in thedisplaywidth, that is,
without taking the equation nhumber into account. Initially, a displacement is calculated
that is half the difference betweem@isplaywidth and the width of the formula box.

However, if there is an equation number that will not be put on a separate line and the
displacement is less than twice the width of the equation number, a new displacement
is calculated. This new displacement is zero if the formula started with glue; otherwise

it is such that the formula box is centred in the space left by the equation number.

If there was no equation number, or if the equation number will be put on a sepa-
rate line, the formula box is now placed, shifted right Yisplayindent plus the
displacement calculated above.

24.6 Equation numbers

The user can specify a equation number for a display by ending it with
\eqno{math mode materigb$

for an equation number placed on the right, or
\legno{math mode materigt$

for an equation number placed on the left.

180 Victor Eijkhout — EX by Topic

24.7. Non-centred displays

24.6.1 Ordinary equation numbers

Above it was described howgX calculates a displacement from the display formula
and the equation number, if this is to be put on the same line as the formula.

If the equation number was ¥leqno number, EX places a box containing

° the equation number,
° a kern with the size of the displacement calculated, and
° the formula.

This box is shifted right by\displayindent.

If the equation number was ateqno number, EX places a box containing

. the formula,
° a kern with the size of the displacement calculated, and
° the equation number.

This box is shifted right by\displayindent plus the displacement calculated.

24.6.2 The equation number on a separate line

Since displayed formulas may become rather bigl Tan decide (as was described
above) that any equation number should be placed on a line of its own. A left-placed
equation number is then to be placed above the display, in a box that is shifted right
by \displayindent; a right-placed equation number will be placed below the display,
in a box that is shifted to the right bydisplayindent plus \displaywidth minus

the width of the equation number box.

In both cases a penalty d0D 000 is placed between the equation nhumber box and the
formula.

TpX does not put extra glue above a left-placed equation number or below a right-
placed equation numbergX here relies on the baselineskip mechanism.

24.7 Non-centred displays

As a default, BX will centre displays. In order to get non-centred displays some ma-
cro trickery is needed.

One approach would be to write a mackDisplayEquation that would basically
look like

\def\DisplayEquation#1{%
\par \vskip\abovedisplayskip
\hbox{\kern\parindent$\displaystyle#1$}
\vskip\belowdisplayskip \noindent}

but it would be nicer if one could just write
$$... \egno ... $$
and having this come out as a leftaligning display.

Using the\everydisplay token list, the above idea can be realized. The basic idea
is to write

Victor Eijkhout — EX by Topic 181

Chapter 24. Display Math

\everydisplay{\IndentedDisplay}
\def\IndentedDisplay#1$${ ...

so that the macrdIndentedDisplay will receive the formula, including any equation
number. The first step is now to extract an equation number if it is present. This makes
creative use of delimited macro parameters.

\def\ExtractEqNo#1\eqno#2\eqno#3\relax
{\def\Equation{#1}\def\EqNo{#2}}
\def\IndentedDisplay#1$${%
\ExtractEqNo#1\eqno\eqgno\relax

Next the equation should be set in the available spatiesplaywidth:

\hbox to \displaywidth
{\kern\parindent
$\displaystyle\Equation$\hfil\EqNo}$$
}

Note that the macro ends in the closigg§ to balance the opening dollars that cau-
sed insertion of thé\everydisplay tokens. This also means that the box containing
the displayed material will automatically be surrounded\apovedisplayskip and
\belowdisplayskip glue. There is no need to uselisplayindent anywhere in
this macro, becausegX itself will shift the display appropriately.

182 Victor Eijkhout — EX by Topic

Chapter 25

Alignment

TeX provides a general alignment mechanism for making tables.

\halign Horizontal alignment.

\valign Vertical alignment.

\omit Omit the template for one alignment entry.

\span Join two adjacent alignment entries.

\multispan Macro to join a number of adjacent alignment entries.

\tabskip Amount of glue in between columns (rows) of &halign (\valign).

\noalign Specify vertical (horizontal) material to be placed in between rows (co-
lumns) of an\halign (\valign).

\cr Terminate an alignment line.

\crcr Terminate an alignment line if it has not already been terminatedday

\everycr Token list inserted after everycr or non-redundanicrcr.

\centering Glue register in plain g for centring \eqalign and \eqalignno. Va-
lue: Opt plus 1000pt minus 1000pt

\hideskip Glue register in plain gX to make alignment entries invisible. Value:
-1000pt plus 1fill

\hidewidth Macro to make preceding or following entry invisible.

25.1 Introduction

TeX has a sophisticated alignment mechanism, based on templates, with one template
entry per column or row. The templates may contain any common elements of the
table entries, and in general they contain instructions for typesetting the engés. T
first calculates widths (fohhalign) or heights (for\valign) of all entries; then it
typesets the whole alignment using in each column (row) the maximum width (height)
of entries in that column (row).

25.2 Horizontal and vertical alignment

The two alignment commands irgX are
\halign(box specificatiofp{(alignment material
for horizontal alignment of columns, and
\valign(box specificatiof{ (alignment material

183

Chapter 25. Alignment

for vertical alignment of rows\halign is a (vertical commanyg and \valign is a
(horizontal command

The braces induce a new level of grouping; they can be implicit.

The discussion below will mostly focus on horizontal alignments, but, replacing ‘co-
lumn’ by ‘row’ and vice versa, it applies to vertical alignments too.

25.2.1 Horizontal alignments:\halign

Horizontal alignments yield a list of horizontal boxes, the rows, which are placed on
the surrounding vertical list. The page builder is exercised after the alignment rows
have been added to the vertical list. The value \@tevdepth that holds before

the alignment is used for the baselineskip of the first row, and after the alignment
\prevdepth is set to a value based on the last row.

Each entry is processed in a group of its own, in restricted horizontal mode.
A special type of horizontal alignment exists: the display alignments, specified as
$$(assignmentdhalign(box specificatiof{. . .} (assignmenis$

Such an alignment is shifted bydisplayindent (see Chaptef 24) and surrounded
by \abovedisplayskip and \belowdisplayskip glue.

25.2.2 \Vertical alignments:\valign

Vertical alignments are ‘rotated’ horizontal alignments: they are placed on the surroun-
ding horizontal lists, and yield a row of columns. TRepacefactor value is treated

the same way as thgprevdepth for horizontal alignments: the value current before
the alignment is used for the first column, and the value reached after the last column
is used after the alignment. In between columns thpacefactor value is 1000.

Each entry is in a group of its own, and it is processed in internal vertical mode.

25.2.3 Material between the lines\noalign

Material that has to be contained in the alignment, but should not be treated as an
entry or series of entries, can be given by

\noalign(filler){(vertical mode materia}
for horizontal alignments, and

\noalign(filler){(horizontal mode materigt
for vertical alignments.

Examples are

\noalign{\hrule}

for drawing a horizontal rule between two lines of sitalign, and
\noalign{\penalty100}

for discouraging a page break (or line break) in between two rows (columns) of an
\halign (\valign).

184 Victor Eijkhout — EX by Topic

25.3. The preamble

25.2.4 Size of the alignment

The (box specification can be used to give the alignment a predetermined size: for
instance

\halign to \hsize{ ... }

Glue contained in the entries of the alignment has no role in this; any stretch or shrink
required is taken from th&tabskip glue. This is explained below.

25.3 The preamble

Each line in an alignment is terminated Byr; the first line is called thaemplate
line. It is of the form

ur#v1&. . . &up#v, \cr

where eachu;, v; is a (possibly empty) arbitrary sequence of tokens, and the template
entries are separated by tladignment tab character& in plain TeX), that is, any
character of category 4.

A u;#v; sequence is the template that will be used for ifie column: whatever se-
quenceq; the user specifies as the entry for that column will be inserted at the para-
meter character. The sequenggy;v; is then processed to obtain the actual entry for
the ¢ th column on the current line. See below for more details.

The lengthn of the template line need not be equal to the actual number of columns
in the alignment: the template is used only for as many items as are specified on a
line. Consider as an example

\halign{a#&b#&c#\cr 1&2\cr 1\cr}

which has a three-item template, but the rows have only one or two items. The output
of this is

alb2

al

25.3.1 Infinite preambles

For the case where the number of columns is not known in advance, for instance if
the alignment is to be used in a macro where the user will specify the columns, it
is possible to specify that a trailing piece of the preamble can be repeated arbitra-
rily many times. By preceding it witl&, an entry can be marked as the start of this
repeatable part of the preamble. See the examphmatrix below.

When the whole preamble is to be repeated, there will be an alignment tab character
at the start of the first entry:
\halign{& ... & ... \cr ... }

If a starting portion of the preamble is to be exempted from repetition, a double ali-
gnment tab will occur:

\halign{ ... & ... & ... & ... & ... \er ... }

The repeatable part need not be used an integral number of times. The alignment rows
can end at any time; the rest of the preamble is then not used.

Victor Eijkhout — EX by Topic 185

Chapter 25. Alignment

25.3.2 Brace counting in preambles

Alignments may appear inside alignments, $X Tises the following rule to determine
to which alignment ar& or \cr control sequence belongs:

All tab characters andcr tokens of an alignment should be on the
same level of grouping.

From this it follows that tab characters ahdr tokens can appear inside an entry if
they are nested in braces. This makes it possible to have nested alignments.

25.3.3 Expansion in the preamble

All tokens in the preamble — apart from the tab characters — are stored for insertion
in the entries of the alignment, but a token preceded\fyan is expanded while the
preamble is scanned. See below for the functioNsgdan in the rest of the alignment.

25.3.4 \tabskip

Entries in an alignment are set to take the width of the largest element in their co-
lumn. Glue for separating columns can be specified by assigningdbskip. TeX
inserts this glue in between each pair of columns, and before the first and after the
last column.

The value of\tabskip that holds outside the alignment is used before the first co-
lumn, and after all subsequent columns, unless the preamble contains assignments to
\tabskip. Any assignment to\tabskip is executed while gX is scanning the pre-
amble; the value that holds when a tab character is reached will be used at that place
in each row, and after all subsequent columns, unless further assignments occur. The
value of \tabskip that holds when\cr is reached is used after the last column.

Assignments to\tabskip in the preamble are local to the alignment, but not to the
entry where they are given. These assignments are ordinary glue assignments: they
remove any optional trailing space.

As an example, in the following table there is no tabskip glue before the first and
after the last column; in between all columns there is stretchable tabskip.

\tabskip=0Opt \halign to \hsize{

\vrule#\tabskip=Opt plus 1fil\strut&
\hfil#\hfil& \vrule#& \hfil#\hfil& \vrule#& \hfil#\hfil&
\tabskip=0pt\vrule#\cr

\noalign{\hrule}
&\multispan5\hfil Just a table\hfil&\cr

\noalign{\hrule}
&one&&twok&three&\cr &a&&b&&c&\cr

\noalign{\hrule}
}

The result of this is

Just a table
one two three
a b c

All of the vertical rules of the table are in a separate column. This is the only way to
get the space around the items to stretch.

186 Victor Eijkhout — EX by Topic

25.4. The alignment

25.4 The alignment

After the template line any number of lines terminated \ay can follow. EX reads

all of these lines, processing the entries in order to find the maximal width (height) in
each column (row). Because all entries are kept in memory, long tables can overflow
TeX's main memory. For such tables it is better to write a special-purpose macro.

25.4.1 Reading an entry

Entries in an alignment are composed of the constamind v parts of the template,
and the variablen part. Basically X forms the sequence of tokensyv and pro-
cesses this. However, there are two special cases wigtehds to expand before it
forms this sequence.

Above, the\noalign command was described. Since this requires a different treat-
ment from other alignment entriespq expands, after it has read\&r, the first token

of the first o string of the next line to see whether that is or expand&doealign.
Similarly, for all entries in a line the first token is expanded to see whether it is or
expands to\omit. This control sequence will be described below.

Entries starting with an\if... conditional, or a macro expanding to one, may be
misinterpreted owing to this premature expansion. For example,

\halign{$#$\cr \ifmmode alelse b\fi\cr}
will give
b

because the conditional is evaluated before math mode has been set up. The solution
is, as in many other cases, to insertzelax control sequence to stop the expansion.
Here the\relax has to be inserted at the start of the alignment entry.

If neither \noalign nor \omit (See below) is found,2X will process an input stream
composed of the: part, thea tokens (which are delimited by eith@r or \span, see
below), and thev part.

Entries are delimited by, \span, or \cr, but only if such a token occurs on the
same level of grouping. This makes it possible to have an alignment as an entry of
another alignment.

25.4.2 Alternate specifications\omit

The template line will rarely be sufficient to describe all lines of the alignment. For
lines where items should be set differently the commapdit exists: if the first
token in an entry is (or expands tdpmit the trivial template# is used instead of
what the template line specifies.

The following alignment uses the same template for all columns, but
in the second column akomit command is given.
\tabskip=1lem
\halign{&$<#>$\cr a&\omit (b)&c \cr}
The output of this is
<a> (b) <c>

Victor Eijkhout — EX by Topic 187

Chapter 25. Alignment

25.4.3 Spanning across multiple columnsispan

Sometimes it is desirable to have material spanning several columns. The most obvious
example is that of a heading above a table. For tpd$ frovides the\span command.

Entries are delimited either bg, by \cr, or by \span. In the last case gX will
omit the tabskip glue that would normally follow the entry thus delimited, and it will
typeset the material just read plus the following entry in the joint space available.
As an example,

\tabskip=1lem
\halign{&#\cr a&b&c&d\cr a&\hrulefill\span\hrulefill&d\cr}

gives
a b cd
a _d

Note that there is no tabskip glue in between the two spanned columns, but there is
tabskip glue before the first column and after the last.

Using the\omit command this same alignment could have been generated as
\halign{&#\cr a&b&c&d\cr a&\hrulefill\span\omit&d\cr}

The \span\omit combination is used in the plaingX macro \multispan: for in-
stance

\multispand4 gives \omit\span\omit\span\omit\span\omit

which spans across three tabs, and removes the templates of four entries. Repeating
the above example once again:

\halign{&#\cr a&b&c&d\cr a&\multispan2\hrulefill&d\cr}

The argument of\multispan is a single token, not a number, so in order to span
more than 9 columns the argument should be enclosed in braces, for instarlge span{12}.
Furthermore, a space after a single-digit argument will wind up in the output.

For a ‘low budget’ solution to spanning columns plagXThas the macrohidewidth,
defined by

\newskip\hideskip \hideskip=-1000pt plus 1fill
\def\hidewidth{\hskip\hideskip}

Putting \hidewidth at the beginning or end of an alignment entry will make its width
zero, with the material in the entry sticking out to the left or right respectively.

25.4.4 Rulesin alignments

Horizontal rules inside a horizontal alignment will mostly be across the width of the
alignment. The easiest way to attain this is to use

\noalign{\hrule}

lines inside the alignment. If the alignment is contained in a vertical box, lines above
and below the alignment can be specified with

\vbox{\hrule \halign{...} \hrule}
The most general way to get horizontal lines in an alignment is to use
\multispann\hrulefill

188 Victor Eijkhout — EX by Topic

25.5. Example: math alignments

which can be used to underline arbitrary adjacent columns.

Vertical rules in alignments take some more care. Since a horizontal alignment breaks
up into horizontal boxes that will be placed on a vertical ligtgX Twill insert ba-
selineskip glue in between the rows of the alignment. If vertical rules in adjacent
rows are to abut, it is necessary to prevent baselineskip glue, for instance by the
\offinterlineskip macro.

In order to ensure that rows will still be properly spaced it is then necessary to place
a strut somewhere in the preamble. A strut is an invisible object with a certain height
and depth. Putting that in the preamble guarantees that every line will have at least
that height and depth. In the plain formgétrut is defined statically as

\vrule height8.5pt depth3.5pt widthOpt

so this must be changed when other fonts or sizes are used.

It is a good idea to use a whole column for a vertical rule, that is, to write

\vrule#&

in the preamble and to leave the corresponding entry in the alignment empty. Omitting
the vertical rule can then be done by specifyixgnit, and the size of the rule can

be specified explicitly by putting, for instancegight 15pt in the entry instead of
leaving it empty. Of course, tabskip glue will now be specified to the left and right of
the rule, so some extra tabskip assignments may be needed in the preamble.

25.45 Endofaline:\cr and \crcr

All lines in an alignment are terminated by ther control sequence, including the last
line. TeX is not able to infer from a closing brace in thepart that the alignment has
ended, because an unmatched closing brace is perfectly valid in an alignment entry; it
may match an opening brace in thepart of the corresponding preamble entry.

TeX has a primitive commandcrcr that is equivalent tocr, but it has no effect if
it immediately follows a\cr. Consider as an example the definition in plapXTof
\cases:

\def\cases#1{%
\left\{\,\vcenter{\normalbaselines\m@th
\ialign{ $##\hfil$& \quad##\hfil \crcr #1l\crcrl}}/,
\right.}
Because of the\crcr after the user argumenti, the following two applications of
this macro

\cases{1&2\cr 3&4} and \cases{1&2\cr 3&4\cr}

both work. In the first case th&crcr in the macro definition ends the last line; in
the second case the useXKsr ends the line, and th&crcr is redundant.

After \cr and after a non-redundaitrcr the (token parametér\everycr is inser-
ted. This includes th&cr terminating the template line.

25.5 Example: math alignments

The plain format has several alignment macros that function in math mode. One ex-
ample is\matrix, defined by

Victor Eijkhout — EX by Topic 189

Chapter 25. Alignment

\def\matrix#1{\null\, \vcenter{\normalbaselines\m@th
\ialign{\hfil$##$\hfil && \quad\hfil$##$\hfillcrcr
\mathstrut\crcr
\noalign{\kern-\baselineskip}
#1\crcr
\mathstrut\crcr
\noalign{\kern-\baselineskip}}}\,}

This uses a repeating (starting witlk) second preamble entry; each entry is centred

by an\hfil before and after it, and there is\guad of space in between columns.
Tabskip glue was not used for this, because there should not be any glue preceding or
following the matrix.

The combination of amathstrut and \kern-\baselineskip above and below the
matrix increases the vertical size such that two matrices with the same number of
rows will have the same height and depth, which would not otherwise be the case
if one of them had subscripts in the last row, but the other not. Wethstrut
causes interline glue to be inserted and, because it has a size ejbaktd ineskip,

the negative kern will effectively leave only the interline glue, thereby buffering any
differences in the first and last line. Only to a certain point, of course: objects bigger
than the opening brace will still result in a different height or depth of the matrix.

Another, more complicated, example of an alignment for math modedalignno.

\def\eqgalignno#1{\begin{disp}1@y \tabskip\centering
\halign to\displaywidth{

\hfil$\@lign\displaystyle{##}$/ -- first column
\tabskip\z@skip
&$\@lign\displaystyle{{}##}$\hfil), -- second column
\tabskip\centering
&\1lap{$\Qlign##3$}7 -- third column
\tabskip\z@skip\crcr % end of the preamble
#1\crcr}}

Firstly, the tabskip is set to zero after the equation number, so this number is set
flush with the right margin. Since it is placed by lap, its effective width is zero.
Secondly, the tabskip between the first and second columns is also zero, and the tabs-
kip before the first column and after the second\éentering, which is Opt plus

1000pt minus 1000pt, so the first column and second are jointly centred in the
\hsize. Note that, because of theinus 1000pt, these two columns will happily

go outside the left and right margins, overwriting any equation numbers.

190 Victor Eijkhout — EX by Topic

Chapter 26

Page Shape

This chapter treats some of the parameters that determine the size of the page and
how it appears on paper.

\topskip Minimum distance between the top of the page box and the baseline of the
first box on the page. PlaingX default: 10pt

\hoffset \voffset Distance by which the page is shifted right/down with respect
to the reference point.

\vsize Height of the page box. PlaingX default: 8.9in

\maxdepth Maximum depth of the page box. PlaigX default: 4pt

\splitmaxdepth Maximum depth of a box split off by Avsplit operation. Plain
TeX default: \maxdimen

26.1 The reference point for global positioning

It is a TeX convention, to which output device drivers must adhere, that the top left

point of the page is one inch from the page edges. Unfortunately this may lead to lots
of trouble, for instance if a printer (or the page description language it uses) takes,
say, thelower left corner as the reference point, and is factory set to US paper sizes,
but is used with European standard A4 paper.

The page is shifted on the paper if one assigns non-zero valuédddfset or
\voffset: positive values shift to the right and down respectively.

26.2 \topskip

The \topskip ensures to a certain point that the first baseline of a page will be at
the same location from page to page, even if font sizes are switched between pages or
if the first line has no ascenders.

Before the first box on each page some glue is inserted. This glue has the same stretch
and shrink as\topskip, but the natural size is the natural size \afopskip minus
the height of the first box, or zero if this would be negative.

Plain X sets\topskip to 10pt. Thus the top lines of pages will have their baselines
at the same place if the top portion of the characters is ten point or less. For the

191

Chapter 26. Page Shape

Computer Modern fonts this condition is satisfied if the font size is less than (about)
13 points; for larger fonts the baseline of the top line will drop.

The height of the page box for a page containing only text (and assuming a zero
\parskip) will be the \topskip plus a number of times thg§baselineskip. Thus
one can define a macro to compute tesize from the number of lines on a page:

\def\HeightInLines#1{\count@=#1\relax
\advance\count@ by -1\relax
\vsize=\baselineskip
\multiply\vsize by \count@
\advance\vsize by \topskip}

Calculating the\vsize this way will prevent underfull boxes for text-only pages.

In cases where the page does not start with a line of text (for instance a rule), the
topskip may give unwanted effects. To prevent these, start the page with

\hbox{}\kern-\topskip
followed by what you wanted on top.

Analogous to the\topskip, there is a\splittopskip for pages generated by a
\vsplit operation; see the next chapter.

26.3 Page height and depth

TeX tries to build pages as avbox of height \vsize; see also\pagegoal in the
next chapter.

If the last item on a page has an excessive depth, that page would be noticeably longer
than other pages. To prevent this phenomengX dses\maxdepth as the maximum
depth of the page box. If adding an item to the page would make the depth exceed
this quantity, then the reference point of the page is moved down to make the depth
exactly \maxdepth.

The ‘raggedbottom’ effect is obtained in plaineX by giving the \topskip some
finite stretchability: 10pt plus 60pt. Thus the natural height of box 255 can vary
when it reaches the output routine. Pages are then shipped out (more or less) as

\dimen0=\dp255 \unvbox255
\ifraggedbottom \kern-\dimenO \vfil \fi

The \vfil causes the topskip to be set at natural width, so the effect is one of a fixed
top line and a variable bottom line of the page.

Before \box255 is unboxed in the plain gX output routine,\boxmaxdepth iS set
to \maxdepth SO0 that this box will made under the same assumptions that the page
builder used when putting togeth&box255.

The depth of box split off by Avsplit operation is controlled by thgsplitmaxdepth
parameter.

192 Victor Eijkhout — EX by Topic

Chapter 27

Page Breaking

This chapter treats the ‘page builder’: the part eXTthat decides where to break the
main vertical list into pages. The page builder operates before the output routine, and
it hands its result ilf\box255 to the output routine.

\vsplit Split of a top part of a box. This is comparable with page breaking.

\splittopskip Minimum distance between the top of what remains aft@wsplit
operation, and the first item in that box. PlaipXTdefault: 10pt

\pagegoal Goal height of the page box. This starts\atsize, and is diminished by
heights of insertion items.

\pagetotal Accumulated natural height of the current page.

\pagedepth Depth of the current page.

\pagestretch Accumulated zeroth-order stretch of the current page.

\pagefilstretch Accumulated first-order stretch of the current page.

\pagefillstretch Accumulated second-order stretch of the current page.

\pagefilllstretch Accumulated third-order stretch of the current page.

\pageshrink Accumulated shrink of the current page.

\outputpenalty Value of the penalty at the current page break, 161000 if the
break was not at a penalty.

