
\pscoil[coilarm=.5cm,linewidth=1.5pt,coilwidth=.5cm]{<-|}(4,2)

Here is an example of \pszigzag:

\pszigzag[coilarm=.5,linearc=.1]{<->}(4,0)

Note that \pszigzag uses the linearc parameters, and that the beginning
and ending segments may be longer than coilarm to take up slack.

\psCoil just draws the coil horizontally from angle1 to angle2. Use \rput

to rotate and translate the coil, if desired. \psCoil does not use the
coilarm parameter. For example, with coilaspect=0 we get a sine curve:

\psCoil[coilaspect=0,coilheight=1.33,

coilwidth=.75,linewidth=1.5pt]{0}{1440}

pst-coil.tex also contains coil and zigzag node connections. You must
pst-node also load pst-node.tex / pst-node.sty to use these. The node connections

are:

\nccoil*[par]{arrows}{nodeA}{nodeB}

\nczigzag*[par]{arrows}{nodeA}{nodeB}

\pccoil*[par]{arrows}(x1,y1)(x2,y2)

\pczigzag*[par]{arrows}(x1,y1)(x2,y2)

The end points are chosen the same as for \ncline and \pcline, and oth-
erwise these commands work like \pscoil and \pszigzag. For example:

\cnode(.5,.5){.5}{A}

\cnode[fillstyle=solid,fillcolor=lightgray](3.5,2.5){.5}{B}

\nccoil[coilwidth=.3]{<->}{A}{B}

34 Special coordinates

The command

Special coordinates 71



\SpecialCoor

enables a special feature that lets you specify coordinates in a variety
of ways, in addition to the usual Cartesian coordinates.16 Processing is
slightly slower and less robust, which is why this feature is available
on demand rather than by default, but you probably won’t notice the
difference.

Here are the coordinates you can use:

(x,y) The usual Cartesian coordinate. E.g., (3,4).

(r;a) Polar coordinate, with radius r and angle a. The default unit for r
is unit. E.g., (3;110).

(node) The center of node. E.g., (A).

([par]node) The position relative to node determined using the angle,
nodesep and offset parameters. E.g., ([angle=45]A).

(!ps) Raw PostScript code. ps should expand to a coordinate pair. The
units xunit and yunit are used. For example, if I want to use a
polar coordinate (3; 110) that is scaled along with xunit and yunit,
I can write

(!3 110 cos mul 3 110 sin mul)

(coor1|coor2) The x coordinate from coor1 and the y coordinate from
coor2. coor1 and coor2 can be any other coordinates for use with
\SpecialCoor. For example, (A|1in;30).

\SpecialCoor also lets you specify angles in several ways:

num A number, as usual, with units given by the \degrees command.

16There is an obsolete command \Polar that causes coordinates in the form (r ,a) to
be interpreted as polar coordinates. The use of \Polar is not recommended because it
does not allow one to mix Cartesian and polar coordinates the way \SpecialCoor does,
and because it is not as apparent when examining an input file whether, e.g., (3,2) is a
Cartesian or polar coordinate. The command for undoing \Polar is \Cartesian. It has
an optional argument for setting the default units. I.e.,

\Cartesian(<x>,<y>)

has the effect of

\psset{xunit=<x>,yunit=<y>}

\Cartesian can be used for this purpose without using \Polar.

Special coordinates 72



(coor) A coordinate, indicating where the angle points to. Be sure to
include the (), in addition to whatever other delimiters the angle
argument uses. For example, the following are two ways to draw
an arc of .8 inch radius from 0 to 135 degrees:

\SpecialCoor

\psarc(0,0){.8in}{0}{135}

\psarc(0,0){.8in}{0}{(-1,1)}

!ps Raw PostScript code. ps should expand to a number. The same
units are used as with num.

The command

\NormalCoor

disables the \SpecialCoor features.

35 Overlays

Overlays are mainly of interest for making slides, and the overlay macros
described in this section are mainly of interest to TEX macro writers who
want to implement overlays in a slide macro package. For example, the
seminar.sty package, a LaTEX style for notes and slides, uses PSTricks to
implement overlays.

Overlays are made by creating an \hbox and then outputting the box
several times, printing different material in the box each time. The box
is created by the commands

\overlaybox stuff \endoverlaybox

LaTEX users can instead write:

\begin{overlaybox} <stuff> \end{overlaybox}

The material for overlay string should go within the scope of the com-
mand

\psoverlay{string}

Overlays 73



string can be any string, after expansion. Anything not in the scope of
any \psoverlay command goes on overlay main, and material within the
scope of \psoverlay{all} goes on all the overlays. \psoverlay commands
can be nested and can be used in math mode.