\interlinepenalty Penalty for breaking a page between lines of a paragraph. Plain
TeX default: 0

\clubpenalty Additional penalty for breaking a page after the first line of a para-
graph. Plain §X default: 150

\widowpenalty Additional penalty for breaking a page before the last line of a pa-
ragraph. Plain gX default: 150

\displaywidowpenalty Additional penalty for breaking a page before the last line
above a display formula. PlaingX default: 50

\brokenpenalty Additional penalty for breaking a page after a hyphenated line. Plain
TeX default: 100

\penalty Place a penalty on the current list.

\lastpenalty If the last item on the list was a penalty, the value of this.

\unpenalty Remove the last item of the current list if this was a penalty.

27.1 The current page and the recent contributions

The main vertical list of X is divided in two parts: the ‘current page’ and the list of
‘recent contributions’. Any material that is added to the main vertical list is appended

193

Chapter 27. Page Breaking

to the recent contributions; the act of moving the recent contributions to the current
page is known as ‘exercising the page builder'.

Every time something is moved to the current pageX Tomputes the cost of breaking
the page at that point. If it decides that it is past the optimal point, the current page
up to the best break so far is put ¥ox255 and the remainder of the current page

is moved back on top of the recent contributions. If the page is broken at a penalty,
that value is recorded iNoutputpenalty, and a penalty of siz&0000 is placed on

top of the recent contributions; otherwisgutputpenalty is set to10000.

If the current page is empty, discardable items that are moved from the recent con-
tributions are discarded. This is the mechanism that lets glue disappear after a page
break and at the top of the first page. When the first non-discardable item is moved
to the current page, thetopskip glue is inserted; see the previous chapter.

The workings of the page builder can be made visible by seftitithcingpages to
some positive value (see Chapfel 34).

27.2 Activating the page builder

The page builder comes into play in the following circumstances.

° Around paragraphs: after theverypar tokens have been inserted, and after
the paragraph has been added to the vertical list. See the end of this chapter
for an example.

. Around display formulas: after thgeverydisplay tokens have been inserted,
and after the display has been added to the list.

. After \par commands, boxes, insertions, and explicit penalties in vertical mode.

° After an output routine has ended.

In these places the page builder moves the recent contributions to the current page.
Note that EX need not be in vertical mode when the page builder is exercised. In
horizontal mode, activating the page builder serves to move preceding vertical glue
(for example,\parskip, \abovedisplayskip) to the page.

The \end command — which is only allowed in external vertical mode — terminates a
TeX job, but only if the main vertical list is empty anddeadcycles = 0. If this is
not the case the combination
\hbox{}\vfill\penalty—23°
is appended, which forces the output routine to act.

27.3 Page length bookkeeping

The height and depth of the page box that reaches the output routine are determined by
\vsize, \topskip, and \maxdepth as described in the previous chapteXTplaces

the \topskip glue when the first box is placed on the current page; ‘theize

and \maxdepth are read when the first box or insertion occurs on the page. Any
subsequent changes to these parameters will not be noticeable until the next page or,
more strictly, until after the output routine has been called.

After the first box, rule, or insertion on the current page Wweize is recorded in
\pagegoal, and its value is not looked at untioutput has been active. Changing

194 Victor Eijkhout — EX by Topic

27.4. Breakpoints

\pagegoal does have an effect on the current page. When the page is empty, the
pagegoal iS\maxdimen, and \pagetotal is zero.

Accumulated dimensions and stretch are available in the paramgtggstotal, \pagedepth,
\pagestretch, \pagefilstretch, \pagefillstretch, \pageshrink, and\pagefilllstretch.
They are set by the page builder. The stretch and shrink parameters are updated every
time glue is added to the page. The depth parameter becomes zero if the last item was
kern or glue.

These parameters agfgpecial dimejs; an assignment to any of them is &ntimate
assignment and it is automatically global.

27.4 Breakpoints
27.4.1 Possible breakpoints

Page breaks can occur at the same kind of locations where line breaks can occur:

. at glue that is preceded by a non-discardable item;
° at a kern that is immediately followed by glue;
. at a penalty.

TeX inserts interline glue and various sorts of interline penalties when the lines of a
paragraph are added to the vertical list, so there will usually be sufficient breakpoints
on the page.

27.4.2 Breakpoint penalties

If TEX decides to break a page at a penalty item, this penalty will, most of the time,
be one that has been inserted automatically between the lines of a paragraph.

If the last item on a list (not necessarily a vertical list) is a penalty, the value of
this is recorded in the paramet&Lastpenalty. If the item is other than a penalty,

this parameter has the value zero. The last penalty of a list can be removed with the
command\unpenalty. See Sectiof 5.9.6 for an example.

Here is a list of such penalties:

\interlinepenalty Penalty for breaking a page between lines of a paragraph. In
plain TeX this is zero, so no penalty is added in between lingX @an then
find a valid breakpoint at th&baselineskip glue.

\clubpenalty Extra penalty for breaking a page after the first line of a paragraph.
In plain TeX this is 150. This amount, and the following penalties, are ad-
ded to the\interlinepenalty, and a penalty of the resulting size is in-
serted after thé\hbox containing the first line of a paragraph instead of the
\interlinepenalty.

\widowpenalty Extra penalty for breaking a page before the last line of a paragraph.
In plain TeX this is 150.

\displaywidowpenalty Extra penalty for breaking a page before the last line above
a display formula. The default value in plaipXis 50.

\brokenpenalty Extra penalty for breaking a page after a hyphenated line. The default
value in plain BEX is 100.

Victor Eijkhout — EX by Topic 195

Chapter 27. Page Breaking

If the resulting penalty is zero, it is not placed.

Penalties can also be inserted by the user. For instance, the plain format has macros
to encourage (possibly, force) or prohibit page breaks:

\def\break{\penalty-10000 } % force break
\def\nobreak{\penalty10000 } % prohibit break
\def\goodbreak{\par\penalty-500 } 7 encourage page break

Also, \vadjust{\penalty ... } is a way of getting penalties in the vertical list.

This can be used to discourage or encourage page breaking after a certain line of a
paragraph.

27.4.3 Breakpoint computation

Whenever an item is moved to the current page,
TeX computes the penalty and the badness
associated with breaking the page at that plage.
From the penalty and the badness the costf
breaking is computed. underfull page

The place of least cost is remembered, and when b=10000

the cost is infinite, that is, the page is overfull,
or when the penalty i < —10000, the current
page is broken at the (last remembered) place
of least cost. The broken-off piece is then put
in \box255 and the output routine token list is
inserted. Box 255 is always given a height of b < 10000
\vsize, regardless of how much material it has:

feasible breakpoints

The badness calculation is based on the amount ©verfull page

of stretching or shrinking that is necessary to fjt b= o0
the page in a box with heightvsize and ma-
ximum depth\maxdepth. This calculation is the
same as for line breaking (see Chagter 8). Bagd-
ness is a valu® < b < 10000, except when
pages are overfull; theh = co.

Some penalties are implicitly inserted bgX[for instance the\interlinepenalty
which is put in between every pair of lines of a paragraph. Other penalties can be
explicitly inserted by the user or a user macro. A penalty value 10000 inhibits
breaking; a penalty < —10000 (in external vertical mode) forces a page break, and
immediately activates the output routine.

Cost calculation proceeds as follows:

1. When a penalty is so low that it forces a page break and immediate invocation
of the output routine, but the page is not overfull, that is
b<oo and p< -—10000
the cost is equal to the penalty= p.
2. When penalties do not force anything, and the page is not overfull, that is
b<oo and |p| < 10000
the cost isc = b+ p.
3. For pages that are very bad, that is

196 Victor Eijkhout — EX by Topic

27.5. \vsplit

b=10000 and |p| < 10000

the cost isc = 10 000.
4, An overfull page, that is

b=occ and p< 10000
gives infinite cost:c = oco. In this case gX decides that the optimal break
point must have occurred earlier, and it invokes the output routine. Values
of \insertpenalties (see Chaptefr 29) that exce@d000 also give infinite
cost.

The fact that a penalty < —10000 activates the output routine is used extensively
in the BTEX output routine: the excesg| — 10000 is a code indicating the reason for
calling the output routine; see also the second example in the next chapter.

27.5 \vsplit
The page-breaking operation is available to the user throughthplit operation.

\setboxl = \vsplit2 to \dimen3

assigns to box 1 the top part of sixédimen3 of box 2. This material
is actually removed from box 2. Compare this with splitting off a
chunk of size\vsize from the current page.

The extracted result of
\vsplit(8-bit numbefto(dimen
is a box with the following properties.

. Height equal to the specifiedimen); TexX will go through the original box
register (which must contain a vertical box) to find the best breakpoint. This
may result in an underfull box.

. Depth at mosf\splitmaxdepth; this is analogous to th&maxdepth for the
page box, rather than theéboxmaxdepth that holds for any box.
. A first and last mark in thésplitfirstmark and \splitbotmark registers.

The remainder of th&vsplit operation is a box where

° all discardables have been removed from the top;

. glue of size\splittopskip has been inserted on top; if the box being split
was box 255, it already ha¥topskip glue on top;

. its depth has been forced to be at mysplitmaxdepth.

The bottom of the original box is always a valid breakpoint for Yheplit operation.
If this breakpoint is taken, the remainder box register is void. The extracted box can
be empty; it is only void if the original box was void, or not a vertical box.

Typically, the \vsplit operation is used to split off part ofbox255. By setting
\splitmaxdepth equal to \boxmaxdepth the result is something that could have
been made by gX’s page builder. After pruning the top ofbox255, the mark re-
gisters\firstmark and \botmark contain the first and last marks on the remainder
of box 255. See the next chapter for more information on marks.

Victor Eijkhout — EX by Topic 197

Chapter 27. Page Breaking

27.6 Examples of page breaking
27.6.1 Filling up a page

Suppose a certain vertical box is too large to fit on the remainder of the page. Then
\vfil\vbox{ ... }
is the wrong way to fill up the page and push the box to the ngx.cEn only break

at the start of the glue, and thesrfil is discarded after the break: the result is an
underfull, or at least horribly stretched, page. On the other hand,

\vfil\penaltyO % or any other value
\vbox{ ... }

is the correct way: gX will break at the penalty, and the page will be filled.

27.6.2 Determining the breakpoint

In the following examples th&vsplit operation is used, which has the same mecha-
nism as page breaking.

Let the macros and parameter settings

\offinterlineskip \showboxdepth=1
\def\High{\hbox{\vrule height5pt}}
\def\HighAndDeep{\hbox{\vrule height2.5pt depth2.5pt}}

be given.

First let us consider an example where a vertical list is simply stretched in order to
reach a break point.

\splitmaxdepth=4pt

\setbox1=\vbox{\High \vfil \HighAndDeep}
\setbox2=\vsplitl to 9pt

gives

> \box2=

\vbox(9.0+2.5)x0.4, glue set 1.5fil
.\hbox(5.0+0.0)x0.4 []

.\glue 0.0 plus 1.0fil

.\glue (\lineskip) 0.0
.\hbox(2.5+2.5)x0.4 []

The two boxes together have a height7fspt, so the glue has to stretch 5pt.

Next, we decrease the allowed depth of the resulting list.
\splitmaxdepth=2pt

\setbox1=\vbox{\High \vfil \HighAndDeep}
\setbox2=\vsplitl to 9pt

gives

> \box2=

\vbox(9.0+2.0)x0.4, glue set 1.0fil
.\hbox (5.0+0.0)x0.4 []

.\glue 0.0 plus 1.0fil

.\glue(\lineskip) 0.0
.\hbox(2.5+2.5)x0.4 []

198 Victor Eijkhout — EX by Topic

27.6. Examples of page breaking

The reference point is moved down half a point, and the stretch is correspondingly
diminished, but this motion cannot lead to a larger dimension than was specified.

As an example of this, consider the sequence
\splitmaxdepth=3pt

\setbox1=\vbox{\High \kernl.5pt \HighAndDeep}
\setbox2=\vsplitl to 9pt

This gives a box exactly 9 points high and 2.5 points deep. Setpgditmaxdepth=2pt
does not increase the height by half a point; instead, an underfull box results because
an earlier break is taken.

Sometimes the timing of actions is importangXTfirst locates a breakpoint that will
lead to the requested height, then checks whether accommodatingndkéepth or
\splitmaxdepth will not violate that height.

Consider an example of this timing: in
\splitmaxdepth=4pt

\setbox1=\vbox{\High \vfil \HighAndDeep}
\setbox2=\vsplitl to 7pt

the result isnot a box of 7 points high and 3 points deep. Instead,

> \box2=
\vbox(7.0+0.0)x0.4
.\hbox(5.0+0.0)x0.4 []

which is an underfull box.

27.6.3 The page builder after a paragraph

After a paragraph, the page builder moves material to the current page, but it does not
decide whether a breakpoint has been found yet.

\output{\interrupt \plainoutputl}) show when you’re active
\def\nl{\hfil\break}\vsize=22pt % make pages of two lines
a\nl b\nl c\par \showlists % make a 3-line paragraph
will report
current page:
[...]
total height 34.0
goal height 22.0
prevdepth 0.0, prevgraf 3 lines
Even though more than enough material has been gathgsedput
is only invoked when the next paragraph starts: typing gives
! Undefined control sequence.
<output> {\interrupt
\plainoutput }

<to be read again>

d
when \output is inserted afteAeverypar.

Victor Eijkhout — EX by Topic 199

Chapter 28

Output Routines

The final stages of page processing are performed by the output routine. The page
builder cuts off a certain portion of the main vertical list and hands it to the output
routine in \box255. This chapter treats the commands and parameters that pertain to
the output routine, and it explains how output routines can receive information through
marks.

\output Token list with instructions for shipping out pages.

\shipout Ship a box to thaivi file.

\mark Specify a mark text.

\topmark The last mark on the previous page.

\botmark The last mark on the current page.

\firstmark The first mark on the current page.

\splitbotmark The last mark on a split-off page.

\splitfirstmark The first mark on a split-off page.

\deadcycles Counter that keeps track of how many times the output routine has
been called without ashipout taking place.

\maxdeadcycles The maximum number of times that the output routine is allowed
to be called without &shipout occurring.

\outputpenalty Value of the penalty at the current page break,161000 if the
break was not at a penalty.

28.1 The\output token list

Common parlance has it that ‘the output routine is called’ whegK Tas found a
place to break the main vertical list. Actuallyputput is not a macro but a token list
that is inserted into gX's command stream.

Insertion of the\output token list happens inside a group that is implicitly opened.
Also, TeX enters internal vertical mode. Because of the group, non-local assignments
(to the page number, for instance) have to be prefixed wihobal. The vertical
mode implies that during the workings of the output routine spaces are mostly harm-
less.

The \output token list belongs to the class of tHeken parametés. These behave
the same astoksnnn token lists; see Chaptér [14. Assigning an output routine can
therefore take the following forms:

\output(equals(general text or \output(equals(filler)(token variable

200

28.2. Output and\box255

28.2 Output and \box255

TeX’s page builder breaks the current page at the optimal point, and stores everything
above that in\box255; then, the\output tokens are inserted into the input stream.
Any remaining material on the main vertical list is pushed back to the recent contri-
butions. If the page is broken at a penalty, that value is recordé@imnputpenalty,

and a penalty of sizd0000 is placed on top of the recent contributions; otherwise,
\outputpenalty is set to10000. When the output routine is finishedpox255 is
supposed to be empty. If it is notgX gives an error message.

Usually, the output routine will take the pagebox, append a headline and/or footline,
maybe merge in some insertions such as footnotes, and ship the pagedtai tfike:

\output={\setbox255=\vbox
{\someheadline

\vbox to \vsize{\unvbox255 \unvbox\footins}
\somefootline}
\shipout\box255}

When box 255 reaches the output routine, its height has been Setiae. However,
the material in it can have considerably smaller height. Thus, the above output routine
may lead to underfull boxes. This can be remedied witfwail.

The output routine is under no obligation to do anything useful Withx255; it can
empty it, or unbox it to let X have another go at finding a page break. The number
of times that the output routing postpones thipout is recorded in\deadcycles:
this parameter is set to 0 Byshipout, and increased by 1 just before everyutput.

When the number of dead cycles reacheaxdeadcycles, TEX gives an error mes-
sage, and performs the default output routine
\shipout\box255

instead of the routine it was about to start. THEX format has a much higher value
for \maxdeadcycles than plain EX, because the output routine iATEX is often
called for intermediate handling of floats and marginal notes.

The \shipout command can send an{pox) to the dvi file; this need not be box
255, or even a box containing the current page. It does not have to be called inside
the output routine, either.

If the output routine produces any material, for instance by calling

\unvbox255

this is put on top of the recent contributions.

After the output routine finishes, the page builder is activated. In particular, because

the current page has been emptied, theize is read again. Changes made to this
parameter inside the output routine (usixgflobal) will therefore take effect.

28.3 Marks

Information can be passed to the output routine through the mechanism of ‘marks’.
The user can specify a token list with

\mark{(mark tex}}

Victor Eijkhout — EX by Topic 201

Chapter 28. Output Routines

which is put in a mark item on the current vertical list. The mark text is subject to
expansion as inedef.

If the mark is given in horizontal mode it migrates to the surrounding vertical lists
like an insertion item (see pa§e]52); however, if this is not the external vertical list,
the output routine will not find the mark.

Marks are the main mechanism through which the output routine can obtain infor-
mation about the contents of the currently broken-off page, in particular its top and
bottom. EX sets three variables:

\botmark the last mark occurring on the current page;

\firstmark the first mark occurring on the current page;

\topmark the last mark of the previous page, that is, the valudmwftmark on the
previous page.

If no marks have occurred yet, all three are empty; if no marks occurred on the current
page, all three mark variables are equal to Ybetmark of the previous page.

For boxes generated by\arsplit command (see previous chapter), Nsplitbotmark
and\splitfirstmark contain the marks of the split-off paffirstmark and\botmark
reflect the state of what remains in the register.

Marks can be used to get a section heading into the headline or foot-
line of the page.
\def\section#1{ ... \mark{#1} ... }
\def\rightheadline{\hbox to \hsize

{\headlinefont \botmark\hfil\pagenumberl}}
\def\leftheadline{\hbox to \hsize

{\headlinefont \pagenumber\hfil\firstmark}}

This places the title of the first section that starts on a left page in
the left headline, and the title of the last section that starts on the
right page in the right headline. Placing the headlines on the page is
the job of the output routine; see below.
It is important that no page breaks can occur in between the mark
and the box that places the title:
\def\section#1{ ...

\penalty\beforesectionpenalty

\mark{#1}

\hbox{ ... #1 ...}

\nobreak

\vskip\aftersectionskip

\noindent}

Let us consider another example with headlines: often a page looks better if the head-
line is omitted on pages where a chapter starts. This can be implemented as follows:

\def\endofchapter
\chapter#1{ ... \def\chtitle{#1}\mark{1i}\mark{0} ... }
\def\theheadline{\expandafter\ifx\firstmarki

\else \chapheadline \fi}

Only on the page where a chapter starts will the mark be 1, and on all other pages a
headline is placed.

202 Victor Eijkhout — EX by Topic

28.4. Assorted remarks

28.4 Assorted remarks
28.4.1 Hazards in non-trivial output routines

If the final call to the output routine does not perform\shipout, TeX will call the
output routine endlessly, since a run will only stop if both the vertical list is empty,
and\deadcycles is zero. The output routine can sedeadcycles to zero to prevent
this.

28.4.2 Page numbering

The page number is not an intrinsic property of the output routine; in plgk iT
is the value of\count0. The output routine is responsible for increasing the page
number when a shipout of a page occurs.

Apart from \count0, counter registers 1-9 are also used for page identification: at
shipout EX writes the values of these ten counters to the file (see Chaptef 33).
Terminal and log file output display only the non-zero counters, and the zero counters
for which a non-zero counter with a higher number exists, that iS\cBunt0 =

1 and \count3 = 5 are the only non-zero counters, the displayed list of counters
is [1.0.0.5].

28.4.3 Headlines and footlines in plain X

Plain EX has token lists\headline and \footline; these are used in the macros
\makeheadline and \makefootline. The page is shipped out as (more or less)

\vbox{\makeheadline\pagebody\makefootline}

Both headline and footline are inserted insid&lane. For non-standard headers and
footers it is easier to redefine the macrasakeheadline and \makefootline than
to tinker with the token lists.

28.4.4 Example: no widow lines

Suppose that one does not want to allow widow lines, but pages have in general no
stretch or shrink, for instance because they only contain plain text. A solution would
be to increase the page length by one line if a page turns out to be broken at a widow
line.

TeX's output routine can perform this sort of trick: if thewidowpenalty is set to
some recognizable value, the output routine can see by\theputpenalty if a
widow line occurred. In that case, the output routine can temporarily increase the
\vsize, and let the page builder have another go at finding a break point.

Here is the skeleton of such an output routine. No headers or footers are provided for.

\newif\ifLargePage \widowpenalty=147
\newdimen\oldvsize \oldvsize=\vsize
\output={

\ifLargePage \shipout\box255
\global\LargePagefalse
\global\vsize=\oldvsize

\else \ifnum \outputpenalty=\widowpenalty

Victor Eijkhout — EX by Topic 203

Chapter 28. Output Routines

\global\LargePagetrue

\global\advance\vsize\baselineskip

\unvbox255 \penalty\outputpenalty

\else \shipout\box255
\fi \fi}

The test\ifLargePage is set to true by the output routine if theoutputpenalty
equals the\widowpenalty. The page box is theRunvbox ed, so that the page builder
will tackle the same material once more.

28.4.5 Example: no indentation top of page

Some output routines can be classified as abuse of the output routine mechanism. The
output routine in this section is a good example of this.

It is imaginable that one wishes paragraphs not to indent if they start at the top of a
page. (There are plenty of objections to this layout, but occasionally it is used.) This
problem can be solved using the output routine to investigate whether the page is still
empty and, if so, to give a signal that a paragraph should not indent.

Note that we cannot use the fact here that the page builder comes into play after the
insertion of\everypar: even if we could force the output routine to be activated here,
there is no way for it to remove the indentation box.

The solution given here lets theeverypar terminate the paragraph immediately with
\par\penalty-\specialpenalty

which activates the output routine. Seeing whether the pagebox is empty (after remo-
ving the empty line and an¥parskip glue), the output routine then can set a switch
signalling whether the retry of the paragraph should indent.

There are some minor matters in the following routines, the sense of which is left for
the reader to ponder.

\mathchardef\specialpenalty=10001
\newif\ifPreventSwitch
\newbox\testbox

\topskip=10pt

\everypar{\begingroup \par
\penalty-\specialpenalty
\everypar{\endgroup}\parskipOpt
\ifPreventSwitch \noindent \else \indent \fi
\global\PreventSwitchfalse
}
\output{
\ifnum\outputpenalty=-\specialpenalty
\setbox\testbox\vbox{\unvbox255
{\setbox0=\1lastbox}\unskip}
\ifdim\ht\testbox=0pt \global\PreventSwitchtrue
\else \topskip=0Opt \unvbox\testbox \fi
\else \shipout\box255 \globalladvance\pagenol \fi}

204 Victor Eijkhout — EX by Topic

28.4. Assorted remarks

28.4.6 More examples of output routines

A large number of examples of output routines can be found_inh [38] land [39].

Victor Eijkhout — EX by Topic 205

Chapter 29

Insertions

Insertions are gX’s way of handling floating information.gX’s page builder calcula-
tes what insertions and how many of them will fit on the page; these insertion items
are then placed in insertion boxes which are to be handled by the output routine.

\insert Start an insertion item.

\newinsert Allocate a new insertion class.

\insertpenalties Total of penalties for split insertions. Inside the output routine,
the number of held-over insertions.

\floatingpenalty Penalty added when an insertion is split.

\holdinginserts (TpX3 only) If this is positive, insertions are not placed in their
boxes at output time.

\footins Number of the footnote insertion class in plaigXT

\topins Number of the top insertion class.

\topinsert Plain FgX macro to start a top insert.

\pageinsert Plain T|EX macro to start an insert that will take up a whole page.

\nidinsert Plain TgX macro that places its argument if there is space, and converts
it into a top insert otherwise.

\endinsert Plain X macro to wind up an insertion item that started wittopinsert,
\midinsert, Or \pageinsert.

29.1 Insertion items

Insertions contain floating information. Handling insertions is a strange interplay bet-
ween the user,g@X’s internal workings, and the output routine. First the user specifies
an insertion, which is a certain amount of vertical material; thgl'sT page builder
decides what insertions should go on the current page and puts these insertions in
insertion boxes; finally, the output routine has to do something with these boxes.

An insertion item looks like

\insert(8-bit numbey{(vertical mode materig}
where the 8-bit number should not be 255, becaksex255 is used by EX for
passing the page to the output routine.

The braces around the vertical mode material in an insertion item can be implicit; they
imply a new level of grouping. The vertical mode material is processed in internal
vertical mode.

206

29.2. Insertion class declaration

Values of \splittopskip, \splitmaxdepth, and \floatingpenalty are relevant
for split insertions (see below); the values that are current just before the end of the
group are used.

Insertion items can appear in vertical mode, horizontal mode, and math mode. For the
latter two modes they have to migrate to the surrounding vertical list (see[page 52).
After an insertion item is put on the vertical list the page builder is exercised.

29.2 Insertion class declaration

In the plain format the number for a new insertion class is allocatetineyinsert:

\newinsert\myinsert J new insertion class

which uses\chardef to assign a number to the control sequence.

Insertion classes are allocated numbering from 254 downward. As box 255 is used for
output, this allocation scheme leaveskip255, \dimen255, and \count255 free for
scratch use.

29.3 Insertion parameters

For each insertion class four registers are allocated:

. \box n When the output routine is active this box contains the insertion items
of classn that should be placed on the current page.

° \dimenn This is the maximum space allotted for insertions of clasper
page. If this amount would be exceedgdXTwill split insertions.

° \skipn Glue of this size is added the first time an insertion item of class

is added to the current page. This is useful for such phenomena as a rule

separating the footnotes from the text of the page.

° \countn Each insertion item is a vertical list, so it has a certain height.
However, the effective height, the amount of influence it has on the text height
of the page, may differ from this real height. The value\ebuntn is then
1000 times the factor by which the height should be multiplied to obtain the
effective height.

Consider the following examples:

— Marginal notes do not affect the text height, so the factor should be 0.

— Footnotes set in double column mode affect the page by half of their
height: the count value should by 500.

— Conversely, footnotes set at page width underneath a page in double co-
lumn mode affect both columns, so — provided that the double column
mode is implemented by applyingrsplit to a double-height column —
the count value should be 2000.

29.4 Moving insertion items from the contributions list

The most complicated issue with insertions is the algorithm that adds insertion items
to the main vertical list, and calculates breakpoints if necessary.

Victor Eijkhout — EX by Topic 207

Chapter 29. Insertions

TeX never changes th&vsize, but it diminishes the\pagegoal by the (effective)
heights of the insertion items that will appear before a page break. Thus the output
routine will receive a\box255 that has heightpagegoal, not necessarilj\vsize.

1. When the first insertion of a certain clagsoccurs on the current pageX

has to account for the quantityskipn. This step is executed only if no
earlier insertion item of this class occurs on the vertical list — this includes
insertions that were split — butbox n need not be empty at this time.
If \boxn is not empty, its height plus depth is multiplied hgount n/1000
and the result is subtracted fronpagegoal. Then the\pagegoal is diminis-
hed by the natural component §kipn. Any stretch and shrink okskipn
are incorporated iNpagestretch and \pageshrink respectively.

2. If there is a split insertion of class on the page — this case and the previous
step in the algorithm are mutually exclusive — th&loatingpenalty is ad-
ded to\insertpenalties. A split insertion is an insertion item for which a
breakpoint has been calculated as it will not fit on the current page in its en-
tirety. Thus the insertion currently under consideration will certainly not wind
up on the current page.

3. After the preliminary action of the two previous pointgXTwill place the
actual insertion item on the main vertical list, at the end of the current con-
tributions. First it will check whether the item will fit without being split.
There are two conditions to be checked:

e adding the insertion item (plus all previous insertions of that class) to
\box n should not let the height plus depth of that box exckeétinen n,
and

e either the effective height of the insertion is negative, \pagetotal
plus \pagedepth minus \pageshrink plus the effective size of the in-
sertion should be less thapagegoal.

If these conditions are satisfiedpagegoal is diminished by the effective

size of the insertion item, that is, by the height plus depth, multiplied by

\countn,/1000.

4, Insertions that fail on one of the two conditions in the previous step of the
algorithm will be considered for splitting.gX will calculate the size of the
maximal portion to be split off the insertion item, such that
(@) adding this portion together with earlier insertions of this classbtex n

will not let the size of the box exceetiimenn, and
(b) the effective size of this portion, added \{pagetotal plus \pagedepth,
will not exceed\pagegoal. Note that\pageshrink iS not taken into
account this time, as it was in the previous step.
Once this maximal size to be split off has been determing, [dcates the
least-cost breakpoint in the current insertion item that will result in a box with
a height that is equal to this maximal size. The penalty associated with this
breakpoint is added tdinsertpenalties, and \pagegoal is diminished by
the effective height plus depth of the box to be split off the insertion item.

29.5 Insertions in the output routine

When the output routine comes into action — more precisely: wighstarts proces-
sing the tokens in th&output token list — all insertions that should be placed on the

208 Victor Eijkhout — EX by Topic

29.6. Plain EX insertions

current page have been put in their boxes, and it is the responsibility of the output
routine to put them somewhere in the box that is going to be shipped out.

The plain BX output routine handles top inserts and footnotes by
packaging the following sequence:

\ifvoid\topins \else \unvbox\topins \fi

\pagebody

\ifvoid\footins \else \unvbox\footins \fi

Unboxing the insertion boxes makes the glue on various parts of the
page stretch or shrink in a uniform manner.

With TpX3 the insertion mechanism has been extended slightly: the parametedinginserts
can be used to specify that insertions should not yet be placed in their boxes. This is
very useful if the output routine wants to recalculate thesize, or if the output

routine is called to do other intermediate calculations instead of ejecting a page.

During the output routine the parametetnsertpenalties holds the number of in-
sertion items that are being held over for the next page. In the pE{notitput routine
this is used after the last page:

\def\dosupereject{\ifnum\insertpenalties>0
% something is being held over
\line{}\kern-\topskip\nobreak\vfill\supereject\fi}

29.6 Plain TgX insertions

The plain BX format has only two insertion classes: the footnotes and the top inserts.
The macro\pageinsert generates top inserts that are stretched to be exgetyze

high. The\midinsert macro tests whether the vertical material specified by the user
fits on the page; if so, it is placed there; if not, it is converted to a top insert.

Footnotes are allowed to be split, but once one has been split no further footnotes
should appear on the current page. This effect is attained by setting

\floatingpenalty=20000

The \floatingpenalty is added to\insertpenalties if an insertion follows a
split insertion of the same class. Howev&tloatingpenalty > 10000 has infinite
cost, so EX will take an earlier breakpoint for splitting off the page from the vertical
list.

Top inserts essentially contain only a vertical box which holds whatever the user spe-
cified. Thus such an insert cannot be split. However, tBedinsert macro puts a
\penalty100 on top of the box, so the insertion can be split with an empty part be-
fore the split. The effect is that the whole insertion is carried over to the next page.
As the \floatingpenalty for top inserts is zero, arbitrarily many of these inserts
can be moved forward until there is a page with sufficient space.

Further examples of insertion macros can be found_in [40].

Victor Eijkhout — EX by Topic 209

Chapter 30

File Input and Output

This chapter treats the various ways in whigiXTcan read from and write to external
files.

\input Read a specified file ageX input.

\endinput Terminate inputting the current file after the current line.

\pausing Specify that EX should pause after each line that is read from a file.

\inputlineno Number of the current input line.

\write Write a (general text to the terminal or to a file.

\read Read a line from a stream into a control sequence.

\newread \newwrite Macro for allocating a new input/output stream.

\openin \closein Open/close an input stream.

\openout \closeout Open/close an output stream.

\ifeof Test whether a file has been fully read, or does not exist.

\immediate Prefix to have output operations executed right away.

\escapechar Number of the character that is used when control sequences are being
converted into character tokens. |gKr default: 92.

\newlinechar Number of the character that triggers a new lindimrite statements.

30.1 Including files:\input and \endinput

Large documents can be segmented giX Dy putting parts in separate files, and loa-
ding these with\input into the master file. The exact syntax for file hames is imple-
mentation dependent; most of the time. gex file extension is assumed if no explicit
extension is given. File names can be delimited with a space or \Wwitlax. The
\input command is expandable.

If TeX encounters in an input file theendinput statement, it acts as if the file ends
after the line on which the statement occurs. Any statements on the same line as
\endinput are still executed. Th&endinput statement is expandable.

30.2 Filel/O

TeX supports input and output streams for reading and writing files one line at a time.

210

30.2. File I/O

30.2.1 Opening and closing streams

TeX supports up to 16 simultaneous input and 16 output streams. The p&ima-
cros \newread and \newwrite give the number of an unused stream. This number
is assigned by a&chardef command. Input streams are completely independent of
output streams.

Input streams are opened by

\openin(4-bit numbef(equal$(filenamé
and closed by

\closein(4-bit numbey
Output streams are opened by

\openout(4-bit numbef(equals(filename
and closed by

\closeout(4-bit numbey

If an output file does not yet exist, it is created Ngpenout; if it did exist, an
\openout will cause it to be overwritten.

The output operation§openout, \closeout, and \write can all three be prefixed
by \immediate; see below.

30.2.2 Input with \read

In addition to the\input command, which reads a whole filepX has the\read
operation, which reads one line from a file (or from the user terminal). The syntax of
the read command is

\read(numbejto(control sequenge

The effect of this statement is that one input line is read from the designated stream,
and the control sequence is defined as a macro without parameters, having that line as
replacement text.

If the input line is not balanced with respect to bracgsX Will read more than one
line, continuing for as long as is necessary to get a balanced tokengistimplicitly
appends an empty line to each input stream, so the\lasid operation on a stream
will always yield a single\par token.

Read operations from any stream outside the range 0-15 — or streams not associated
with an open file, or on which the file end has been reached — read from the terminal.
If the stream number is positive the user is prompted with the name of the control
sequence being defined by theead statement.

\read16 to \data

displays a prompt

\data=

and typing ‘my name’ in response makes the read statement equiva-
lent to

\def\data{my name }

The space at the end of the input derives from the line end; to prevent
this one could write

{\endlinechar=-1 \globallread16 to \data}

Victor Eijkhout — EX by Topic 211

Chapter 30. File Input and Output

30.2.3 Output with\write

TeX's \write command
\write(numbe}(general text

writes a balanced token list to a file which has been openellopgnout, to the log
file, or to the terminal.

Write operations to a stream outside 0-15 — or to a stream that is not associated with
an open file — go to the log file; if the stream number is positive they go to the
terminal as well as to the log file.

The token list argument ofwrite, defined as
(general text — (filler){(balanced tex{right brace

can have an implicit opening brace. This argument is expanded as if it were the repla-
cement text of ar\edef, so, for instance, any macros and conditionals appearing are
expanded. No commands are executed, however. This expansion occurs at the time of
shipping out; see below. Until that time the argument token list is stored in a whatsit
item on the current list. See further Chagfef 12 for a discussion of expansion during
writing.

A control sequence output bywrite (or \message) is represented with a trailing
space, and using character numhegcapechar for the escape character. The KT
default for this is 92, the code for the backslash. The trailing space can be prevented
by prefixing the control sequence wistring.

30.3 Whatsits

There is an essential difference in execution between input and output: operations con-
cerning output Yopenout, \closeout, \write) are not executed immediately; in-
stead, they are saved until the box in which they appear is shipped out tévihe

file.

Writes and the other two output operations are placed in ‘whatsit’ items on whichever
list is currently being built. The actual operation occurs when the part of the page that
has the item is shipped out to thii file. This delayed output is made necessary by

TeX’s asynchronous output routine behaviour. See a worked-out example orf pgge 107.

An \immediate\write — or any othenimmediate output operation — is executed on
the spot, and does not place a whatsit item on the current list.

The argument of aspecial command (see page 426) is also placed in a whatsit.

Whatsit items in leader boxes are ignored.

30.4 Assorted remarks
30.4.1 Inspecting input

TeX records the current line number in the current input file in {hrgernal integer
parameteAinputlineno (in TpX3).

212 Victor Eijkhout — EX by Topic

30.4. Assorted remarks

If the parameteApausing is positive, EX shows every line that is input on the ter-
minal screen, and gives the user the opportunity to insert commands. These can for
instance be\show commands. Inserted commands are treated as if they were directly
in the source file: it is for instance not necessary to prefix them with ‘', as would be
necessary whengX pauses for an error.

30.4.2 Testing for existence of files

TeX is not the friendliest of systems when you ask it to input a non-existing file.
Therefore the following sequence of commands can be used to prevent trouble:

\newread\instream \openin\instream= fname.tex

\ifeof\instream \message{File ’fname’ does not exist!}

\else \closein\instream \input fname.tex

\fi

Here an input stream is opened with the given file nhame. The end-of-file test is also
true if an input stream does not correspond to a physical file, so if this conditional is
not true, the file exists and aninput command can safely be given.

30.4.3 Timing problems

The synchronization between write operations on the one hand, and opening/closing
operations of files on the other hand, can be a crucial point. Auxiliary files, such as
are used by various formats to implement cross-references, are a good illustration of
this.

Suppose that during a run ofX the auxiliary file is written, and at the end of the run

it has to be input again for a variety of purposes (such as seeing whether references
have changed). Alinput command is executed right away, so the file must have
been closed with animmediate\closeout. However, now it becomes possible that

the file is closed before all writes to it have been performed. The following sequence
remedies this:

\par\vfil\penalty -10000 \immediate\closeout\auxfile

The first three commands activate the output routine in order to close off the last page,
so all writes will indeed have been performed before the file is closed.

30.4.4 \message versus\immediate\writel6

Messages to the user can be given usiagssage(general text which writes to the
terminal. Messages are appended to one another; the line is wrapped when the line
length (a BX compile-time constant) has been reached. gX Version2, a maximum

of 1000 characters is written per message; this is not a compile-time constant, but is
hard-wired into the gX program.

Each message given withimmediate\write starts on a new line; the user can force
a new line in the message by including the character with numhetlinechar.
This parameter also works iKmessage.

30.4.5 Write inside a vertical box

Since a write operation winds up on the vertical list in a whatsit, issuing one at the
start of a\vtop will probably influence the height of that box (see Chapier 5). As an
example,

Victor Eijkhout — EX by Topic 213

Chapter 30. File Input and Output

have the \vtop{\write\terminal{Hello!}\hbox{more textl}}

dangling from

will have the more teXtdangling from the baseline (and when this book xdd the
message ‘Hello!” appears on the screen).

30.4.6 Expansion and spaces ikwrite and \message

Both \write and \message expand their argument as if it were the replacement text
of an \edef. Therefore

\def\a{b}\message{\a}

will write out ‘b’

Unexpandable control sequences are displayed with a trailing space (and prefixed with
the \escapechar):

\message{\hbox\vbox!}

will write out ‘\hbox \vbox !’. Undefined control sequences give an error here.

Expandable control sequences can be written out with some care:

\message{\noexpand\ifx}
\message{\string\ifx}
{\let\ifx\relax \message{\ifx}}

all write out \ifx'.

Note, however, that spaces after expandable control sequences are removed in the input
processor, which goes into stateafter a control sequence. Therefore
\def\a{b}\def\c{d}

\message{\a \c}

writes out bd'. Inserting a space can be done as follows:

\def\space{ } % in plain TeX
\message{\a\space\c}

displays b d'. Note that

\message{\a{ }\c}
does not work: it displaysb{ }d' since braces are unexpandable character tokens.

214 Victor Eijkhout — EX by Topic

Chapter 31

Allocation

TeX has registers of a number of types. For some of these, explicit commands exist
to define a synonym for a certain register; for all of them macros exist in the plain
format to allocate an unused register. This chapter treats the synonym and allocation
commands, and discusses some guidelines for macro writers regarding allocation.

\countdef Define a synonym for acount register.
\dimendef Define a synonym for Adimen register.
\muskipdef Define a synonym for amuskip register.
\skipdef Define a synonym for &skip register.
\toksdef Define a synonym for atoks register.
\newbox Allocate an unusedbox register.

\newcount Allocate an unusedcount register.
\newdimen Allocate an unuseddimen register.
\newfam Allocate an unused math family.
\newinsert Allocate an unused insertion class.
\newlanguage (TpX3 only) Allocate a new language number.
\newmuskip Allocate an unusedmuskip register.
\newskip Allocate an unusedskip register.
\newtoks Allocate an unusedtoks register.
\newread Allocate an unused input stream.
\newwrite Allocate an unused output stream.

31.1 Allocation commands

In plain TeX, \new... macros are defined for allocation of registers. The registers of
TeX fall into two classes that are allocated in different ways. This is treated below.

The \newlanguage macro of plain EX does not allocate any register. Instead it me-
rely assigns a number, starting from @XT(version 3) can have at most 256 different
sets of hyphenation patterns.

The \new. .. macros of plain #X are defined to beouter (see Chaptef 11 for a
precise explanation), which precludes use of the allocation macros in other macros.
Therefore theAIpX format redefines these macros without theater prefix.

215

Chapter 31. Allocation

31.1.1 \count, \dimen, \skip, \muskip, \toks

For these registers there exists(registerdef command, for instanc&countdef, to
couple a specific register to a control sequence:
(registerdef(control sequengéequal$(8-bit numbey
After the definition
\countdef\MyCount=42
the allocated register can be used as
\MyCount=314
or
\vskip\MyCount\baselineskip
The (registerdef commands are used in plaipeX macros \newcount et cetera that
allocate an unused register; after
\newcount\MyCount
\MyCount can be used exactly as in the above two examples.

31.1.2 \box, \fam, \write, \read, \insert

For these registers there exists registerdef command in EX, so \chardef is used
to allocate box registers in the corresponding plaiX Tacros\newbox, for instance.

The fact that\chardef is used implies that the defined control sequence does not
stand for the register itself, but only for its number. Thus after

\newbox\MyBox
it is necessary to write
\box\MyBox

Leaving out the\box means that the character in the current font with numpsBox
is typeset. The\chardef command is treated further in Chapfér 3.

31.2 Ground rules for macro writers

The \new. .. macros of plain X have been designed to form a foundation for macro
packages, such that several of such packages can operate without collisions in the same
run of TeX. In appendix B of the X book Knuth formulates some ground rules that
macro writers should adhere to.

1. The \new... macros do not allocate registers with numbers 0-9. These can
therefore be used as ‘scratch’ registers. However, as any macro family can
use them, no assumption can be made about the permanency of their con-
tents. Results that are to be passed from one call to another should reside in
specifically allocated registers.

Note that count registers 0—9 are used for page identification irdttefile
(see Chapter 33), so no global assignments to these should be made.

2. \count255, \dimen255, and \skip255 are also available. This is because
inserts are allocated from 254 downward and, together with an insertion box,
a count, dimen, and skip register, all with the same number, are allocated.
Since \box255 is used by the output routine (see Chatel 28), the count,
dimen, and skip with number 255 are freely available.

216 Victor Eijkhout — EX by Topic

31.2. Ground rules for macro writers

3. Assignments to scratch registers 0, 2, 4, 6, 8, and 255 should be local; as-
signments to registers 1, 3, 5, 7, 9 should f3gobal (with the exception
of the \count registers). This guideline prevents ‘save stack build-up’ (see
Chapter 3p).

4. Any register can be used inside a group, gX'S grouping mechanism will
restore its value outside the group. There are two conditions on this use of
a register: no global assignments should be made to it, and it must not be
possible that other macros may be activated in that group that perform global
assignments to that register.

5. Registers that are used over longer periods of time, or that have to survive in
between calls of different macros, should be allocatechiyw. . ..

Victor Eijkhout — EX by Topic 217

Chapter 32

Running TeX

This chapter treats the run modes @XT and some other commands associated with
the job being processed.

\everyjob Token list that is inserted at the start of each new job.

\jobname Name of the main gX file being processed.

\end Command to finish off a run ofgX.

\bye Plain TeX macro to force the final output.

\pausing Specify that EX should pause after each line that is read from a file.

\errorstopmode TpX will ask for user input on the occurrence of an error.

\scrollmode TEX fixes errors itself, but will ask the user for missing files.

\nonstopmode TpX fixes errors itself, and performs an emergency stop on serious
errors such as missing input files.

\batchmode TpX fixes errors itself and performs an emergency stop on serious errors
such as missing input files, but no terminal output is generated.

32.1 Jobs

TeX associates with each run a name for the file being processed\ jbtename. If
TeX is run interactively — meaning that it has been invoked without a file argument,
and the user types commands — the jobnameeigput.

The \jobname can be used to generate the names of auxiliary files to be read or
written during the run. For instance, for a filtory.tex the \jobname is story,

and writing

\openout\Auxiliary=\jobname.aux

\openout\TableOfContents=\jobname.toc

will create the filesstory.aux and story.toc.

32.1.1 Start of the job

TeX starts each job by inserting theeveryjob token list into the command stream.
Setting this variable during a run of£X has no use, but a format can use it to identify
itself to the user. If a format fills the token list, the commands therein are automati-
cally executed whengK is run using that format.

218

32.2. Run modes

32.1.2 End of the job

A TeX job is terminated by thé\end command. This may involve first forcing the
output routine to process any remaining material (see Chapter 27). If the end of job
occurs inside a groupgK will give a diagnostic message. Thend command is not
allowed in internal vertical mode, because this would be inside a vertical box.

Usually some sugar coating of thend command is necessary. For instance the plain
TeX macro \bye is defined as

\def\bye{\par\vfill\supereject\end}
where the\supereject takes care of any leftover insertions.

32.1.3 Thelog file

For each run gX creates a log file. Usually this will be a file with as name the va-
lue of \jobname, and the extensionlog. Other extensions such agis are used by
some implementations. This log file contains all information that is displayed on the
screen during the run ofgX, but it will display some information more elaborately,
and it can contain statistics that are usually not displayed on the screen. If the parame-
ter \tracingonline has a positive value, all the log file information will be shown

on the screen.

Overfull and underfull boxes are reported on the terminal screen, and they are dum-
ped using the parametekshowboxdepth and \showboxbreadth in the log file (see
Chapter{ 3§). These parameters are also used for box dumps caused \@hdhox
command, and for the dump of boxes written Y8hipout if \tracingoutput is set

to a positive value.

Statistics generated by commands such\@sacingparagraphs will be written to
the log file; if \tracingonline is positive they will also be shown on the screen.

Output operations to a stream that is not open, or to a stream with a number that is
not in the range 0-15, go to the log file. If the stream number is positive, they also
go to the terminal.

32.2 Run modes

By default, EX goes into\errorstopmode if an error occurs: it stops and asks for
input from the user. Some implementations have a way of forcidg ifto errorstop-
mode when the user interruptgX, so that the internal state of£X can be inspected
(and altered). See page 235 for ways to switch the run mode wh¥nhas been
interrupted.

Often, EX can fix an error itself if the user askgX just to continue (usually by
hitting the return key), but sometimes (for instance in alignments) it may take a while
before X is on the right track again (and sometimes it never is). In such cases the
user may want to turn oNscrollmode, which instructs EX to fix as best it can any
occurring error without confirmation from the user. This is usually done by typing ‘s’
when EX asks for input.

In \scrollmode, TEX also does not ask for input aftéshow. .. commands. Howe-
ver, some errors, such as a file that could not be found\ieput, are not so easily
remedied, so the user will still be asked for input.

Victor Eijkhout — EX by Topic 219

Chapter 32. RunninggK

With \nonstopmode TpX will scroll through errors and, in the case of the kind of
error that cannot be recovered from, it will make an emergency stop, aborting the
run. Also X will abort the run if a\read is attempted from the terminal. The
\batchmode differs only from nonstopmode in that it gives messages only to the log
file, not to the terminal.

220 Victor Eijkhout — EX by Topic

Chapter 33

TeX and the
Outside World

This chapter treats those commands that bear relevanegitdiles and formats. It
gives some global information about g, font and format files, Computer Modern
typefaces, andvEes.

\dump Dump a format file; possible only in InEK, not allowed inside a group.
\special Write a (balanced textto the dvi file.

\mag 1000 times the magnification of the document.

\year The year of the current job.

\month The month of the current job.

\day The day of the current job.

\time Number of minutes after midnight that the current job started.
\fmtname Macro containing the name of the format dumped.

\fmtversion Macro containing the version of the format dumped.

33.1 X IniTEX, VirT gX

In the terminology established ifX: the Program [18], TeX programs come in three
flavours. IniEX is a version of EX that can generate formats; VX is a produc-

tion version without preloaded format, angXTis a production version with preloaded
(plain) format. Unfortunately, this terminology is not adhered to in general. A lot of
systems do not use preloaded formats (the procedure for making them may be impos-
sible on some operating systems), and call the ‘virgiX’Tsimply TpX. This manual

also follows that convention.

33.1.1 Formats: loading

A format file (usually with extensionfmt) is a compact dump ofgX’s internal struc-
tures. Loading a format file takes a considerably shorter time than would be needed
for loading the font information and the macros that constitute the format.

Both TeX and IniTeX can load a format; the user specifies this by putting the name
on the command line

% tex &plain
or at thex*x* prompt

221

Chapter 33. @X and the Outside World

% tex

This is TeX. Version

*x &plain

preceded by an ampersand (for UNIX, this should\&eon the command line). An
input file name can follow the format name in both places.

IniTeX does not need a format, but if no format is specified for (\@RTit will try
to load the plain format, and halt if that cannot be found.

33.1.2 Formats: dumping

IniTEX is the only version of X that can dump a format, since it is the only version
of TeX that has the commantidump, which causes the internal structures to be dum-
ped as a format. It is also the only version @XTthat has the commantpatterns,
which is needed to specify a list of hyphenation patterns.

Dumping is not allowed inside a group, that is
{ ... \dump }

is not allowed. This restriction prevents difficulties witleXls save stack. After the
\dump command EX gives an elaborate listing of its internal state, and of the font
names associated with fonts that have been loaded and ends the job.

An interesting possibility arises from the fact that gXTcan both load and dump

a format. Suppose you have written a set of macros that build on top of giin T
superplain.tex. You could then call

% initex &plain superplain

*\dump

and get a format filssuperplain.fmt that has all of plain, and all of your macros.

33.1.3 Formats: preloading

On some systems it is possible to interrupt a running program, and save its ‘core
image’ such that this can be started as an independent program. The executable made
from the core image of agK program interrupted after it has loaded a format is
called a BEX program with preloaded format. The idea behind preloaded formats is
that interrupting EX after it has loaded a format, and making this program available

to the user, saves in each run the time for loading the format. In the good old days
when computers were quite a bit slower this procedure made sense. Nowadays, it does
not seem so necessary. Besides, dumping a core image may not always be possible.

33.1.4 The knowledge of IniEX

If no format has been loaded, IpX knows very little. For instance, it has no open/close
group characters. However, it can not be completely devoid of knowledge lest there be
no way to define anything.

Here is the extent of its knowledge.

. \catcode ‘\\=0, \escapechar=‘\\ (see pag¢]|8).
° \catcode‘\""M=5, \endlinechar=‘\""M (see pag¢]8).
. \catcode‘\ =10 (see pagé]9).

222 Victor Eijkhout — EX by Topic

33.2. More about formats

. \catcode‘\%=14 (see pagé]9).

. \catcode‘\""?7=15 (see pag¢]9).

. \catcodex=11 for z = ‘a..‘z,‘A..‘Z (see pag¢]|9).

. \catcode x =12 for all other character codes
(see pagé]9).

° \sfcodexz=999 for «x = ‘A..‘Z, \sfcodex=1000 for all other characters
(see pagé 157).

° \lccode‘a..‘z,‘A..“Z=‘a..‘z, \uccode‘a..‘z,‘A..“Z=‘A..‘Z, \1ccode z =0,
\uccode z =0 for all other characters (see p&gg 26).
\delcode‘.=0, \delcode z=-1 for all other characters (see pdge [161).
\mathcode z="1!7100+2z for all lowercase and uppercase letteétsathcode x=""17000 +
z for all digits, \mathcode z=2 for all other characters (see pgge [164).

° \tolerance=10000, \mag=1000, \maxdeadcycles=25.

33.1.5 Memory sizes of X and IniTEX

The main memory size ofgK and IniTeX is controlled by four constants in the source
code: mem_bot, mem_top, mem min, and mem max. For IniTeX’s memory mem_bot =
mem min and mem top = mem max; for TpX mem bot and mem top record the main
memory size of the IngX used to dump the format. Thus versions @XTand IniTeX
have to be adapted to each other in this respect.

TeX's own main memory can be bigger than that of the correspondingeXniih
generalmem min < mem_bot andmem_top < mem max.

For IniTeX a smaller main memory can suffice, as this program is typically not meant
to do real typesetting. There may even be a real need for the main memory to be
smaller, because IniK needs a lot of auxiliary storage for initialization and for buil-
ding the hyphenation table.

33.2 More about formats
33.2.1 Compatibility

TeX has a curious error message: ‘Fatal format error: I'm stymied’, which is given

if TeX tries to load a format that was made with an incompatible version ofiT

See the point above about memory sizes, and Chépier 35 for the hash size (parame-
tershash_size andhash prime) and the hyphenation exception dictionary (parameter
hyph_size).

33.2.2 Preloaded fonts

During a run of EX the only information needed about fonts is the data that is found
in the tfm files (see below). Since a run ofgX, especially if the input contains
math material, can easily access 30-40 fonts, the disk access for atifihdiles
can become significant. Therefore the plain format afigXLload these metrics files

in IniTeX. A TpX version using such a format does not need to load afy files.

On the other hand, if a format has the possibility of accessing a range of typefaces, it
may be advantageous to have metrics files loaded on demand during the actual run of

TEX.

Victor Eijkhout — EX by Topic 223

Chapter 33. @X and the Outside World

33.2.3 The plain format

The first format written for X, and the basis for all later ones, is the plain format,
described in the gX book. It is a mixture of

° definitions and macros one simply cannot live without such as the initial
\catcode assignments, all of the math delimiter definitions, and ‘thew. . .
macros;

. constructs that are useful, but for whicligX and other packages use a dif-
ferent implementation, such as the tabbing environment; and

. some macros that are insufficient for any but the simplest applicatiansm

and \beginsection are in this category.

It is the first category which Knuth meant to serve as a foundation for future macro
packages, so that they can live peacefully together (see CHapter 31). This idea is re-
flected in the fact that the name ‘plain’ is not capitalized: it is the basic set of macros.

33.2.4 The ETEX format

The BTpX format, written by Leslie Lamport of Digital Equipment Corporation and
described in[[29], was released around 1985. PigXLformat, using its own version

of plain.tex (called 1plain.tex), is not compatible with plain gX; a number of
plain macros are not available. Still, it contains large parts of the plain format (even
when they overlap with its own constructs).

IATEX is a powerful format with facilities such as marginal notes, floating objects, cross
referencing, and automatic table of contents generation. Its main drawback is that the
‘style files’ which define the actual layout are quite hard to write (althougpXLis

in the process of a major revision, in which this problem will be tackled; see [34]
and [33]). As a result, people have had at their disposal mostly the styles written by
Leslie Lamport, the layout of which is rather idiosyncratic. See [6] for a successful
attempt to replace these styles.

33.2.5 Mathematical formats

There are two formats with extensive facilities for mathematics typesetting: Bm&B]|
(which originated at the American Mathematical Society) and LAMST44]. The

first of these includes more facilities than plaipXTor IATEX for typesetting mathema-

tics, but it lacks features such as automatic numbering and cross-referencing, available
in IATEX, for instance. LAMSEX, then, is the synthesis of AmgX and BTpX. Also

it includes still more features for mathematics, such as complicated tables and com-
mutative diagrams.

33.2.6 Other formats

Other formats than the above exist: for instanBeyzzx [51], TeXsis [35], Macro

TeX [15], eplain [4], and TXT1 [13]. Typically, such formats provide the facilities

of IATEX, but try to be more easily adaptable by the user. Also, in general they have
been written with the intention of being an add-on product to the plain format.

This book is also written in an ‘other format’: the11lipop format. This format does
not contain user macros, but the tools with which a style designer can program them;
see [12].

224 Victor Eijkhout — EX by Topic

33.3. Thedvi file

33.3 Theadvi file

The dvi file (this term stands for ‘device independent’) contains the output ofa T

run: it contains compactly dumped representations of boxes that have been sent there
by \shipout(box). The act of shipping out usually occurs inside the output routine,
but this is not necessarily so.

33.3.1 Thedvi file format
A dvi file is a byte-oriented file, consisting of a preamble, a postamble, and a list of
pages.

Access for subsequent software to a completed file is strictly sequential in nature:
the pages are stored as a backwards linked list. This means that only two ways of
accessing are possible:

. given the start of a page, the next can be found by reading until an end-of-
page code is encountered, and
. starting at the end of the file pages can be read backwards at higher speed, as

each beginning-of-page code contains the byte position of the previous one.
The preamble and postamble contain

. the magnification of the document (see below),
. the unit of measurement used for the document, and
° possibly a comment string.

The postamble contains in addition a list of the font definitions that appear on the
pages of the file.

Neither the preamble nor the postamble of the file contains a table of byte positions
of pages. The full definition of thevi file format can be found in_[18].

33.3.2 Page identification

Whenever a\shipout occurs, EX also writes the values of counters 0-9 to el

file and the terminal. Ordinarily, only counter O, the page number, is used, and the
other counters are zero. Those zeros are not output to the terminal. The other counters
can be used to indicate further structure in the document. Log output shows the non-
zero counters and the zero counters in between.

33.3.3 Magnification

Magnification of a document can be indicated by tireger parametgr\mag, which
specifies 1000 times the magnification ratio.

The dvi file contains the value ofmag for the document in its preamble and postam-
ble. If no true dimensions are used thévi file will look the same as when no
magnification would have been used, except for theg value in the preamble and
the postamble.

Whenever atrue dimension is used it is divided by the value %fag, so that the
final output will have the dimension as prescribed by the user. \wg parameter
cannot be changed aftertarue dimension has been used, or after the first page has
been shipped to thevi file.

Victor Eijkhout — EX by Topic 225

Chapter 33. @X and the Outside World

Plain TEX has the\magnification macro for globally sizing the document, without
changing the physical size of the page:

\def\magnification{\afterassignment\m@g\count@}
\def\m@g{\mag\count@
\hsize6.5truein\vsize8.9truein\dimen\footins8truein}

The explanation for this is as follows: the commabg is saved with an\afterassignment
command, and the magnification value (which is 1000 times the actual magnification
factor) is assigned tdcount@. After this assignment, the macikmeg assigns the ma-
gnification value to\mag, and the horizontal and vertical size are reset to their original
values6.5truein and 8.9truein. The \footins is also reset.

33.4 Specials

TeX is to a large degree machineindependent, but it still needs a hook for machine-
dependent extensions. This is thepecial command, which writes dbalanced tejxt

to thedvi file. TpX does not interpret this token list: it assumes that the printer driver
knows what to do with it\special commands are supposed not to changeattend

y position on the page, so that the implementation gf Temains independent of the
actual device driver that handles thepecial.

The most popular application of specials is probably the inclusion of graphic material,
written in some page description language, such as PostScript. The size of the graphics
can usually be determined from the file containing it (in the case of encapsulated
PostScript through the ‘bounding box’ data), gXTcan leave space for such material.

33,5 Time

TeX has four parametersyyear, \month, \day, and \time, that tell the time when
the current job started. After this, the parameters are not updated. The user can change
them at any time.

All four parameters are integers; theime parameter gives the number of minutes
since midnight that the current job started.

33.6 Fonts

Font information is split in the gX system into the metric information (how high,
wide, and deep is a character), and the actual description of the characters in a font.
TeX, the formatter, needs only the metric information; printer drivers and screen pre-
viewers need the character descriptions. With this approach it is for instance possible
for TEX to use with relative ease the resident fonts of a printer.

226 Victor Eijkhout — EX by Topic

33.6. Fonts

33.6.1 Font metrics

The metric information of gX's fonts is stored intfm files, which stands for gX

font metric’ files. Metrics files contain the following information (se€el[18] for the full
definition):

the design size of a font;

the values for the\fontdimen parameters (see Chapfér 4);

the height, depth, width, and italic correction of individual characters;

kerning tables;

ligature tables;

information regarding successors and extensions of math characters (see Chap-

ter[21).

Metrics files use a packed format, but they can be converted to and from a readable
format by the auxiliary programsftopl and pltotf (see [26]). Herepl stands for
‘property list’, a term deriving from the programming language Lisp. Fileplinfor-

mat are just text, so they can easily be edited; after conversion they can then again be
used astfn files.

33.6.2 Virtual fonts

With ‘virtual fonts’ (see [[25]) it is possible that what looks like one font tpXT
resides in more than one physical font file. Also, virtual fonts can be used to change
in effect the internal organization of font files.

For TeX itself, the presence of virtual fonts makes no difference: everything is still
based ontfm files containing metric information. However, the screen or printer driver
that displays the resultingvi file on the screen or on a printer will search for files
with extension.vf to determine how characters are to be interpreted. vithéle can,

for instance, instruct the driver to interpret a character as a certain position in a certain
font file, to interpret a character as more than one position (a way of forming accented
characters), or to includgspecial information (for instance to set gray levels).

Readable variants off files have extensiorpl, analogous to thel files for the
tfm files; see above. Conversion betweehand vpl files can be performed with the
vitovp and vptovf programs.

However, because virtual fonts are a matter for device drivers, no more details will be
given in this book.

33.6.3 Fontfiles

Character descriptions are stored in three types of files.

gf Generic Font files. This is the file type that the Metafont program generates. There
are not many previewers or printer drivers that use this type of file directly.

pxl Pixel files. Thepxl format is a pure bitmap format. Thus it is easy to generate
px1 files from, for instance, scanner images.
This format should be superseded by thie format. Pixel files can become
rather big, as their size grows quadratically in the size of the characters.

pk Packed files. Pixel files can be packed by a form of run-length encoding: instead
of storing the complete bitmap only the starting positions and lengths of ‘runs’

Victor Eijkhout — EX by Topic 227

Chapter 33. @X and the Outside World

of black and white pixels are stored. This makes the sizgkofiles appro-
ximately linear in the size of the characters. However, a previewer or printer
driver using a packed font file has to unpack it before it is able to use it.

The following conversion programs exigiftopxl, gftopk, pktopxl, pxltopk.

33.6.4 Computer Modern

The only family of typefaces that comes witgeXT in the standard distribution is the
‘Computer Modern’ family. This is an adaptation (using the terminologylof [42]) by
Donald Knuth of the Monotype Modern 8A typeface that was used for the first volume
of his Art of Computer Programmingeries. The ‘modern faces’ all derive from the
types that were cut between 1780 and 1800 by Firmin Didot in France, Giambattista
Bodoni in Italy, and Justus Erich Walbaum in Germany. After the first two, these types
are also called ‘Didone’ types. This name was coined in the Vox classification of types
[5Q]. Ultimately, the inspiration for the Didone types is the ‘Romain du Roi’, the type
that was designed by Nicolas Jaugeon around 1692 for the French Imprimerie Royale.

Didone types are characterized by a strong vertical orientation, and thin hairlines. The
vertical accent is strengthened by the fact that the insides of curves are flattened. The
result is a clear and brilliant page, provided that the printing is done carefully and
on good quality paper. However, they are quite vulnerable} [48] compares them to
the distinguished but fragile furniture from the same period, saying one is afraid to
use either, ‘for both seem in danger of breaking in pieces’. With the current prolifera-
tion of low resolution (around 300 dot per inch) printers, the Computer Modern is a
somewhat unfortunate choice.

Recently, Donald Knuth has developed a new typeface (or rather, a subfamily of ty-
pefaces) by changing parameters in the Computer Modern family. The result is a so-
called ‘Egyptian’ typeface: Computer Concrete |[24]. The name derives from the fact
that it was intended primarily for the bodRoncrete MathematicsEgyptian typefaces
(they fall under the ‘Mecanes’ in the Vox classification, meaning constructed, not de-
rived from written letters) have a very uniform line width and square serifs. They do
not have anything to do with Egypt; such types happened to be popular in the first
half of the nineteenth century when Egyptology was developing and popular.

33.7 TeXandweb

The X program is written inweB, a programming language that can be considered
as a subset of Pascal, augmented with a preprocessor.

TpX makes no use of some features of Pascal, in order to facilitate porting to Pascal
systems other than the one it was originally designed for, and even to enable automatic
translation to other programming languages such as C. For instance, it does not use
the PascalWith construct. Also, procedures do not have output parameters; apart from
writing to global variables, the only way values are returned is throBglhction
values.

Actually, weB is more than a superset of a subset of Pascal (and to be more precise,
it can also be used with other programming languages); it is a ‘system of structured
documentation’. This means that tleeB programmer writes pieces of program code,

228 Victor Eijkhout — EX by Topic

33.8. The EX Users Group

interspersed with their documentation, in one file. This idea of ‘literate programming’
was introduced in[[21]; for more information, see|[41].

Two auxiliary programs, Tangle and Weave, can then be used to strip the documenta-
tion and convertweB into regular Pascal, or to convert thvees file into a X file
that will typeset the program and documentation.

Portability of weB programs is achieved by the ‘change file’ mechanism. A change
file is a list of changes to be made to theB file; a bit like a stream editor script.
These changes can comprise both adaptations ofvtbe file to the particular Pascal
compiler that will be used, and bug fixes tgXT Thus theTeX.web file need never

be edited.

33.8 The EX Users Group

TeX users have joined into several users groups over the last decade. Many national or
language users groups exist, and a lot of them publish newsletters. The oldest of all
TeX users groups is simply called that: thgXTUsers Group, or TUG, and its journal

is called TUGboat You can reach them at

TeX Users Group
P.O. Box 2311
Portland, OR 97208-2311, USA

or electronically atoffice@tug.org on the Internet.

Victor Eijkhout — EX by Topic 229

Chapter 34

Tracing

TeX's workings are often quite different from what the programmer expected, so there
are ways to discover howgX arrived at the result it did. Th&tracing... com-
mands write all information of a certain kind to the log file (and to the terminal if
\tracingonline is positive), and a number dfshow... commands can be used to
ask the current status or value of various items pX.T

In the following list, only \show and \showthe display their output on the terminal
by default, other\show... and \tracing... commands write to the log file. They
will write in addition to the terminal if\tracingonline is positive.

\meaning Give the meaning of a control sequence as a string of characters.

\show Display the meaning of a control sequence.

\showthe Display the result of prefixing a token witkthe.

\showbox Display the contents of a box.

\showlists Display the contents of the partial lists currently built in all modes. This
is treated on page b2.

\tracingcommands If this is 1 TeX displays primitive commands executed,; if this is
2 or more the outcome of conditionals is also recorded.

\tracingmacros If this is 1, TeX shows expansion of macros that are performed and
the actual values of the arguments; if this is 2 or mdieken parametés
such as\output and\everypar are also traced.

\tracingoutput If this is positive, the log file shows a dump of boxes that are ship-
ped to thedvi file.

\showboxdepth The number of levels of box dump that are shown when boxes are
displayed.

\showboxbreadth Number of successive elements on each level that are shown when
boxes are displayed.

\tracingonline If this parameter is positive,gK will write trace information to the
terminal in addition to the log file.

\tracingparagraphs If this parameter is positive,gK generates a trace of the line
breaking algorithm.

\tracingpages If this parameter is positive,gK generates a trace of the page brea-
king algorithm.

\tracinglostchars If this parameter is positive,gK gives diagnostic messages whe-
never a character is accessed that is not present in a font. Plain default: 1.

\tracingrestores If this parameter is positive,gK will report all values that are
restored when a group ends.

230

34.1. Meaning and contentshow, \showthe, \meaning

\tracingstats If this parameter is 1, gX reports at the end of the job the usage of
various internal arrays; if it is 2, the memory demands are given whenever a
page is shipped out.

34.1 Meaning and content\show, \showthe, \meaning

The meaning of control sequences, and the contents of those that represent internal
guantities, can be obtained by the primitive commaXsisow, \showthe, and \meaning.

The control sequencesshow and \meaning are similar: the former will give output
to the log file and the terminal, whereas the latter will produce the same tokens, but
they are placed ingX’s input stream.

The meaning of a primitive command ofX is that command itself:
\show\baselineskip

gives

\baselineskip=\baselineskip

The meaning of a defined quantity is its definition:

\show\pageno

gives

\pageno=\count0

The meaning of a macro is its parameter text and replacement text:

\def\foo#17#2\par{\set{#1!}\set{#27}}

\show\foo

gives

\foo=macro:

#17#2\par ->\set {#1!}\set {#27}

For macros without parameters the part before the arrow (the parameter text) is empty.

The \showthe command will display on the log file and terminal the tokens thate
produces. After\show, \showthe, \showbox, and \showlists TpX asks the user

for input; this can be prevented by specifyiNgcrollmode. Characters generated by
\meaning and \the have category 12, except for spaces (see page 13); the value of
\escapechar is used when control sequences are represented.

34.2 Show boxes\showbox, \tracingoutput

If \tracingoutput is positive the log file will receive a dumped representation of all
boxes that are written to thevi file with \shipout. The same representation is used
by the command\showbox(8-bit numbey.

In the first case gX will report ‘Completed box being shipped out’; in the second
case it will enter\errorstopmode, and tell the user ‘OK. (see the transcript file)'. If
\tracingonline is positive, the box is also displayed on the terminakdstrollmode
has been specifiedgX does not stop for input.

The upper bound on the number of nested boxes that is dumpeshisiboxdepth;
each time a level is visited at mosthowboxbreadth items are shown, the remainder

Victor Eijkhout — EX by Topic 231

Chapter 34. Tracing

of the list is summarized witketc. For each box its height, depth, and width are
indicated in that order, and for characters it is stated from what font they were taken.

After

\font\tenroman=cmr10 \tenroman

\setbox0=\hbox{g}

\showbox0

the log file will show

\hbox (4.30554+1.94444)x5.00002

.\tenroman g

indicating that the box wad.30554pt high, 1.94444pt deep, and
5.00002pt wide, and that it contained a character ‘g’ from the font
\tenroman. Note that the fifth decimal of all sizes may be rounded
because gX works with multiples of2~'¢pt.

The next example has nested boxes,
\vbox{\hbox{g}\hbox{o}}

and it contains\baselineskip glue between the boxes. After\&howbox command
the log file output is:

\vbox (16.30554+0.0)x5.00002
.\hbox (4.30554+1.94444)x5.00002
..\tenroman g
.\glue(\baselineskip) 5.75002
.\hbox (4.30554+0.0)x5.00002
..\tenroman o

Each time a new level is entered an extra dot is added to the front of the line. Note
that X tells explicitly that the glue is\baselineskip glue; it inserts names like
this for all automatically inserted glue. The value of the baselineskip glue here is such
that the baselines of the boxes are at 12 point distance.

Now let us look at explicit (user) glue gX indicates the ratio by which it is stretched
or shrunk.

S

\hbox to 20pt {\kerniOpt \hskipOpt plus 5pt}
gives (indicating that the available stretch has been multiplied .loy:
\hbox (0.0+0.0)x20.0, glue set 2.0

\kern 10.0

.\glue 0.0 plus 5.0

and

\hbox to Opt {\kernlOpt \hskipOpt minus 20pt}
gives (the shrink has been multiplied by 5)
\hbox(0.0+0.0)x0.0, glue set - 0.5

.\kern 10.0

.\glue 0.0 minus 20.0

respectively.

This is an example with infinitely stretchable or shrinkable glue:
\hbox (4.00000+0.14000)x15.0, glue set 9.00000fil

This means that the horizontal box containgdl glue, and it was set such that its
resulting width wa9pt.

232 Victor Eijkhout — EX by Topic

34.3. Global statistics

Underfull boxes are dumped like all other boxes, but the usUaierfull hbox
detected at line...’ is given. Overfull horizontal boxes contain a vertical rule of
width \overfullrule:

\hbox to 5pt {\kernlOpt}

gives
\hbox(0.0+0.0)x5.0
.\kern 10.0

Arule(*+*)x5.0
Box leaders are not dumped completely:

.\leaders 40.0

..\hbox(4.77313+0.14581)x15.0, glue set 9.76852fil
...\tenrm a

...\glue 0.0 plus 1.0fil

is the dump for
\leaders\hbox to 15pt{\tenrm a\hfil}\hskip 40pt
Preceding or trailing glue around the leader boxes is also not indicated.

34.3 Global statistics

The parametehtracingstats can be used to forcegk to report at the end of the
job the global use of resources. Some production versiong¥fritay not have this
option.

As an example, here are the statistics for this book:

Here is how much of TeX’s memory you used:

String memory (bounded by ‘pool size’):

877 strings out of 4649
9928 string characters out of 61781

Main memory, control sequences, font memory:

53071 words of memory out of 262141
2528 multiletter control sequences out of 9500
20137 words of font info for 70 fonts,

out of 72000 for 255

Hyphenation:
14 hyphenation exceptions out of 607
Stacks: input, nest, parameter, buffer, and save stack respectively,

17i,6n,19p,245b,422s stack positions out of
300i,40n,60p,3000b,4000s

Victor Eijkhout — EX by Topic 233

Chapter 35

Errors, Catastrophes,
and Help

When X is running, various errors can occur. This chapter treats how errors in the
input are displayed, and what sort of overflow of internal data structuregfc@n
occur.

\errorcontextlines (TpX3 only) Number of additional context lines shown in error
messages.

\errmessage Report an error, giving the parameter of this command as message.

\errhelp Tokens that will be displayed if the user asks further help afteXerrmessage.

35.1 Error messages

When EX is running in \errorstopmode (which it usually is; see Chaptér [32 for

the other running modes), errors occurring are reported on the user terminalpand T
asks the user for further instructions. Errors can occur either because of some internal
condition of EX, or because a macro has issued\@trrmessage command.

If an error occurs gX shows the input line on which the error occurred. If the of-
fending command was not on that line but, for instance, in a macro that was called
— possibly indirectly — from that line, the line of that command is also shown. If the
offending command was indirectly called, an additiohatrorcontextlines number

of lines is shown with the preceding macro calls.

A value of \errorcontextlines = 0 causes. .. to be printed as the sole indication
that there is a context. Negative values inhibit even this.

For each macro in the sequence that leads to the offending comnbd@tt€mpts to
display some preceding and some following tokens. First one line is displayed ending
with the — indirectly — offending command; then, one line lower some following tokens
are given.

This paragraph ends \vshiplcm with a skip.
gives

! Undefined control sequence.

1.1 This paragraph ends \vship
lcm with a skip.

234

35.2. Overflow errors

If TeX is not running in some non-stop mode, the user is given the chance to patch
errors or to ask for further information. In general the following options are available:

(return) TeX will continue processing. If the error was something innocent tit T

could either ignore or patch itself, this is the easy way out.

h Give further details about the error. If the error was caused by\efrmessage

command, the\errhelp tokens will be displayed here.

i Insert. The user can insert some material. For example, if a control sequence is
misspelled, the correct command can sometimes be inserted, as
i\vskip
for the above example. Also, this is an opportunity for insertishow com-
mands to inspect g’s internal state. However, if gX is in the middle of
scanning something complicated, such commands will not be executed, or will
even add to the confusion.

(\scrollmode) Scroll further errors, but display the messagegs Will patch any
further errors. This is a handy option, for instance if the error occurs in an
alignment, because the number of subsequent errors tends to be rather large.

r (\nonstopmode) Run without stopping. gX will never stop for user interaction.

q (\batchmode) Quiet running. EX will never stop for user interaction, and does not

give any more terminal output.

x Exit. Abort this run of EX.

e Edit. This option is not available on allgX system. If it is, the run of gX is

aborted, and an editor is started, opening with the input file, maybe even on
the offending line.

n

35.2 Overflow errors

Harsh reality imposes some restrictions on how elaborgé€sTworkings can get.
Some restrictions are imposed by compile-time constants, and are therefore fairly loose,
but some depend strongly on the actual computer implementation.

Here follows the list of all categories of overflow that prompiXTto report ‘Capacity
exceeded’. Most bounds involved are (determined by) compile-time constants; their
values given here in parentheses are those used in the source listipX af TL7].
Actual values may differ, and probably will. Remember thgX Tvas developed in the
good old days when even big computers were fairly small.

35.2.1 Buffer sizg(500)

Current lines of all files that are open are kept gX¥® input buffer, as are control
sequence names that are being built Wittsname . . . \endcsname.

35.2.2 Exception dictionary(307)

The maximum number of hyphenation exceptions specifiedHyphenation must be
a prime number. Two arrays with this many halfwords are allocated.

Changing this number makes formats incompatible; thatgX, dan only use a format
that was made by an IrgX with the same value for this constant.

Victor Eijkhout — EX by Topic 235

Chapter 35. Errors, Catastrophes, and Help

35.2.3 Font memory (20 000)

Information about fonts is stored in an array of memory words. This is easily overflo-
wed by preloading too many fonts in IpX.

35.2.4 Grouping levels

The number of open groups should be recordable in a quarter word. There is no
compile-time constant corresponding to this.

35.2.5 Hash siz2100)

Maximum number of control sequences. It is suggested that this number should not
exceed 10% of the main memory size. The values g and IniTeX should agree;
also thehash _prime values should agree.

This value is rather low; for macro packages that are more elaborate than pkiia T
value of about 3000 is more realistic.

35.2.6 Number of strings(3000)

The maximum number of strings must be recordable in a half word.

35.2.7 Input stack sizg200)

For each input source an item is allocated on the input stack. Typical input sources are
input files (but their simultaneous number is more limited; see below), and token lists
such as token variables, macro replacement texts, and alignment templates. A macro
with ‘runaway recursion’ (for examplé\def\mac{{\mac}}) will overflow this stack.

TeX performs some optimization here: before the last call in a token list all token lists
ending with this call are cleared. This process is similar to ‘resolving tail recursion’

(see Chapter 11).

35.2.8 Main memory size (30 000)

Almost all ‘dynamic’ objects of X, such as macro definition texts and all material

on the current page, are stored in the main memory array. Formats may already take
20000 words of main memory for macro definitions, and complicated pages containing
for instance theAIEX picture environment may easily overflow this array.

TeX's main memory is divided in words, and a half word is supposed to be able to
address the whole of the memory. Thus on current 32-bit computers the most common
choice is to let the main memory size be at most 64K bytes. A half word address can
then be stored in 16 bits, half a machine word.

However, so-called ‘Big gX’ implementations exist that have a main memory larger
than 64K words. Most compilers will then allocate 32-bit words for addressing this
memory, even if (say) 18 bits would suffice. BigeXs therefore become immedia-

tely a lot bigger when they cross the 64K threshold. Thus they are usually not found
on microcomputers, although virtual memory schemes for these are possible; see for
instance [[45].

TeX can have a bigger main memory than XT see Chaptef 33 for further details.

236 Victor Eijkhout — EX by Topic

35.2. Overflow errors

35.2.9 Parameter stack siz€60)

Macro parameters may contain macro calls with further parameters. The number of
parameters that may occur nested is bounded by the parameter stack size.

35.2.10 Pattern memory(8000)

Hyphenation patterns are stored in a trie array. The default size of 8000 hyphenation
patterns seems sufficient for English or Italian, for example, but it is not for Dutch or
German.

35.2.11 Pattern memory ops per language

The number of hyphenation ops (see the literature about hyphendtion: [30] and ap-
pendix H of [17]) should be recordable in a quarter word. There is no compile-time
constant corresponding to thisgX version 2 had the same upper bound, but gave no
error message in case of overflow. Again, for languages such as Dutch and German
this bound is too low. There are versions @XTthat have a higher bound here.

35.2.12 Pool size (32 000)

Strings are error messages and control sequence names. They are stored using one
byte per character.gK has initially about23 000 characters worth of strings.

The pool will overflow if a user defines a large number of control sequences on top of
a substantial macro package. However, even if the user does not define any new com-
mands overflow may occur: crossreferencing schemes also work by defining control
sequences. For large documents a pool siz&0df00 or 60000 is probably sufficient.

35.2.13 Save siz€600)

Quantities that are assigned to inside a group must be restored after the end of that
group. The save stack is where the values to be restored are kept; the size of the save
stack limits the number of values that can be restored.

Alternating global and local assignments to a value will lead to ‘save stack build-
up’: for each local assignment following a global assignment the previous value of the
variable is saved. Thus an alternation of such assignments will lead to an unnecessary
proliferation of items on the save stack.

35.2.14 Semantic nest siz@0)

Each time EX switches to a mode nested inside another mode (for instance when
processing anhbox inside a\vbox) the current state is pushed on the semantic nest
stack. The semantic nest size is the maximum number of levels that can be pushed.

35.2.15 Text input levelq6)

The number of nesteNinput files has to be very limited, as the current lines are all
kept in the input buffer.

Victor Eijkhout — EX by Topic 237

Chapter 36

The Grammar of TEX

Many chapters in this book contain pieces of the grammar that defines the formal
syntax of BX. In this chapter the structure of the rewriting rules of the grammar is
explained, and some key notions are presented.

In the X book a grammar appears in Chapters 24-27. An even more rigorous gram-
mar of X can be found in[[l]. The grammar presented in this book is virtually
identical to that of the gX book.

36.1 Notations

Basic to the grammar are

grammatical terms These are enclosed in angle brackets:
(term)

control sequencesThese are given in typewriter type with a backslash for the escape
character:

\command
Lastly there are

keywords Also given in typewriter type
keyword
This is a limited collection of words that have a special meaning fo¢t ih
certain contexts; see below.

The three elements of the grammar are used in syntax rules:
(snark — boojum | (empty

This rule says that the grammatical entifynark is either the keywordboojum, or
the grammatical entityempty).

There are two other notational conventions. The first is that the double quote is used
to indicate hexadecimal (base 16) notation. For instanaesé stands forl0 x 163 +

11 x 162 + 5 x 16" + 6 x 16°. The second convention is that subscripts are used to
denote category codes. Thuag, denotes an ‘a’ of category 12.

238

36.2. Keywords

36.2 Keywords

A keyword is sequence of characters (or character tokens) of any category code but 13
(active). Unlike the situation in control sequencegX Toes not distinguish between
lowercase and uppercase characters in keywords. Uppercase characters in keywords are
converted to lowercase by adding 32 to them; Ydecode and \uccode are not used

here. Furthermore, any keyword can be preceded by optional spaces.

Thus bothtrue cm and truecm are legal. By far the strangest example, however, is
provided by the grammar rule

(fil unit) — £i1 | (fil unit)1

which implies thatfil L 1 is also a legakfil dimen). Strange errors can ensue from
this; see pagf 103 for an example.

Here is the full list of all keywordsat, bp, by, cc, cm, dd, depth, em, ex, fil,
height, in, 1, minus, mm, mu, pc, plus, pt, scaled, sp, spread, to, true, width.

36.3 Specific grammatical terms

Some grammatical terms appear in a lot of rules. One such terfopional spaces
It is probably clear what is meant, but here is the formal definition:

(optional spaceés— (empty | (space tokenoptional spaces
which amounts to saying thgbptional spacesis zero or more space tokens.

Other terms may not be so immediately obvious. Below are some of them.

36.3.1 (equals

In assignments the equals sign is optional; therefore there is a term
(equals — (optional spaces| (optional spaces-=1,

in TeX’'s gramma.

36.3.2 (filler), (general text

More obscure than théoptional spacesis the combination of spaces andelax
tokens that is allowed in some places, for instance

\setbox0= \relax\box1l
The quantity involved is

(filler) — (optional spaces| (filler)\relax(optional spaces
One important occurrence dfiller) is in

(general text — (filler){(balanced textright brace

A (general text follows such control sequences ®sessage, \uppercase, Of \mark.
The braces around thgbalanced textare explained in the next point.

Victor Eijkhout — EX by Topic 239

Chapter 36. The Grammar ofX

36.3.3 {2} and (left brace)(right brace)
The X grammar uses a perhaps somewhat unfortunate convention for braces. First
of all

{and}

stand for braces that are either explicit open/close group characters, or control se-
quences defined bylet, such as

\let\bgroup={ \let\egroup=}
The grammatical terms
(left brace and (right brace
stand for explicit open/close group characters, that is, characters of categories 1 and 2
respectively.
Various combinations of these two kinds of braces exist. Braces around boxes can be
implicit:
\hbox(box specificatiop{ (horizontal mode materig}
Around a macro definition there must be explicit braces:

(definition tex} — (parameter textleft brace (balanced textright
brace

Finally, the (general text that was mentioned above has to be explicitly closed, but it
can be implicitly opened:

(general text — (filler){(balanced tex{right brace
The closing brace of d@general text has to be explicit, since a general text is a token

list, which may contain\egroup tokens. EX performs expansion to find the opening
brace of a(general text

36.3.4 (math field)

In math mode various operations such as subscripting or appMingerline take
an argument that is @math field: either a single symbol, or a group. Here is the
exact definition.

(math field — (math symbadl | (filler){{math mode materig}
(math symbdl — (character | (math character

See pagé 24 fofcharactey, and pag¢ 160 fofmath charactér

36.4 Differences betweengX versions 2 and 3

In 1989 Knuth releasedgX version 3.0, which is the first real change igXTsince
version 2.0, which was released in 1986 (version 0 gK Tvas released in 1982;
see [20] for more about the history ofX). All intermediate versions were merely
bug fixes.

The main difference between versions 2 and 3 lies in the fact that 8-bit input has
become possible. Associated with this, various quantities that used to be 127 or 128
have been raised to 255 or 256 respectively. Here is a short list. The full description
is in [22].

240 Victor Eijkhout — EX by Topic

36.4. Differences betweergX versions 2 and 3

° All ‘codes’ (\catcode, \sfcode, et cetera; see page]|27) now apply to 256
character codes instead of 128.

. A character with codé\endlinechar is appended to the line unless this pa-
rameter is negative or more than 255 (this was 127) (see [gage 8).

. No escape character is output Ryrite and other commands Kescapechar

is negative or more than 255 (this was 127) (see page 13).
The ~~ replacement mechanism has been extended (see] page 11).
Parameterslanguage, \inputlineno, \errorcontextlines, \lefthyphenmin,
\righthyphenmin, \badness, \holdinginserts, \emergencystretch, and
commands\noboundary, \setlanguage have been added.
. The value of\outputpenalty is no longer zero if the page break was not at
a penalty item; instead it i$0000 (see pag¢ 194).
The plain format has also been updated, mostly with default settings for parameters
such as\lefthyphenmin, but also a few macros have been added.

Victor Eijkhout — EX by Topic 241

Chapter 37

Glossary of TeX Primitives

This chapter gives the list of all primitives ofX. After each control sequence the
grammatical category of the command or parameter is given, plus a short description.
For some commands the syntax of their use is given.

For parameters the class to which they belong is given. Commands that have no
grammatical category in thegX book are denoted eitheKéxpandable commaivdor
‘(primitive command in this list.

Grammatical terms such gequal$ and (optional spaceare explained in Chapt6.

\- (horizontal command Discretionary hyphen; this is equivalent to
\discretionary™ {-}{}{}. Can be used to indicate hyphenatable points in
a word.

\char32 (horizontal commandControl space. Insert the same amount of space as a
space token would ifispacefactor = 1000.

\char47 (primitive command Italic correction: insert a kern specified by the
preceding character. Each character has an italic correction, possibly zero,
specified in thetfm file. For slanted fonts this compensates for overhang.

\above(dimen) (generalized fraction commapdFraction with specified bar width.

\abovedisplayshortskip (glue parameterGlue above a display if the line
preceding the display was short.

\abovedisplayskip (glue parametérGlue above a display.

\abovewithdelims(delim;)(delims)(dimen) (generalized fraction commahd
Generalized fraction with delimiters.

\accent(8-bit number)(optional assignments)(character) (horizontal
comman@l Command to place accents on characters.

\adjdemerits (integer parametgrPenalty for adjacent not visually compatible lines.
Default 10 000 in plain TX.

\advance(numeric variable)(optional by)(number) (arithmetic assignmehnt
Arithmetic command to increase or decreasénameric variablg that is, a
(count variablg, (dimen variablg, (glue variable, or (muglue variablg

\afterassignment(token) (primitive commanyl Save the next token for execution
after the next assignment. Only one token can be saved this way.

\aftergroup(token) (primitive commany Save the next token for insertion after
the current group. Several tokens can be saved this way.

\atop(dimen) (generalized fraction commahndPlace objects over one another.

242

\atopwithdelims(delim;)(delim,) (generalized fraction commandPlace objects
over one another with delimiters.

\badness (internal integer (TEX3 only) Badness of the most recently constructed
box.

\baselineskip (glue parametérThe ‘ideal’ baseline distance between neighbouring
boxes on a vertical list12pt in plain TgX.

\batchmode (interaction mode assignmenigX patches errors itself and performs an
emergency stop on serious errors such as missing input files, but no terminal
output is generated.

\begingroup (primitive comman@ Open a group that must be closed with
\endgroup.

\belowdisplayshortskip (glue parameterGlue below a display if the line
preceding the display was short.

\belowdisplayskip (glue parametérGlue below a display.

\binoppenalty (integer parametgrPenalty for breaking after a binary operator not
enclosed in a subformula. PlaineX default: 700.

\botmark (expandable commaidrhe last mark on the current page.

\box(8-bit number) (box) Use a box register, emptying it.

\boxmaxdepth (dimen parametgerMaximum allowed depth of boxes.

Default \maxdimen in plain TgX.

\brokenpenalty (integer parametgrAdditional penalty for breaking a page after a
hyphenated line. Defaultoo in plain TgX.

\catcode(8-bit number) (internal integey; the control sequence itself is
a (codenamg Access category codes.

\char(number) (characteyr Explicit denotation of a character to be typeset.

\chardef(control sequence)(equals)(number) (shorthand definition Define a
control sequence to be a synonym for a character code.

\cleaders (leader$ As \leaders, but with box leaders any excess space is split
into equal glue items before and after the leaders.

\closein(4-bit number) (primitive command Close an input stream.

\closeout(4-bit number) (primitive commanyl Close an output stream.

\clubpenalty (integer parametgrAdditional penalty for breaking a page after the
first line of a paragraph. Default50 in plain TeX.

\copy(8-bit number) (box) Use a box register and retain the contents.

\count(8-bit number) (internal integex; the control sequence itself is @egister
prefix). Access count registers.

\countdef(control sequence){equals)(8-bit number) (shorthand definition
the control sequence itself is (@egisterdef. Define a control sequence to be
a synonym for a\count register.

\cr (primitive commany Terminate an alignment line.

\crcr (primitive commandl Terminate an alignment line if it has not already been
terminated by\cr.

\csname (expandable commahdstart forming the name of a control sequence. Has
to be balanced with\endcsname.

\day (integer parameterThe day of the current job.

\deadcycles (special integer Counter that keeps track of how many times the
output routine has been called without\ahipout taking place. If this
number reacheSmaxdeadcycles TEX gives an error message. PlaigXT
default: 25.

\def (def) Start a macro definition.

Victor Eijkhout — EX by Topic 243

Chapter 37. Glossary ofgX Primitives

\defaulthyphenchar (integer parametérValue of \hyphenchar when a font is
loaded. Default value in plaingK is ‘\-.

\defaultskewchar (integer parametérValue of \skewchar when a font is loaded.
Default value in plain §X is -1.

\delcode(8-bit number) (internal integer, the control sequence itself is
a (codenamg Access the code specifying how a character should be used as
delimiter after\left or \right.

\delimiter(27-bit number) (math characterExplicit denotation of a delimiter.

\delimiterfactor (integer parameterl000 times the part of a delimited formula
that should be covered by a delimiter. PlagXTdefault: 901.

\delimitershortfall (integer paramet&rSize of the part of a delimited formula
that is allowed to go uncovered by a delimiter. PlagXTdefault: 5pt.

\dimen(8-bit number) (internal dimefy; the control sequence itself is (@egister
prefix). Access dimen registers.

\dimendef(control sequence)(equals)(8-bit number) (shorthand definition
the control sequence itself is (@egisterdef. Define a control sequence to be
a synonym for a\dimen register.

\discretionary{pre-brealk{post-break{no-brealk (horizontal commandSpecify
the way a character sequence is split up at a line break.

\displayindent (dimen parametérDistance by which the box, in which the
display is centred, is indented owing to hanging indentation. This value is set
automatically for each display.

\displaylimits (primitive comman{l Restore default placement for limits.

\displaystyle (primitive comman{l Select the display style of math typesetting.

\displaywidowpenalty (integer parametgrAdditional penalty for breaking a page
before the last line above a display formula. Defadtin plain TX.

\displaywidth (dimen parametgrWidth of the box in which the display is centred.
This value is set automatically for each display.

\divide(numeric variable)(optional by)(number) (arithmetic assignment
Arithmetic command to divide &numeric variable (see\advance).

\doublehyphendemerits (integer parametgrPenalty for consecutive lines ending
with a hyphen. Defaultt0 000 in plain TX.

\dp(8-bit number) (internal dimen; the control sequence itself is @ox
dimension. Depth of the box in a box register.

\dump (vertical commang Dump a format file; possible only in IniEK, not allowed
inside a group.

\edef (def) Start a macro definition; the replacement text is expanded at definition
time.

\else (expandable commapdSelect(false tex} of a conditional or default case of
\ifcase.

\emergencystretch (dimen parametér(TeX3 only) Assumed extra stretchability in
lines of a paragraph in third pass of the line-breaking algorithm.

\end (vertical commanyd End this run.

\endcsname (expandable commahdelimit the name of a control sequence that
was begun with\csname.

\endgroup (primitive commang End a group that was opened witlbegingroup.

\endinput (expandable commahdrerminate inputting the current file after the
current line.

\endlinechar (integer parametgrThe character code of the end-of-line character
appended to input lines. IrEX default: 13.

244 Victor Eijkhout — EX by Topic

\egno(math mode material)$$ (eqnd Place a right equation number in a display
formula.

\errhelp (token parametérTokens that will be displayed if the user asks for help
after an\errmessage.

\errmessage(general text) (primitive comman{l Report an error and give the
user opportunity to act.

\errorcontextlines (integer parameter(TeX3 only) Number of additional context
lines shown in error messages.

\errorstopmode (interaction mode assignmén@sk for user input on the
occurrence of an error.

\escapechar (integer parameterNumber of the character that is used when control
sequences are being converted into character tokengXlmdé&fault: 92.

\everycr (token parametérToken list inserted after everycr or non-redundant
\crcr.

\everydisplay (token parametérToken list inserted at the start of a display.

\everyhbox (token parametérToken list inserted at the start of a horizontal box.

\everyjob (token parameterToken list inserted at the start of each job.

\everymath (token parameterToken list inserted at the start of non-display math.

\everypar (token parametérToken list inserted in front of paragraph text.

\everyvbox (token parameterToken list inserted at the start of a vertical box.

\exhyphenpenalty (integer parametgrPenalty for breaking a horizontal line at a
discretionary in the special case where the prebreak text is empty. Detault
in plain TeX.

\expandafter (expandable commaphdiake the next two tokens and place the
expansion of the second after the first.

\fam (integer parameterThe number of the current font family.

\fi (expandable commaidClosing delimiter for all conditionals.

\finalhyphendemerits (integer parametgrPenalty added when the penultimate
line of a paragraph ends with a hyphen. PlagxX Tefault 5000.

\firstmark (expandable commaidrhe first mark on the current page.

\floatingpenalty (integer parametgrPenalty amount added to
\insertpenalties when an insertion is split.

\font(control sequence)(equals)(file name)(at clause) (simple assignmeit
Associate a control sequence withtém file. When used on its own, this
control sequence is gont), denoting the current font.

\fontdimen(number)(font) (internal dimef Access various parameters of fonts.

\fontname(font) (primitive comman¢l The external name of a font.

\futurelet(control sequence)(token;)(tokensy) (let assignmentAssign the
meaning of(token,) to the (control sequencge

\gdef (defy Synonym for\global\def.

\global (prefix) Make the next definition, arithmetic statement, or assignment
global.

\globaldefs (integer parametgrOverride \global specifications: a positive value
of this parameter makes all assignments global, a negative value makes them
local.

\halign(box specification){(alignment material)} (vertical commang
Horizontal alignment. Display alignment:

$$\halign(box specificatiof{. . .}(optional assignments

Victor Eijkhout — EX by Topic 245

Chapter 37. Glossary ofgX Primitives

\hangafter (integer parameterlf positive, this denotes the number of lines before
indenting starts; if negative, its absolute value is the number of indented lines
starting with the first line of the paragraph. The default value of 1 is restored
after every paragraph.

\hangindent (dimen parameterlf positive, this indicates indentation from the left
margin; if negative, this is the negative of the indentation from the right
margin. The default value dfipt is restored after every paragraph.

\hbadness (integer parametgrThreshold below which gX does not report an
underfull or overfull horizontal box. PlaingK default: 1000.

\hbox(box specification){(horizontal material)} (box) Construct a
horizontal box.

\hfil (horizontal commandHorizontal skip equivalent tdhskip Ocm plus 1fil.

\hfill (horizontal command Horizontal skip equivalent to
\hskip Ocm plus 1fill.

\hfilneg (horizontal command Horizontal skip equivalent to
\hskip Ocm minus 1fil.

\hfuzz (dimen parametgrExcess size thatgK tolerates before it considers a
horizontal box overfull. Plain gX default: 0. 1pt.

\hoffset (dimen parametérDistance by which the page is shifted to the right of
the reference point which is at one inch from the left margin.

\holdinginserts (integer parametgr(only TeX3) If this is positive, insertions are
not placed in their boxes when theutput tokens are inserted.

\hrule (vertical commang Rule that spreads in horizontal direction.

\hsize (dimen parameterLine width used for text typesetting inside a vertical box.

\hskip(glue) (horizontal commandInsert in horizontal mode a glue item.

\hss (horizontal command Horizontal skip equivalent to
\hskip Ocm plus 1fil minus 1fil.

\ht(8-bit number) (internal dimen; the control sequence itself is @ox
dimension. Height of the box in a box register.

\hyphenation(general text) (hyphenation assignmenbDefine hyphenation
exceptions for the current value &fianguage.

\hyphenchar(font) (internal integer Number of the character behind which a
\discretionary{}{}{} is inserted.

\hyphenpenalty (integer parameterPenalty associated with break at a discretionary
in the general case. Defawp in plain TgX.

\if(token;)(tokeny) (expandable commahdrest equality of character codes.

\ifcase(number)(caseg)\or...\or(case,)\else(other cases)\fi (expandable
comman{l Enumerated case statement.

\ifcat(token;)(tokeny) (expandable commaidrest whether two characters have
the same category code.

\ifdim(dimen;)(relation)(dimeny) (expandable commahdCompare two
dimensions.

\ifeof(4-bit number) (expandable commaphdlest whether a file has been fully
read, or does not exist.

\iffalse (expandable commahdrhis test is always false.

\ifhbox(8-bit number) (expandable commahdlest whether a box register
contains a horizontal box.

\ifhmode (expandable commaphdrest whether the current mode is (possibly
restricted) horizontal mode.

\ifinner (expandable commahdiest whether the current mode is an internal mode.

246 Victor Eijkhout — EX by Topic

\ifmmode (expandable commahdrest whether the current mode is (possibly
display) math mode.

\ifnum(number;)(relation)(numbery) (expandable commahdlest relations
between numbers.

\ifodd(number) (expandable commahdrest whether a number is odd.

\iftrue (expandable commahdrhis test is always true.

\ifvbox(8-bit number) (expandable commahdlest whether a box register
contains a vertical box.

\ifvmode (expandable commaphdlest whether the current mode is (possibly
internal) vertical mode.

\ifvoid(8-bit number) (expandable commaidlest whether a box register is
empty.

\ifx(token;)(tokeny) (expandable commahdiest equality of macro expansion, or
equality of character code and category code.

\ignorespaces (primitive commany Expands following tokens until something
other than a(space tokenis found.

\immediate (primitive command Prefix to have output operations executed right
away.

\indent (primitive comman{ Switch to horizontal mode and insert box with width
\parindent. This command is automatically inserted beforéharizontal
commangd in vertical mode.

\input(file name) (expandable commahdRead a specified file agX input.

\inputlineno (internal integer (TeX3 only) Number of the current input line.

\insert(8-bit number){(vertical mode material)} (primitive comman{l Start
an insertion item.

\insertpenalties (special integer Total of penalties for split insertions. Inside the
output routine the number of held-over insertions.

\interlinepenalty (integer parameterPenalty for breaking a page between lines
of a paragraph. Default in plain TgX.

\jobname (expandable commahdName of the main g@X file being processed.

\kern(dimen) (kern) Add a kern item of the specifie(timer) to the list; this can
be used both in horizontal and vertical mode.

\language (integer parameter(TeX3 only) Choose a set of hyphenation patterns
and exceptions.

\lastbox (box) Register containing the last element added to the current list, if this
was a box.

\lastkern (internal dimen If the last item on the list was a kern, the size of this.

\lastpenalty (internal integer If the last item on the list was a penalty, the value
of this.

\lastskip (internal glué or (internal muglug. If the last item on the list was a
skip, the size of this.

\lccode(8-bit number) (internal integey, the control sequence itself is
a (codenamg Access the character code that is the lowercase variant of a
given code.

\leaders(box or rule)(vertical/horizontal/mathematical skip) (leader$
Fill a specified amount of space with a rule or copies of box.

\left (primitive comman{l Use the following character as an open delimiter.

\lefthyphenmin (integer parameter(TeX3 only) Minimum number of characters
before a hyphenation.

\leftskip (glue parameterGlue that is placed to the left of all lines.

Victor Eijkhout — EX by Topic 247

Chapter 37. Glossary ofgX Primitives

\legno(math mode material)$$ (eqnd Place a left equation number in a display
formula.

\let(control sequence)({equals)(token) (let assignmentDefine a control
sequence to a token, assign its meaning if the token is a command or macro.

\limits (primitive command Place limits over and under a large operator. This is
the default position in display style.

\linepenalty (integer parametgrPenalty value associated with each line break.
Default 10 in plain TeX.

\lineskip (glue parametérGlue added if distance between bottom and top of
neighbouring boxes is less thAnlineskiplimit. Default 1pt in plain TeX.

\lineskiplimit (dimen parameterDistance to be maintained between the bottom
and top of neighbouring boxes on a vertical list. Defaagt in plain TeX.

\long (prefix) Indicate that the arguments of the macro to be defined are allowed to
contain\par tokens.

\looseness (integer parameterNumber of lines by which this paragraph has to be
made longer (or, if negative, shorter) than it would be ideally.

\lower(dimen)(box) (primitive commangl Adjust vertical positioning of a box in
horizontal mode.

\lowercase(general text) (primitive commangl Convert the argument to its
lowercase form.

\mag (integer parametgrl000 times the magnification of the document. Default
1000 in IniTEX.

\mark(general text) (primitive commang Specify a mark text.

\mathaccent(15-bit number)(math field) (primitive comman(l Place an accent
in math mode.

\mathbin(math field) (math atom Let the following (math field function as a
binary operation.

\mathchar(15-bit number) (primitive commang Explicit denotation of a
mathematical character.

\mathchardef (control sequence)({equals)(15-bit number) (shorthand
definition) Define a control sequence to be a synonym for a math character
code.

\mathchoice{DHTH{SHSS (primitive commang Give four variants of a formula
for the four styles of math typesetting.

\mathclose(math field) (math atom Let the following (math field function as a
closing symbol.

\mathcode(8-bit number) (internal integey; the control sequence itself is
a (codenamg Code of a character determining its treatment in math mode.

\mathinner(math field) (math atom Let the following (math field function as
an inner formula.

\mathop(math field) (math atom Let the following (math field function as a
large operator.

\mathopen({math field) (math atom Let the following (math field function as an
opening symbol.

\mathord(math field) (math atom Let the following (math field function as an
ordinary object.

\mathpunct(math field) (math atom Let the following (math field function as a
punctuation symbol.

\mathrel(math field) (math atom Let the following (math field function as a
relation.

248 Victor Eijkhout — EX by Topic

\mathsurround (dimen parametérKern amount placed before and after in-line
formulas.

\maxdeadcycles (integer parametgrThe maximum number of times that the output
routine is allowed to be called without ¥shipout occurring. InigX
default: 25.

\maxdepth (dimen parametérMaximum depth of the page box. Defadpt in
plain TeX.

\meaning (expandable commahdsive the meaning of a control sequence as a
string of characters.

\medmuskip (muglue parameterMedium amount of mu glue. Default value in plain
TeX: 4mu plus 2mu minus 4mu

\message(general text) (primitive commany Write a message to the terminal.

\mkern (primitive command Insert a kern measured in mu units.

\month (integer parameteérThe month of the current job.

\moveleft(dimen)(box) (primitive commany Adjust horizontal positioning of a box
in vertical mode.

\moveright(dimen)(box) (primitive commany Adjust horizontal positioning of a
box in vertical mode.

\mskip (mathematical skipInsert glue measured in mu units.

\multiply(numeric variable)(optional by)(number) (arithmetic assignmept
Arithmetic command to multiply gnumeric variablg (see\advance).

\muskip(8-bit number) (internal muglug; the control sequence itself is (@egister
prefix). Access skips measured in mu units.

\muskipdef(control sequence)(equals)(8-bit number) (shorthand definition
the control sequence itself is (@egisterdef. Define a control sequence to be
a synonym for a\muskip register.

\newlinechar (integer parametérNumber of the character that triggers a new line
in \write statements. Plaingk default —1.

\noalign(filler){(vertical (horizontal) mode material)} (primitive
commangl Specify vertical (horizontal) material to be placed in between
rows (columns) of arkhalign (\valign).

\noboundary (horizontal command(TeX3 only) Omit implicit boundary character.

\noexpand(token) (expandable commahdo not expand the next token.

\noindent (primitive comman{l Switch to horizontal mode with an empty
horizontal list.

\nolimits (primitive commang Place limits of a large operator as subscript and
superscript expressions. This is the default position in text style.

\nonscript (primitive commany Cancel the next glue item if it occurs in
scriptstyle or scriptscriptstyle.

\nonstopmode (interaction mode assignménigX fixes errors as best it can, and
performs an emergency stop when user interaction is needed.

\nulldelimiterspace (dimen parametérWidth taken for empty delimiters.
Default 1.2pt in plain TeX.

\nullfont (fontdef token Name of an empty font thatgK uses in emergencies.

\number(number) (expandable commahdConvert a(numbej to decimal
representation.

\omit (primitive commany Omit the template for one alignment entry.

\openin(4-bit number)(equals)(filename) (primitive commangl Open a stream
for input.

Victor Eijkhout — EX by Topic 249

Chapter 37. Glossary ofgX Primitives

\openout(4-bit number)(equals)(filename) (primitive commang@ Open a stream
for output.

\or (primitive comman{l Separator for entries of anifcase.

\outer (prefix) Indicate that the macro being defined should occur on the outer
level only.

\output (token parametérToken list with instructions for shipping out pages.

\outputpenalty (integer parameterValue of the penalty at the current page break,
or 10000 if the break was not at a penalty.

\over (generalized fraction commahdFraction.

\overfullrule (dimen parameterWidth of the rule that is printed to indicate
overfull horizontal boxes. PlaingK default: 5pt.

\overline(math field) (math atom Overline the following(math field.

\overwithdelims(delim;)(delimy) (generalized fraction commahndFraction with
delimiters.

\pagedepth (special dimep Depth of the current page.

\pagefilllstretch (special dimeh Accumulated third-order stretch of the current

page.
\pagefillstretch (special dimeh Accumulated second-order stretch of the current
page.
\pagefilstretch (special dimeh Accumulated first-order stretch of the current
page.

\pagegoal (special dimeh Goal height of the page box. This starts\atsize, and
is diminished by heights of insertion items.

\pageshrink (special dimeh Accumulated shrink of the current page.

\pagestretch (special dimep Accumulated zeroth-order stretch of the current page.

\pagetotal (special dimep Accumulated natural height of the current page.

\par (primitive command Close off a paragraph and go into vertical mode.

\parfillskip (glue parameterGlue that is placed between the last element of the
paragraph and the line end. PlaipXTdefault: Opt plus 1fil.

\parindent (dimen parametérSize of the indentation box added in front of a
paragraph.

\parshape (internal integer Command for general paragraph shapes:

\parshape(equal$n iy ¢1 ... i, Cp

specifies a number of lines, andn pairs of an indentation and line length.

\parskip (glue parametérAmount of glue added to vertical list when a paragraph
starts; default valu®pt plus 1pt in plain TeX.

\patterns(general text) (hyphenation assignmenbDefine a list of hyphenation
patterns for the current value dflanguage; allowed only in IniEX.

\pausing (integer parameterSpecify that EX should pause after each line that is
read from a file.

\penalty (primitive comman{l Specify desirability of not breaking at this point.

\postdisplaypenalty (integer parametg&rPenalty placed in the vertical list below
a display.

\predisplaypenalty (integer parametgrPenalty placed in the vertical list above a
display. Plain EX default: 10 000.

\predisplaysize (dimen parametgrEffective width of the line preceding the
display.

\pretolerance (integer parametgrTolerance value for a paragraph that uses no
hyphenation. Default00 in plain TgX.

250 Victor Eijkhout — EX by Topic

\prevdepth (special dimeh Depth of the last box added to a vertical list as it is
perceived by gX.

\prevgraf (special integer The number of lines in the paragraph last added to the
vertical list.

\radical(24-bit number) (primitive commanyl Command for setting things such
as root signs.

\raise(dimen)(box) (primitive command Adjust vertical positioning of a box in
horizontal mode.

\read(number)to({control sequence) (simple assignmehtRead a line from a
stream into a control sequence.

\relax (primitive commany Do nothing.

\relpenalty (integer parameterPenalty for breaking after a binary relation, not
enclosed in a subformula. PlaigX default: 500.

\right (primitive commang Use the following character as a closing delimiter.

\righthyphenmin (integer parameter(TgX3 only) Minimum number of characters
after a hyphenation.

\rightskip (glue parametérGlue that is placed to the right of all lines.

\romannumeral(number) (expandable commahdConvert a positive(lnumbej to
lowercase roman representation.

\scriptfont(4-bit number) (family membey; the control sequence itself is
a (font range. Access the scriptfont of a family.

\scriptscriptfont(4-bit number) (family membey; the control sequence itself
is a (font rangé. Access the scriptscriptfont of a family.

\scriptscriptstyle (primitive command Select the scriptscript style of math
typesetting.

\scriptspace (dimen parametgrExtra space after subscripts and superscripts.
Default .5pt in plain TeX.

\scriptstyle (primitive comman{l Select the script style of math typesetting.

\scrollmode (interaction mode assignménigX patches errors itself, but will ask
the user for missing files.

\setbox(8-bit number)({equals)(box) (simple assignmehtAssign a box to a box
register.

\setlanguage(number) (primitive commangl (TeX3 only) Insert a whatsit resetting
the current language to th@umbej specified.

\sfcode(8-bit number) (internal integey, the control sequence itself is
a (codenamg Access the value of th&spacefactor associated with a
character.

\shipout(box) (primitive commany Ship a box to theivi file.

\show(token) (primitive commangl Display the meaning of a token on the screen.

\showbox(8-bit number) (primitive commany Write the contents of a box to the
log file.

\showboxbreadth (integer parametérNumber of successive elements that are
shown when\tracingoutput is positive, each time a level is visited. Plain
TeX default: 5.

\showboxdepth (integer parametgrThe number of levels that are shown when
\tracingoutput is positive. Plain X default: 3.

\showlists (primitive commany Write to the log file the contents of the partial
lists currently built in all modes.

\showthe(internal quantity) (primitive command Display on the terminal the
result of prefixing a token with\the.

Victor Eijkhout — EX by Topic 251

Chapter 37. Glossary ofgX Primitives

\skewchar(font) (internal integer Font position of an after-placed accent.

\skip(8-bit number) (internal glue; the control sequence itself is (@egister
prefix). Access skip registers

\skipdef(control sequence)(equals)(8-bit number) (shorthand definition the
control sequence itself is @egisterdef. Define a control sequence to be a
synonym for a\skip register.

\spacefactor (special integer1000 times the ratio by which the stretch component
of the interword glue should be multiplied.

\spaceskip (glue parameterinterword glue if non-zero.

\span (primitive commangyl Join two adjacent alignment entries, or (in preamble)
expand the next token.

\special(general text) (primitive commany Write a token list to thedvi file.

\splitbotmark (expandable commahdrhe last mark on a split-off page.

\splitfirstmark (expandable commahdrhe first mark on a split-off page.

\splitmaxdepth (dimen paramet¢rMaximum depth of a box split off by a
\vsplit operation. Defaulépt in plain TeX.

\splittopskip (glue parameterMinimum distance between the top of what
remains after a\vsplit operation, and the first item in that box.
Default 10pt in plain TeX.

\string(token) (expandable commahdConvert a token to a string of one or more
characters.

\tabskip (glue parameterAmount of glue in between columns (rows) of an
\halign (\valign).

\textfont(4-bit number) (family membe}f; the control sequence itself is {gont
range. Access the textfont of a family.

\textstyle (primitive comman{ Select the text style of math typesetting.

\the(internal quantity) (primitive comman¢l Expand the value of various
guantities in EX into a string of (character) tokens.

\thickmuskip (muglue parametérLarge amount of mu glue. Default value in plain
TeX: bmu plus 5mu.

\thinmuskip (muglue parametérSmall amount of mu glue. Default value in plain
TeX: 3mu.

\time (integer paramet&rNumber of minutes after midnight that the current job
started.

\toks(8-bit number) (register prefix Access a token list register.

\toksdef(control sequence)(equals)(8-bit number) (shorthand definition
the control sequence itself is {@egisterdef. Assign a control sequence to
a \toks register.

\tolerance (integer parametgrTolerance value for lines in a paragraph that does
use hyphenation. Defauftoo in plain TeX, 10000 in IniTEX.

\topmark (expandable commapdrhe last mark of the previous page.

\topskip (glue parameterMinimum distance between the top of the page box and
the baseline of the first box on the page. Defawpt in plain TgX.

\tracingcommands (integer parameterWhen this is 1, gX displays primitive
commands executed; when this is 2 or more the outcome of conditionals is
also recorded.

\tracinglostchars (integer parameterlf this parameter is positive,gK gives
diagnostic messages whenever a character is accessed that is not present in a
font. Plain BX default: 1.

252 Victor Eijkhout — EX by Topic

\tracingmacros (integer parameterlf this is 1, the log file shows expansion of
macros that are performed and the actual values of the arguments; if this is
2 or more (token parametgs such as\output and \everypar are also
traced.

\tracingonline (integer parameterlf this parameter is positive,gK will write
trace information also to the terminal.

\tracingoutput (integer parameterlf this parameter is positive, the log file shows
a dump of boxes that are shipped to thei file.

\tracingpages (integer parametérlf this parameter is positive,EK generates a
trace of the page-breaking algorithm.

\tracingparagraphs (integer parameterlf this parameter is positive,gK
generates a trace of the line-breaking algorithm.

\tracingrestores (integer parameterlf this parameter is positive,gK will report
all values that are restored when a group level ends.

\tracingstats (integer parameterlf this parameter is positive,gK reports at the
end of the job the usage of various internal arrays.

\uccode(8-bit number) (internal integey, the control sequence itself is
a (codenamg Access the character code that is the uppercase variant of a
given code.

\uchyph (integer parametgrPositive if hyphenating words starting with a capital
letter is allowed. Plain gX default 1.

\underline(math field) (math atom Underline the following(math field.

\unhbox(8-bit number) (horizontal commandUnpack a box register containing a
horizontal box, appending the contents to the list, and emptying the register.

\unhcopy(8-bit number) (horizontal commandThe same asunhbox, but do not
empty the register.

\unkern (primitive commanyl Remove the last item of the list if this was a kern.

\unpenalty (primitive commanyl Remove the last item of the list if this was a
penalty.

\unskip (primitive commany Remove the last item of the list if this was a skip.

\unvbox(8-bit number) (vertical commang Unpack a box register containing a
vertical box, appending the contents to the list, and emptying the register.

\unvcopy(8-bit number) (vertical commang The same adunvbox, but do not
empty the register.

\uppercase(general text) (primitive comman{l Convert the argument to its
uppercase form.

\vadjust(filler){(vertical mode material)} (primitive commandy Specify in
horizontal mode material for the enclosing vertical list.

\valign(box specification){(alignment material)} (horizontal command
Vertical alignment.

\vbadness (integer parametérThreshold below which overfull and underfull vertical
boxes are not shown. PlaingX default: 1000.

\vbox(box specification){(vertical material)} (primitive commang
Construct a vertical box with reference point on the last item.

\vcenter(box specification){(vertical material)} (primitive commang
Construct a vertical box vertically centred on the math axis.

\vfil (vertical commang Vertical skip equivalent td\vskip Ocm plus 1fil.

\vfill (vertical commany Vertical skip equivalent tO\vskip Ocm plus 1fill.

\vfilneg (vertical commany Vertical skip equivalent td\vskip Ocm minus 1fil.

Victor Eijkhout — EX by Topic 253

Chapter 37. Glossary ofgX Primitives

\vfuzz (dimen parametgrExcess size thatgK tolerates before it considers a
vertical box overfull. Plain X default: 0. 1pt.

\voffset (dimen parametérDistance by which the page is shifted down from the
reference point, which is one inch from the top of the page.

\vrule (horizontal commandRule that spreads in vertical direction.

\vsize (dimen parametgrHeight of the page box.

\vskip(glue) (vertical commang Insert in vertical mode a glue item.

\vsplit(8-bit number)to(dimen) (primitive command Split off the top part of a
vertical box.

\vss (vertical commany Vertical skip equivalent to
\vskip Ocm plus 1fil minus 1fil.

\vtop(box specification){(vertical material)} (primitive commang
Construct a vertical box with reference point on the first item.

\wd(8-bit number) (internal dimeiy; the control sequence itself is @ox
dimension. Width of the box in a box register.

\widowpenalty (integer parametgrAdditional penalty for breaking a page before
the last line of a paragraph. Defauls0 in plain TgX.

\write(number)(general text) (primitive comman{l Generate a whatsit item
containing a token list to be written to the terminal or to a file.

\xdef (defy Synonym for\global\edef.

\xleaders (leader$ As \leaders, but with box leaders any excess space is spread
equally between the boxes.

\xspaceskip (glue parameterInterword glue if non-zero and
\spacefactor > 2000.

\year (integer parametérThe year of the current job.

254 Victor Eijkhout — EX by Topic

Chapter 38

2 39, |55 71 |87 103|119
BEL ; 1%“327 27 4737 7 67|47 CLo757 2767 9147 77 V67

2 20 |56 72 |88 10 120
1§A'\éo 28 (50|38 8 7048 M110/58 %130 68%150 78 *170)

M

w
H
o

25 41 |57 73 |89 105|121

HT11|1FM31{29) 51|39 @ 71|49 '111]50 Y131|69 '151/ 79 Y171

0 2% 42, |58 |74 . |90 106|122
1RY8, J

oA 52[3A 72|4a h12|5A432|6A 1152 74 A T2

E@qle%haracter tables d&glAR
ASCII CONTROL CODES héx oct
b7 0 0 0 0 1 1 1 1
b6 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1
BITS SYMBOLS
CONTROL UPPERCASE | LOWERCASE
b4 b3 b2 bfL NUMBERS
0 187 32 |48 64 _ [80_ |96 [112
0000 faNUL Gy PLEG50SP40l30 © 6040 @ods0 Pr2060 140 70 Pi60)
1 17 |33 |49 65 |81 _ |97 113
000 11;SOH;11PCL[51 ! 41031 1 61|41 PMo01]51 Q21|61 241|721 %61l
2 1 34 [50. [66. [82_ |08 114
0010f,STX, 1330%2 22" 42|32 2 62|42 B1o252 Ri2d62 P14 72 T162
3 1% 35 |51 67 _ [83_ |99 115
0011 (3ETX311DC33155# 43033 3 63|43 10353 S123l63 €143 73 S163
7 233 36 |52 68 _ |84 100|116
0100 ,BOT,11PCh4l24 % 44\34 * 64|24 Prodsa T12464 Y144 74 164
5 2@ 37 |53 69 _ |85 101|117
010 15ENQg 1 NAK 5% 45035 5 65|45 10555 V12565 €145 75 Y165
6 2§ 38 |54 . [70_ |86 102|118
0110 fsACKg18YNglos& 46|36 6 66|46 10656 V12666 T146 76 V166
7
7
8
8
9
9
1

A LF1o

1011 élVTl?, %S%:s g; * 53 298 ' 73 471; K113 gé [133 61327“153 %3{173
1100 g:ZFF14 i?:':834 42121: ' 54 g(():< 74 471?: L114 2?: \134 elscc):S' 154 %4' 174
1101 ESCR15 igDGse.s 3%‘ 55 gé: 75 4717DML15 231; l135 23%155 $2D 175
1110 é48016 igRS% 32 ' 56 gé> 76 4712 Ni1g 22 "13§ éé0n156 $E6~176
1111 ES' 17 i:‘:usw in I'57 gi ? 77 4712 17 2[5: 1137 éél"ls? %@7 7

255

SR
TeX CHARACTER CODES héx oct
b7 0 0 0 0 1 1 1 1
b6 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1
BITS SYMBOLS
CONTROL UPPERCASE | LOWERCASE

b4 b3 b2 blL NUMBERS

0. _ 16 |32 |48 [64_ [80_ |96 . [112
0000 [57@ 10 P2ol205Pa0|30 © 6040 @ods0 Pr2060 14070 P160)

1. 117 33 |49 65 |81 _ |97 113
00011 "Aql11 Qafo1 ! 41/31 1 61|41 Mo01]51 U21l61 2141 71 %161

> |18 [34. [s0. [66. [82_ |08 114
00101, "B 5115 Roolon " 4232 2 62]a2 Brogls2 Ri22l62 P14 72 "162

3. |19 |35 |51 67 _ |83 _ |99 115
001 1f37C 3113753123 # 43|33 3 63]43 10353 S123l63 €143 73 S163

4 |20 |36 |52 68 _ |84 100|116
0100 [, "D 4114 Toa24 % 44/32 * 64|24 Prodsa T12464 Y144 74 164

5 |2 |37 [53_ [69_ |85 101|117
010157 5115 YUss|os ¥ 45|35 © 65|45 10555 V12565 €145 75 Y165

6 |22 |38 [54_. [70_ |86 102|118
0110(s5"F gl16 Voe|26% 46|36 © 66|46 10656 V12666 1146 76 V166

7. 123, [39. [55. [71. |87 103|119
011 1457G 7117 Warlo7 " a7l37 7 6747 Cro7157M27l67 %147 77 W67,

8. |24_ a0 |56 |72 |[e8 10 120
1000 |5 Hipl18 %3028 (5038 8 7048 M110/58 *130 68%150 78 X170

9 _ |25 |41 |57 73 |89 105|121
10019 11019 Y31|20) 51|30 © 72|49 '111/50 Y131|69 '151] 79 Y171]

10 |26 [42. |58 [74 . |90 106, [122
1010 J001a Za2|2a” 52|37 72]an d12|58432|6A 1152 74 472

11 |27 |43 |59 [75_ |o1 107|123
101 137K319 T33|28* 53|38 * 73|48K113(58 [133|68 K153 78 1173

12 |28 |44 |60 |76 |92 108|124
1100 |5 Ly4lac Vaaloc ' 54/3c< 74lacti14sc \13dec 154 7¢ 1174

13 |29 |45 le1_ [77.. |93 109 |12
110 1|5 "M51p 135|207 55|30~ 75{4DMi15|5D 1135|6D™155| 7D /175
L 110|H [P0~ |86 |62 78 |94, |10 |12

E Nigl1E 36|2E - 56{3E~ 76|4EM165E 136/6E M156 7E 176

15 |31 47 |63 [79_ [95. [111 [12L
111 11701710k -37l2r ! 57|3F ? 77[aF C1175F 1376F %157 7F 177

256

38.2

Computer modern fonts
COMPUTER MODERN ROMAN FONT LAYOUT

o

16
10 ' 20

32
20 " 40

48

30 Y

60

64
40 %100

80
50 7120

96
60 140

112
70 P160

A

17
117 21

33'
21 " 41

49

31 1

61

65
4101

81
51 21

97
61 2141

113
71 Y161

18 |
12 22

34

b2

22 42

50

32 2

62

66
42 B102

82
52100

98
62 142

114
72 "162

19 ,
13 23

35
237 43

51

333 63

67
43 “103

83
53 7123

99
63 143

115
73 5163

20 .
14 24

36

248 44

52
344 64

68
44P104

84
54 7124

100
64 “144

116
74 "164

21
15 25

37
25% 45

53

35 °

65

69
45105

85
55 7125

101
65 ©145

117
75 165

22 _
16 26

38

26% 46

54

36 0 66

70
46 Y106

86
56 "126

102
66 “146

118
76 V166

23 .,
17 27

39

)

27 47

55

37 7

67

71

47Cﬁ07

87
57 127

103
67 8147

119
77 M167

10

24
18 - 30

40
28(50

56

388 70

72
28110

88
58 %130

10411

68 150

120
78 *170

11

75
198 31

41
29) 51

57

399 71

73I
49 "111

89
59 131

105,
69 '151

121
79 Y171

PO ©O©00 0NN OO O AW WN NP PFPOO

o

2
=
N

26
1A% 32

42
2A 52

58
3A° 72

74

4AJ112

)
5A 432

106.
6A 1152

122
7TA 172

=
=
|_\
w

27
1B* 33

43
2B 53

59
3B’ 73

75
48%113

91
58[133

107
6B K153

123
7B 173

N
=
H
N

28
1c? 34

44
2C’ 54

60
3ci 74

76
acl114

92,
5C 134

108
6C 154

124
7C 174

=
=
a1

29
10% 35

45
2D 55

61
3D~ 75

77
apM15

93
5D]135

109
6D™155

125,
7D 175

= = =
mAUwO 9]

[EnY
[ep)

30
1E® 36

46
2E " 56

62
3E 76

78
24eM16

94
5E 136

110
6E 156

126,
7E 176

TR
5

=

~

31

1F@ 37

47
2F/ 57

63,
3F 77

79
4Fchl7

95 |
5F 137

111
6F °157

127.
7F 177

257

COMPUTER MODERN TYPEWRITER FONT LAYOUT

0 16 32 48 64 80 96 112
ol 0|10 20]20" 40|30° 60|40 %00 50120 60 140/ 70 P160
1 17 33 49 65 81 97 113
1 2 11132121 41|31t 61| 4120151 %121 61 2141| 71 Y61
2 18 34 50 66 82 98 114
2 ® 2|12 22]22" 242|322 62| 42 B102] 52 122 62 P142| 72 162
3 19 _ 35 51 67 83 99 115
3 2 3]13 23]|23% 43|333 63|43 °103|53°123] 63 ©143| 73 5163
4 _ |20 36 52 68 84 100 116
4 % 4|14 24|24% 44| 34% 64| 244 P104| 54 T124| 64 Y144 74 *164
5 21_ |37, 53 69 85 101 117
5 T 5|15 25|25%45|35° 65| 45 F105| 55 Y125 65 ®145| 75 “65
6 22 |38 54 70 86 102 118
6 " 6|16 26|26% 46|36° 66|46 106| 56 126 66 T146| 76 V166
7 23 39 55 71 87 103 119
7 Y 7117 27|27 47|37 7 67| 47 ©107| 57 Y127 67 B147| 77 ¥167
8 24 20 56 72 88 104 120
8 210|188 > 30|28 (50| 388 70| 48 ®110| 58 *130| 68 M50 78 *170
9 25 a1 57 73 89 105 121
9 Y11(19% 3129 51|39° 71| 49 1111 50 Y131 | 60 *151| 79 Y171
10 26 42 58 74 90 106, 122
A P12 1A%32|2a% 52| 3a7 72| 4aa%112 | 5A%432 | 6A 152 | 7AAT72
11 27 43 59 75 91 107 123
B "13|18%33|28% 53|38 73| 48%113| 5B [133 | 6B %153 | 7B 1173
12 28 44 60 76 92 108 124
c Y1a|1c? 34| 2¢c 54| 3c< 74| act114| 5c M34a| 6clisa| 7¢ 1174
13 29 25 61 |77 93 109 125
D '15|1D% 35| 207 55|30 75| 4ap™15| 507135 | 6D™55 | 7D Y175
14 30 26 62 78 94 _ 110 126,
E i16|1E® 36| 2E 56| 3E” 76| 4E"116| 5E 136 | 6E™156| 7E 176
15 31, |47, Je3, |79, |9 111 127,
F ¢17|1F % 37| 2Fr/ 57| 3F 7 77| 4aF P117| 5F -137| 6F °157| 7F 177

258

COMPUTER MODERN ITALIC FONT LAYOUT

I' 9

16
10 * 20

32
20 " 40

28
30 60

64
40 %00

80
50" 120

96
60 140

112
70 P160

A

17
117 21

33/
21 41

49 1
31" 61

65
414101

81
51 @21

97
61 “141

113
71 Y161

18 |
12 22

34

2

22 42

50
327 62

66
42 B102

82
52 20

98
62 142

114
72 "162

19
13 23

35
23% 43

51
337 63

67
43 %103

83
53 7123

99
63 143

115
73 9163

20
14 24

36
244 44

52
344 64

68
44P104

84
54 7124

100
64 %144

116
74 164

21
15 25

37
25 % 45

53
357 65

69
45 105

85
55 7125

101
65 “145

117
75 “165

22
16 26

38

26 46

54

36 0 66

70
46 F106

86
56 126

102
66/ 146

118
76 166

23 ,
17 27

39 |
27 47

55
37 7 67

71
47 %107

87
57 127

=

103
67 9147

119
77 Y167

10

24
18 * 30

40
28 (50

56

38 % 70

72
48110

88
58130

S

104
68 150

120
78 170

11

25
198 31

41)
297 51

57
3907 71

73

49 1111

89
59 131

105.
69 ‘151

121
79 Y171

)>l5©t0@)03\l\l®@0‘|0‘|-b-bwwl\)l\)l—‘l—‘oo
(63}

12

26
1A% 32

42
2A 52

58
3A° 72

74

4A7112

90
5A 7132

106.
6A 7152

122
7TA 172

11
B 713

27
1B% 33

43
2B 53

59
3B’ 73

75
485913

91
5B /133

107
6B 153

123
7B 173

12
Cﬁ14

28
1c” 34

44
2C’ 54

60
ac’! 74

76
ac™14

92
5C 134

108
6C 154

124
7C 174

13
p 115

29
10% 35

45
2D 55

61
3D~ 75

77
apMi15

93
5D /135

109
6D""155

125,
7D 175

14
Eﬁ16

30

1E% 36

46
2E " 56

62
3EY 76

78
24eM16

94 |
5E 136

110
6E "'156

126,
7E 176

15
F 17

31

1F037

47
2F/ 57

63 ,
3F 77

79

4 %117

95 |
5F 137

111
6F °157

127.
7F 177

259

COMPUTER MODERN SYMBOL FONT

16 _ 32 48 , 64 80 96 112
0|10~ 20| 207 40|30 " 60| 40 "100| 50120 60 "140| 70 V160

17 |33 49 65 81 o7 |1
10115 21| 217 41| 3161 | 417401 | 51 %21 61 141 | 71 161

18C 34 50 66 82 98 llé%
2112—= 22 22T 42| 32 € 62| 42”102 527?122 62 L142 72 7162

193 35 51 67 83 99 115
311323 23l43 337 63| 43 “103| 53 °123 63J143 73f163

20 _ 36 52, |es |84 100 116
4145 24| 247 24| 342 64| 44 Pr0a| 547124 | 64 144| 74 Y164

21> 37 53 69 85 10 12].7m
5{15= 25 25/45 35V 65| 45 “105 | 55“125| 65 '145| 75 165

38
* 6|16 26| 26 V46|36 /66| 467106 56 Y126 66 1146 | 76 E166

23> 39 55 71 G 87W 10 119j
T 7(17= 27| 277 47|37 ' 67| 477107 | 577127 67 /147 | 77 =167

24 40 56V 72 88 104 120
10|18~ 30| 28 50|38 7 70 48%10 58130 68 <150 78 §170

25 _ 41 573 73 89 10 121
911197 31| 207 51|39~ 71| 49111 593)131 69 7151 | 79 Tl?l

26) 58 74) 106 122
©12 11432 [2aT 52 | 3a7 72 | 4a%112 | 5a%132 | 6A 1152 | 7a 172

0
0
1
1
2
2
3
3
4
4
5
5
6 22 54 70 86 102 118
6
7
7
8
8
9
9
10
A
11

27 13 59~ |75 o1 107 123
B ©13|18° 33| 28¥ 53| 38" 73| 485113 | 58133 | 68 153 | 78 T173

12 28 44 60 76 92 108 124

c Y14|1c 34| 2c” 54 3C§R 74| ac*114| 5¢"134 6C1154 7C*174

13 29 45 61 77 93 109 125
o
D O15 1D~ 35 ZD\ 55| 3D 75 4D/V115 5D6135 GDﬁ’.LSS 7D<>175

14 30 62 78 94 11 12(29

46 T A
E 16 1E< 36 2E/56 3E 76| 4E 116 5E/\136 6E ‘156 | 7E "176

15 31 47 63 79 95 111 127

17 | 1IF” 37| 2F™* 57 3FJ‘77 4F0117 5F V137 6F ‘157 7F‘177

260

COMPUTER MODERN MATH EXTENSION FONT

0 16 32 48 64 80 96 112
0 (0110 (20 20 (40 30 (60 40 \100 50220 60UL40 70 \/160
1 17 33 49 65 81 97 113
1) 1 11) 21 21) 41 31\ 61 41/101 51r1121 61HL41 71\/161
2 18 34 50 66 82 98 114
2 [2|12 \ 22| 22 {42 32 [62 42 "102| 52 f122 62 142| 72 \Aez
3 19 35 51 67 83 99 115
3 } 3|13) 23 23} 43 33] 63| 43 '103 53U123 63 143 73\/163
4 20 36" 52 68 84 100 116
4 L 4114 | 24|24 | 44| 34 L64 44 <104 54 r124 64 144| 74 %64
5 21 37 53 69 85 101 117
5 | 5 15} 25| 25 | 45 35J 65| 45 >105 55L+J125 65 145|75 165
6 22 38" 54 70 86 102 118
6 { 6|16 {26 26 {46 36 ' 66| 46 Lioe 56 /\126 66 146| 76 166
7 23 394 55 71 87 103 119
7 17 17J 27 27} 47|37 67| alldor| 57 Vaor| 67 14777 167
8 24 40 56 72 88 104 120
8 {10 18 {30 28{50 38 (70 48 56110 582/30 68 Lso 78 170
9 25 41y 57 73 89 105 121
9 }11 19} 31 29}51 39‘ 71 497{111 59HL31 69}151 79 Y171
10 26 427 58 74 90 106 122
A <12 1A{32 2A<52 3Ak72 4Ale 5A /132 6A h52 7A 172
11 27 43 59 75 91 107 123
B >13 18}33 ZB>53 38J 73 45@13 5BL433 GBJ153 7B 173
12 28 44" 60 76 92 108 124
c '14 1c<34 2c/ 54 3c{ 74 4c@14 5CQ34 6C [154 7C 174
13 29 45, 61 77 93 109 125
p 15 1D> 35 2D\55 3D>75 4[@15 5DE5135 6DW155 7D 175
14 30 46 62 78 94 110 126
E /16 1E/36 2E/56 3E ' 76 4E(8116 5EA36 6E {156 7 M76
15 31 47 63 79 95 111 127
F \17 1F\37 2F\57 3F ! 77 4F®17 5F\/137 6F }157 7E Y177

261

38.3 Plain TeX math symbols
38.3.1 Mathcharacter codes

The following characters have been defined in a
\mathcode(8-bit numbef({equal$(15-bit numbey

assignment.

Character \mathcode Class Family Hex position
. "013A ordinary 1 3A
/ "013D 3D
\ "026E 2 6E
| "026A 6A
+ "202B binary operation 0 2B
- "2200 2 00
* 2203 03
: "303A relation 0 3A
= "303D 3D
< "313C 1 3C
> "313E 3E
("4028 open symbol 0 28
["405B 5B
{ "4266 2 66
! "5021 closing symbol 0 21
) "5029 29
? "503F 3F
] "505D 5D
} "5267 2 67
; "603B punctuation 0 3B
, "613B 1 3B
U "8000
’ "8000

"8000

262

38.3.2 Delimiter codes

The following characters have been defined in a
\delcode(8-bit numbef(equal$(24-bit numbey
assignment. They can be used witheft and \right.

small variant large variant
Character \delcode Family Hex position Family Hex position

("028300 0 28 3 00
) "029301 0 29 3 01
["05B302 0 5B 3 02
] "05D303 0 5D 3 03
< "26830A 2 68 3 0A
> "26930B 2 69 3 0B
/ "02F30E 0 2F 3 OE
| "26A30C 2 6A 3 oC
\ "26E30F 2 6E 3 OF

263

38.3.3 (mathchardef tokeng: ordinary symbols

The following characters have been defined in a

\mathchardef (control sequencéequals(15-bit numbey

assignment.

Symbol Control Sequence \mathcode Family Hex position
0 \partial "0140 1 40
b \flat "015B 5B
s \natural "015C 5C
\sharp "015D 5D
4 \ell "0160 60
1 \imath "017B 7B
J \jmath "017C 7C
o \wp "017D 7D
/ \prime "0230 2 30
00 \infty "0231 31
A \triangle "0234 34
v \forall 0238 38
3 \exists "0239 39
- \neg "023A 3A
0 \emptyset "023B 3B
R \Re "023C 3C
R \Im "023D 3D
T \top "023E 3E
1 \bot "023F 3F
N \aleph "0240 40
\Y \nabla "0272 72
& \clubsuit "027C 7C
& \diamondsuit "027D 7D
Q \heartsuit "027E 7E
® \spadesuit "027F 7F

264

38.3.4 (mathchardef tokens: large operators

The following characters have been defined in a
\mathchardef (control sequencgéequal3(15-bit number

assignment.
Symbol Control Sequence \mathcode Family Hex position
I/ \smallint "1273 2 73
Ul | \bigsqcup "1346 3 46
$ 7§ \ointop "1348 48
0]O) \bigodot "134A 4A
&P @ \bigoplus "134C 4C
X ® \bigotimes "134E 4E
5 \sum "1350 50
I1 H \prod "1351 51
/ / \intop "1352 52
uy \bigcup "1353 53
NN \bigcap "1354 54
| H—J \biguplus "1355 55
AN \bigwedge "1356 56
vV \bigvee "1357 57
11 H \coprod "1360 60

265

38.3.5 (mathchardef tokeng: binary operations

The following characters have been defined in a
\mathchardef (control sequencéequals(15-bit numbey

assignment.

Symbol Control Sequence \mathcode Family Hex position
> \triangleright "212E 1 2E
< \triangleleft "212F 2F
* \star "213F 3F

\cdot "2201 2 01

X \times "2202 02
* \ast "2203 03
- \div "2204 04
<o \diamond "2205 05
+ \pm "2206 06
F \mp "2207 07
&) \oplus "2208 08
) \ominus "2209 09
® \otimes "2204 0A
%) \oslash "220B 0B
© \odot "220C oC
O \bigcirc "220D 0D
o \circ "220E OE
. \bullet "220F OF
A \bigtriangleup "2234 34
\V4 \bigtriangledown "2235 35
u \cup "225B 5B
N \cap "225C 5C
W \uplus "225D 5D
A\ \wedge "225E 5E
V \vee "225F 5F
\ \setminus "226E 6E
2 \wr "226F 6F

I \amalg "2271 71
L \sqcup "2274 74
M \sqcap "2275 75
T \dagger "2279 79

I \ddagger "227A TA

266

38.3.6 (mathchardef tokeng: relations

The following characters have been defined in a

\mathchardef (control sequengéequal$(15-bit numbey

assignment.

Symbol Control Sequence \mathcode Family Hex position
— \leftharpoonup "3128 1 28
— \leftharpoondown "3129 29
— \rightharpoonup "312A 2A
— \rightharpoondown "312B 2B
— \smile "315E 5E
~ \frown "315F 5F
= \asymp "3210 2 10
= \equiv "3211 11
- \subseteq "3212 12
)} \supseteq "3213 13
< \leq "3214 14
> \geq "3215 15
= \preceq "3216 16
> \succeq "3217 17
~ \sim "3218 18
~ \approx "3219 19
- \subset "321A 1A
D \supset "321B 1B
< \11 "321C 1C
> \gg "321D 1D
=< \prec "321E 1E
- \succ "321F 1F
— \leftarrow "3220 20
— \rightarrow "3221 21
— \leftrightarrow "3224 24
/ \nearrow "3225 25
AV \searrow "3226 26
~ \simeq "3227 27
= \Leftarrow "3228 28
= \Rightarrow "3229 29
& \Leftrightarrow "322C 2C
AN \nwarrow "322D 2D
J \swarrow "322E 2E
x \propto "322F 2F
€ \in 3232 32
> \ni "3233 33

/ \not 13236 36
| \mapstochar "3237 37
€ \perp "323F 3F
F \vdash "3260 60
- \dashv "3261 61

267

| \mid "326A 6A
I \parallel "326B 6B
C \sgsubseteq "3276 76
J \sqgsupseteq "3277 77
38.3.7 \delimiter macros
The following characters have been defined in a
\def (control sequengé\delimiter(27-bit number}
assignment.
Delimiters
Symbol Control Sequence Hex code Function
I \1lmoustache "4000340 open symbol
1 \rmoustache "5000341 closing symbol
[\lgroup "400033A open symbol
] \rgroup "500033B closing symbol
| \arrowvert "33C ordinary
| \Arrowvert "33D ordinary
I \bracevert "33E ordinary
I \Vert "26B30D ordinary
\ \vert "26A30C ordinary
1 \uparrow "3222378 relation
1 \downarrow 3223379 relation
1 \updownarrow "326C33F relation
T \Uparrow "322A37E relation
A} \Downarrow "322B37F relation
i \Updownarrow "326D377 relation
\ \backslash "26E30F ordinary
) \rangle "526930B closing symbol
(\langle "426830A open symbol
} \rbrace "5267309 closing symbol
{ \lbrace "4266308 open symbol
] \rceil "5265307 closing symbol
[\lceil "4264306 open symbol
] \rfloor "5263305 closing symbol
L \1floor "4262304 open symbol

268

Index

IATEX, 225 character
TeX version 2, 241 codes, 21
" replacement, 11 character
~, 158 active, 92
WEB, 229 active, and\noexpand, 103
dvi file, 226 escape, 11, 13
tfm files, 31 hyphen, 151
implicit, 23
accents, 24 parameter, 12, 89
accents in math mode, 164 space, 12
active character, 92 codenames, 27
alignment tab, 186 command
alignments, 184 primitive, 92
argument, 86 Computer Modern typefaces, 229
arithmetic, 59 conditional, 112
fixed-point, 60 conditionals
floating-point, 60 evaluation of, 117
on glue, 66 control
axis of math formulas, 173 sequence, 10
space, 10, 157
badness symbol, 10
and line breaking, 148 cramped styles, 170
CalCUlation, 70 current page, 194
baseline
distance, 129 date, 227
m , 237 definition
box, 34 macro, 85
dimensions, 37 delimiter
registers, 35 group, 81
unboxing, 43 delimiter codes, 162
box delimiter sizes, 162
overfull, 42 delimiters, 161
underfull, 42 demerits, 149
boxes device drivers, 227, 228
text in, 44 discardable items, 49
braces, 82 discretionary hyphen, 152
breakpoints in math lists, 176 discretionary item, 151
breakpoints in vertical lists, 196 display alignment, 185
breakpoints, computation of, 197 displays, 179

displays, non-centred, 182
category codes, 8

centring of math formulas, 173 equation numbering, 181

269

error patching, 235
evaluation
conditionals, 117
expansion, 99
expandable control sequences, 99
extension fonts, 163

font

dimensions, 31
font families, 165
font files, 228
font metrics, 228
font tables, 258
fonts, 29
format files, 222
frenchspacing, 159

generalized fractions, 175
global statements, 81
glue, 63
setting, 70
arithmetic on, 66
shrink component of, 68
stretch component of, 68
glue
interline, 129
grouping, 80

hanging

indentation, 142
horizontal alignment, 185
horizontal commands, 49
hyphenation, 152

1’0, 211
m , 222
input

stack, 92
input files, 211
insertions, 207
integers, 55
italic correction, 32

job, 219

kerning, 32
keywords, 240

language, 154

language
current, 154

270

languages, 152
leaders, 75
leaders
rule, 76
ligatures, 32
line
end, 7, 17
input, 7
width, 142
line
empty, 14
line breaking
badness, 148
list
horizontal, 48
token, 124
vertical, 49
lists
horizontal
breakpoints in, 149
penalties in , 149
local statements, 81
log file, 220
Lollipop, 225
lowercase, 25

machine dependence, 181
machine independence, 7
macro, 84
macro
outer, 85
magnification, 226
marks, 202
math characters, 161
math classes, 172
math modes, 170
math shift character, 170
math spacing, 173
math styles, 170
math symbols, lists of, 263
math unit, 173
migrating material, 52
mode, 48
mode
horizontal, 48
internal, 50
restricted, 50
vertical, 49
mu glue, 173

number
conversion, 58
roman numerals, 58
numbers, 55

output routine, 201
overflow errors, 236

page breaking, 197
page builder, 194
page depth, 193
page length, 195
page numbering, 204
page positioning, 192
paragraph
breaking into lines, 150
end, 138
shape, 142
start, 134
parameter, 86
parameter
delimited, 87
undelimited, 86
Pascal, 229
penalties in math mode, 176

penalties in vertical mode, 196

PostScript, 227
prefixes

macro, 85
primitive commands, 92

radicals, 163

recent contributions, 194
recursion, 92

registers, allocation of, 216
rules, 74

rules in alignments, 189
run modes, 220

save stack, 80
shrink, 68
space
factor, 156
optional , 15
token, 16
space
control —, 157
funny, 16
space, optional, 240
spacefactor code, 158

spacing, 156
specials, 227
state

internal, 10
statements

global, 81

local, 81
statistics, 231
streams, 212
stretch, 68
subscript, 171
successors, 162
superscript, 171
symbol font, 176

m , 222
m version 3, 42, 154, 210
table, character codes, 257
table, Ascli, 256
tables, 184
tables, font, 258
tie, 158
time, 227
token
lists, 124
token
space, 14
tracing, 231
TUG, 230
TUGDboat, 230

units of measurement, 67
uppercase, 25

verbatim mode, 97
vertical

commands, 50
vertical alignment, 185
m , 222
virtual fonts, 228

whatsits, 213

Bibliography

[1] W. Appelt. TEX fiir Fortgeschrittene. Addison-Wesley Verlag, 1988[238

[2] B. Beeton. Controlling<ctrl-M>; ruling the depths.TUGboat, 9:182—-183, 1988.
13

[3] B. Beeton. Additional font and glyph attributes for processing of mathematics,
1991. document N1174 Rev.,of ISO/IEC JTC1/SC18/W(d8. | 175

[4] K. Berry. Eplain. TUGboat, 11:571-572, 1990 2P4

[5] J. Braams. Babel, a language option f6fgX. TUGboat, 12:291-301, 1991.
151

[6] J. Braams, V. Eijkhout, and N.A.F.M. Poppelier. The development of national
IATEX styles. TUGboat, 10:401-406, 1989.[2P4

[7] M.J. Downes. Line breaking inunhboxed text. TUGboat, 11:605-612.[44

[8] V. Eijkhout. An indentation schemeTUGboat, 11:613-616.[134

[9] V. Eijkhout. A paragraph skip schem&@UGboat, 11:616-619.[135

[10] V. Eijkhout. Unusual paragraph shapeBUGboat, 11:51-53. [47| 145

[11] V. Eijkhout. Oral BX. TUGboat, 12:272-276, 1991 110, 120

[12] V. Eijkhout and A. Lenstra. The document style designer as a separate entity.
TUGboat, 12:31-34, 1991.[224

[13] D. Guenther. @X T1 goes public domainTUGboat, 11:54-55, 1990.[224

[14] Hart’s Rules for Compositors and Readers at the Oxford University Press. Oxford
University Press, 1983. 39th editior]. 158

[15] A. Hendrikson. MacroTgX, A TgX Macro Toolkit. TEX_nology Inc, 1991. [224

[16] A. Jeffrey. Lists in EX’s mouth. TUGboat, 11:237-245, 1990 T]0

[17] D.E. Knuth. The TgX book. Addison-Wesley. (reprinted with corrections 1989).
[17,[26,[235[237

[18] D.E. Knuth. TgX: the Program. Addison-Wesley. [22, 31, 22[, 225, 227

[19] D.E. Knuth. Computer Modern Typefaces. Addison-Wesley. [32

[20] D.E. Knuth. The errors of gX. Software Practice and Experience, 19:pages =
607-681. [240

[21] D.E. Knuth. Literate programmingComputer J., 27:97-111. [229

[22] D.E. Knuth. The new versions ofeX and Metafont. TUGboat, 10:325-327.[33,
240

[23] D.E. Knuth. A torture test for gX. Technical report, Stanford Computer Science
Report 1027, Stanford, Californial |59

[24] D.E. Knuth. Typesetting concrete mathemati@&/Gboat, 10:31-36. [228

[25] D.E. Knuth. Virtual fonts: more fun for grand wizardsTUGboat, 11:13-23,
1990. [29[22)

[26] D.E. Knuth and D.R. Fuchs.gX ware. Technical report, 1986. Stanford Com-
puter Science report 86-1097. 227

[27] D.E. Knuth and M.F. Plass. Breaking paragraphs into lirfegtware practice and
experience, 11:1119-1184, 1981[T}[7, 148

272

[28] G. Kuiken. Additional hyphenation pattern§UGboat, 11:24-25, 1990.[1%2

[29] L. Lamport. BTEX, a Document Preparation System. Addison-Wesley, 1986.[224

[30] F.M. Liang. Word hy-phen-a-tion by com-pu-ter. PhD thesis, 1983 1P, 237

[31] S. Maus. Looking ahead for ¢ox). TUGboat, 11:612-613, 1990, 1p1

[32] S. Maus. An expansion power lemm&UGboat, 12:277, 1991.[170

[33] F. Mittelbach and R. Sdipf. BTeX3. TUGboat, 12.

[34] F. Mittelbach and R. Sd@pf. With IKTEX into the nineties.TUGboat, 10:681—-690,
1989. [22h

[35] E. Myers and F.E. Paige. gX sis — X macros for physicists. Macros and
manual available by anonymous ftp from lifshitz.ph.utexas.edu (128.83.131.57).
22

[36] H. Partl. German @X. TUGboat, 9:70-72, 1988.[151

[37] Z. Rubinstein. Printing annotated chess literature in natural notati@iGboat,
10:387-390, 1989. 92

[38] D. Salomon. Output routines: Examples and techniques. part i: Introduction and
examples.TUGboat, 11:69-85, 1990.[205

[39] D. Salomon. Output routines: Examples and techniques. part ii: OTR techniques.
TUGboat, 11:212-236, 1990, 205

[40] D. Salomon. Output routines: Examples and techniques. part iii: Insertidi6-
boat, 11:588-605, 1990. 209

[41] W. Sewell. Weaving a Program: Literate Programming in WEB. Van Nostrand Rein-
hold, 1989. [229

[42] R. Southall. Designing a new typeface with metafont. TgX for scientific do-
cumentation, Lecture Notes in Computer Science 236. Springer Verlag, 1984.[29,
228

[43] M. Spivak. The Joy of TgX. American Mathematical Society, 198¢. 224

[44] M. Spivak. LAMSTEX, the Synthesis. The X plorators Corporation, 1989[24

[45] K. Thull. The virtual memory management of publigXl TUGboat, 10:15-22,
1989. [236

[46] J. Tschichold. Ausgewiahlte Aufsitze iiber Fragen der Gestalt des Buches und der
Typographie. Birkhauser Verlag, 1975] ThO

[47] P. Tutelaers. A font and a style for typesetting chess usiXLor plain TeX.
TUGboat, 13, 1991. [9

[48] D.B. Updike. Printing Types. Harvard University Press, 1937. (reprinted 1980,
New York NY: Dover Publications).[228

[49] S. von Bechtolsheim. A tutorial oNfuturelet. TUGboat, 9:276—-278, 1988.
95

[50] M. Vox. Caractére, 1955. [228

[51] M. Weinstein. Everything you wanted to know about phyzzx but didn’t know to
ask. Technical report, 1984. Stanford Linear Accelerator Publication, SLAC-TN-
84-7.

[52] J.V. White. Graphic Design for the Electronic Age. Watson-Guptill, 1988.[130

273

	 The Structure of the TeX Processor
	 Four TeX processors
	 The input processor
	 Character input
	 Two-level input processing

	 The expansion processor
	 The process of expansion
	 Special cases: `expandafter, `noexpand, and `the
	 Braces in the expansion processor

	 The execution processor
	 The visual processor
	 Examples
	 Skipped spaces
	 Internal quantities and their representations

	 Category Codes and Internal States
	 Introduction
	 Initial processing
	 Category codes
	 From characters to tokens
	 The input processor as a finite state automaton
	 State N: new line
	 State S: skipping spaces
	 State M: middle of line

	 Accessing the full character set
	 Transitions between internal states
	 0: escape character
	 1--4, 7--8, 11--13: non-blank characters
	 5: end of line
	 6: parameter
	 7: superscript
	 9: ignored character
	 10: space
	 14: comment
	 15: invalid

	 Letters and other characters
	 The 92par token
	 Spaces
	 Skipped spaces
	 Optional spaces
	 Ignored and obeyed spaces
	 More ignored spaces
	 "426830A space token"526930B
	 Control space
	 `32'

	 More about line ends
	 Obeylines
	 Changing the `endlinechar
	 More remarks about the end-of-line character

	 More about the input processor
	 The input processor as a separate process
	 The input processor not as a separate process
	 Recursive invocation of the input processor

	 The @ convention

	 Characters
	 Character codes
	 Control sequences for characters
	 Denoting characters to be typeset: `char
	 Implicit character tokens: `let

	 Accents
	 Testing characters
	 Uppercase and lowercase
	 Uppercase and lowercase codes
	 Uppercase and lowercase commands
	 Uppercase and lowercase forms of keywords
	 Creative use of `uppercase and `lowercase

	 Codes of a character
	 Converting tokens into character strings
	 Output of control sequences
	 Category codes of a `string

	 Fonts
	 Fonts
	 Font declaration
	 Fonts and tfm files
	 Querying the current font and font names
	 `nullfont

	 Font information
	 Font dimensions
	 Kerning
	 Italic correction
	 Ligatures
	 Boundary ligatures

	 Boxes
	 Boxes
	 Box registers
	 Allocation: `newbox
	 Usage: `setbox, `box, `copy
	 Testing: `ifvoid, `ifhbox, `ifvbox
	 The `lastbox

	 Natural dimensions of boxes
	 Dimensions of created horizontal boxes
	 Dimensions of created vertical boxes
	 Examples

	 More about box dimensions
	 Predetermined dimensions
	 Changes to box dimensions
	 Moving boxes around
	 Box dimensions and box placement
	 Boxes and negative glue

	 Overfull and underfull boxes
	 Opening and closing boxes
	 Unboxing
	 Text in boxes
	 Assorted remarks
	 Forgetting the `box
	 Special-purpose boxes
	 The height of a vertical box in horizontal mode
	 More subtleties with vertical boxes
	 Hanging the `lastbox back in the list
	 Dissecting paragraphs with `lastbox

	 Horizontal and Vertical Mode
	 Horizontal and vertical mode
	 Horizontal mode
	 Vertical mode

	 Horizontal and vertical commands
	 The internal modes
	 Restricted horizontal mode
	 Internal vertical mode

	 Boxes and modes
	 What box do you use in what mode?
	 What mode holds in what box?
	 Mode-dependent behaviour of boxes

	 Modes and glue
	 Migrating material
	 `vadjust

	 Testing modes

	 Numbers
	 Numbers and "426830A number"526930B s
	 Integers
	 Denotations: integers
	 Denotations: characters
	 Internal integers
	 Internal integers: other codes of a character
	 "426830A special integer"526930B
	 Other internal quantities: coersion to integer
	 Trailing spaces

	 Numbers
	 Integer registers
	 Arithmetic
	 Arithmetic statements
	 Floating-point arithmetic
	 Fixed-point arithmetic

	 Number testing
	 Remarks
	 Character constants
	 Expanding too far / how far

	 Dimensions and Glue
	 Definition of "426830A glue"526930B and "426830A dimen"526930B
	 Definition of dimensions
	 Definition of glue
	 Conversion of "426830A glue"526930B to "426830A dimen"526930B
	 Registers for `dimen and `skip
	 Arithmetic: addition
	 Arithmetic: multiplication and division

	 More about dimensions
	 Units of measurement
	 Dimension testing
	 Defined dimensions

	 More about glue
	 Stretch and shrink
	 Glue setting
	 Badness
	 Glue and breaking
	 `kern
	 Glue and modes
	 The last glue item in a list: backspacing
	 Examples of backspacing
	 Glue in trace output

	 Rules and Leaders
	 Rules
	 Rule dimensions

	 Leaders
	 Rule leaders
	 Box leaders
	 Evenly spaced leaders

	 Assorted remarks
	 Rules and modes
	 Ending a paragraph with leaders
	 Leaders and box registers
	 Output in leader boxes
	 Box leaders in trace output
	 Leaders and shifted margins

	 Grouping
	 The grouping mechanism
	 Local and global assignments
	 Group delimiters
	 More about braces
	 Brace counters
	 The brace as a token
	 Open and closing brace control symbols

	 Macros
	 Introduction
	 Layout of a macro definition
	 Prefixes
	 The definition type
	 The parameter text
	 Undelimited parameters
	 Delimited parameters
	 Examples with delimited arguments
	 Empty arguments
	 The macro parameter character
	 Brace delimiting

	 Construction of control sequences
	 Token assignments by `let and `futurelet
	 `let
	 `futurelet

	 Assorted remarks
	 Active characters
	 Macros versus primitives
	 Tail recursion

	 Macro techniques
	 Unknown number of arguments
	 Examining the argument
	 Optional macro parameters with `futurelet
	 Two-step macros
	 A comment environment

	 Expansion
	 Introduction
	 Ordinary expansion
	 Reversing expansion order
	 One step expansion: `expandafter
	 Total expansion: `edef
	 `afterassignment
	 `aftergroup

	 Preventing expansion
	 `noexpand
	 `noexpand and active characters

	 `relax
	 `relax and `csname
	 Preventing expansion with `relax
	 TeX inserts a `relax
	 The value of non-macros; `the

	 Examples
	 Expanding after
	 Defining inside an `edef
	 Expansion and `write
	 Controlled expansion inside an `edef
	 Multiple prevention of expansion
	 More examples with `relax
	 Example: category code saving and restoring
	 Combining `aftergroup and boxes
	 More expansion

	 Conditionals
	 The shape of conditionals
	 Character and control sequence tests
	 `if
	 `ifcat
	 `ifx

	 Mode tests
	 Numerical tests
	 Other tests
	 Dimension testing
	 Box tests
	 I/O tests
	 Case statement
	 Special tests

	 The `newif macro
	 Evaluation of conditionals
	 Assorted remarks
	 The test gobbles up tokens
	 The test wants to gobble up the `else or `fi
	 Macros and conditionals; the use of `expandafter
	 Incorrect matching
	 Conditionals and grouping
	 A trick
	 More examples of expansion in conditionals

	 Token Lists
	 Token lists
	 Use of token lists
	 "426830A token parameter"526930B
	 Token list registers
	 Examples
	 Operations on token lists: stack macros
	 Executing token lists

	 Baseline Distances
	 Interline glue
	 The perceived depth of boxes
	 Terminology
	 Additional remarks

	 Paragraph Start
	 When does a paragraph start
	 What happens when a paragraph starts
	 Assorted remarks
	 Starting a paragraph with a box
	 Starting a paragraph with a group

	 Examples
	 Stretchable indentation
	 Suppressing indentation
	 An indentation scheme
	 A paragraph skip scheme

	 Paragraph End
	 The way paragraphs end
	 The `par command and the `par token
	 Paragraph filling: `parfillskip

	 Assorted remarks
	 Ending a paragraph and a group at the same time
	 Ending a paragraph with `hfill`break
	 Ending a paragraph with a rule
	 No page breaks in between paragraphs
	 Finite `parfillskip
	 A precaution for paragraphs that do not indent

	 Paragraph Shape
	 The width of text lines
	 Shape parameters
	 Hanging indentation
	 General paragraph shapes: `parshape

	 Assorted remarks
	 Centred last lines
	 Indenting into the margin
	 Hang a paragraph from an object
	 Another approach to hanging indentation
	 Hanging indentation versus `leftskip shifting
	 More examples

	 Line Breaking
	 Paragraph break cost calculation
	 Badness
	 Penalties and other break locations
	 Demerits
	 The number of lines of a paragraph
	 Between the lines

	 The process of breaking
	 Three passes
	 Tolerance values

	 Discretionaries
	 Hyphens and discretionaries
	 Examples of discretionaries

	 Hyphenation
	 Start of a word
	 End of a word
	 TeX2 versus TeX3
	 Patterns and exceptions

	 Switching hyphenation patterns

	 Spacing
	 Automatic interword space
	 User interword space
	 Control space and tie
	 More on the space factor
	 Space factor assignments
	 Punctuation
	 Other non-letters
	 Other influences on the space factor

	 Characters in Math Mode
	 Mathematical characters
	 Delimiters
	 Delimiter codes
	 Explicit `delimiter commands
	 Finding a delimiter; successors
	 `big, `Big, `bigg, and `Bigg

	 Radicals
	 Math accents

	 Fonts in Formulas
	 Determining the font of a character in math mode
	 Initial family settings
	 Family definition
	 Some specific font changes
	 Change the font of ordinary characters and uppercase Greek
	 Change uppercase Greek independent of text font
	 Change the font of lowercase Greek

	 Assorted remarks
	 New fonts in formulas
	 Evaluating the families

	 Mathematics Typesetting
	 Math modes
	 Styles in math mode
	 Superscripts and subscripts
	 Choice of styles

	 Classes of mathematical objects
	 Large operators and their limits
	 Vertical centring: `vcenter
	 Mathematical spacing: mu glue
	 Classification of mu glue
	 Muskip registers
	 Other spaces in math mode

	 Generalized fractions
	 Underlining, overlining
	 Line breaking in math formulas
	 Font dimensions of families 2 and 3
	 Symbol font attributes
	 Extension font attributes
	 Example: subscript lowering

	 Display Math
	 Displays
	 Displays in paragraphs
	 Vertical material around displays
	 Glue setting of the display math list
	 Centring the display formula: displacement
	 Equation numbers
	 Ordinary equation numbers
	 The equation number on a separate line

	 Non-centred displays

	 Alignment
	 Introduction
	 Horizontal and vertical alignment
	 Horizontal alignments: `halign
	 Vertical alignments: `valign
	 Material between the lines: `noalign
	 Size of the alignment

	 The preamble
	 Infinite preambles
	 Brace counting in preambles
	 Expansion in the preamble
	 `tabskip

	 The alignment
	 Reading an entry
	 Alternate specifications: `omit
	 Spanning across multiple columns: `span
	 Rules in alignments
	 End of a line: `cr and `crcr

	 Example: math alignments

	 Page Shape
	 The reference point for global positioning
	 `topskip
	 Page height and depth

	 Page Breaking
	 The current page and the recent contributions
	 Activating the page builder
	 Page length bookkeeping
	 Breakpoints
	 Possible breakpoints
	 Breakpoint penalties
	 Breakpoint computation

	 `vsplit
	 Examples of page breaking
	 Filling up a page
	 Determining the breakpoint
	 The page builder after a paragraph

	 Output Routines
	 The `output token list
	 Output and `box255
	 Marks
	 Assorted remarks
	 Hazards in non-trivial output routines
	 Page numbering
	 Headlines and footlines in plain TeX
	 Example: no widow lines
	 Example: no indentation top of page
	 More examples of output routines

	 Insertions
	 Insertion items
	 Insertion class declaration
	 Insertion parameters
	 Moving insertion items from the contributions list
	 Insertions in the output routine
	 Plain TeX insertions

	 File Input and Output
	 Including files: `input and `endinput
	 File I/O
	 Opening and closing streams
	 Input with `read
	 Output with `write

	 Whatsits
	 Assorted remarks
	 Inspecting input
	 Testing for existence of files
	 Timing problems
	 `message versus `immediate`write16
	 Write inside a vertical box
	 Expansion and spaces in `write and `message

	 Allocation
	 Allocation commands
	 `count, `dimen, `skip, `muskip, `toks
	 `box, `fam, `write, `read, `insert

	 Ground rules for macro writers

	 Running TeX
	 Jobs
	 Start of the job
	 End of the job
	 The log file

	 Run modes

	 TeX and the Outside World
	 TeX, IniTeX, VirTeX
	 Formats: loading
	 Formats: dumping
	 Formats: preloading
	 The knowledge of IniTeX
	 Memory sizes of TeX and IniTeX

	 More about formats
	 Compatibility
	 Preloaded fonts
	 The plain format
	 The LaTeX format
	 Mathematical formats
	 Other formats

	 The dvi file
	 The dvi file format
	 Page identification
	 Magnification

	 Specials
	 Time
	 Fonts
	 Font metrics
	 Virtual fonts
	 Font files
	 Computer Modern

	 TeX and web
	 The TeX Users Group

	 Tracing
	 Meaning and content: `show, `showthe, `meaning
	 Show boxes: `showbox, `tracingoutput
	 Global statistics

	 Errors, Catastrophes, and Help
	 Error messages
	 Overflow errors
	 Buffer size (500)
	 Exception dictionary (307)
	 Font memory (20000)
	 Grouping levels
	 Hash size (2100)
	 Number of strings (3000)
	 Input stack size (200)
	 Main memory size (30000)
	 Parameter stack size (60)
	 Pattern memory (8000)
	 Pattern memory ops per language
	 Pool size (32000)
	 Save size (600)
	 Semantic nest size (40)
	 Text input levels (6)

	 The Grammar of TeX
	 Notations
	 Keywords
	 Specific grammatical terms
	 "426830A equals"526930B
	 "426830A filler"526930B , "426830A general text"526930B
	 `{`} and "426830A left brace"526930B "426830A right brace"526930B
	 "426830A math field"526930B

	 Differences between TeX versions 2 and 3

	 Glossary of TeX Primitives
	 Tables
	 Character tables
	 Computer modern fonts
	 Plain TeX math symbols
	 Mathcharacter codes
	 Delimiter codes
	 "426830A mathchardef tokens"526930B : ordinary symbols
	 "426830A mathchardef tokens"526930B : large operators
	 "426830A mathchardef tokens"526930B : binary operations
	 "426830A mathchardef tokens"526930B : relations
	 `delimiter macros