The command

\putoverlaybox{string}

then prints overlay string.

Here is an example:

\overlaybox

\psoverlay{all}

\psframebox[framearc=.15,linewidth=1.5pt]{%

\psoverlay{main}

\parbox{3.5cm}{\raggedright

Foam Cups Damage Environment {\psoverlay{one} Less than

Paper Cups,} Study Says.}}

\endoverlaybox

\putoverlaybox{main} \hspace{.5in} \putoverlaybox{one}

Foam Cups Damage
Environment

Study Says.

Less
than Paper Cups,

Driver notes: Overlays use \pstVerb and \pstverbscale.

36 The gradient fill style

The file gradient.tex/gradient.sty, along with the PostScript header file
gradient gradient.pro, defines the gradient fillstyle, for gradiated shading. This

fillstyle uses the following parameters:

gradbegin=color Default: gradbegin

The starting and ending color.

gradend=color Default: gradend

The color at the midpoint.

The gradient fill style 74



gradlines=int Default: 500

The number of lines. More lines means finer gradiation, but
slower printing.

gradmidpoint=num Default: .9

The position of the midpoint, as a fraction of the distance from
top to bottom. num should be between 0 and 1.

gradangle=angle Default: 0

The image is rotated by angle.

gradbegin and gradend should preferably be rgb colors, but grays and
cmyk colors should also work. The definitions of the colors gradbegin

and gradend are:

\newrgbcolor{gradbegin}{0 .1 .95}

\newrgbcolor{gradend}{0 1 1}

Here are two ways to change the gradient colors:

\newrgbcolor{gradbegin}{1 .4 0}

and

\psset{gradbegin=blue}

Try this example:

\psframe[fillstyle=gradient,gradangle=45](10,-20)

37 Adding color to tables

The file colortab.tex/colortab.sty contains macros that, when used with
colortab color commands such as those in PSTricks, let you color the cells and

lines in tables. See colortab.doc for more information.

Adding color to tables 75



38 Typesetting text along a path

The file textpath.tex/textpath.sty defines the command \pstextpath, for
textpath typesetting text along a path. It is a remarkable trick, but there are some

caveats:

• textpath.tex only works with certain DVI-to-PS drivers. Here is
what is currently known:

– It works with Rokicki’s dvips, version 5.487 or later (at least
up to v5.495).

– It does not work with earlier versions of dvips.

– It does not work with TeXview (to preview files with NeXT-
TeX 3.0, convert the .dvi file to a PostScript file with dvips -o

and use Preview).

– “Does not work” means that it has no effect, for better or
for worse.

– This may work with other drivers. The requirement is that
the driver only use PostScript’s show operator, unbound and
unloaded, to show characters.

• You must also have installed the PostScript header file textpath.ps,
and \pstheader must be properly defined in pstricks.con for your
driver.

• Like other PSTricks that involve rotating text, this works best
with PostScript (outline) fonts.

• PostScript rendering with textpath.tex is slow.

Because of all this, no samples are shown here. However, there is a test
file tp-test.tex and PostScript output tp-test.ps that are distributed with
PSTricks.

Here is the command:

\pstextpath[pos](x,y){graphics object}{text}

text is placed along the path, from beginning to end, defined by the
PSTricks graphics object. (This object otherwise behaves normally. Set
linestyle=none if you don’t want it to appear.)

text can only contain characters. No TeX rules, no PSTricks, and no
other \special’s. (These things don’t cause errors; they just don’t work

Typesetting text along a path 76



right.) Math mode is OK, but math operators that are built from several
characters (e.g., large integral signs) may break. Entire boxes (e.g.,
\parbox) are OK too, but this is mainly for amusement.

pos is either

l justify on beginning of path

c center on path

r justify on end of path.

The default is l.

(x,y) is an offset. Characters are shifted distance x along path, and are
shifted up by y. “Up” means with respect to the path, at whatever point
on the path corresponding to the middle of the character. (x,y) must be
Cartesian coordinates. Both coordinates use \psunit as the default. The
default coordinate is (0,\TPoffset), where \TPoffset a command whose
default value is -.7ex. This value leads to good spacing of the characters.
Remember that ex units are for the font in effect when \pstextpath occurs,
not inside the text argument.

More things you might want to know:

• Like with \rput and the graphics objects, it is up to you to leave
space for \pstextpath.

• Results are unpredictable if text is wider than length of path.

• \pstextpath leaves the typesetting to TEX. It just intercepts the show

operator to remap the coordinate system.

39 Stroking and filling character paths

The file charpath.tex/charpath.sty defines the command:
charpath

\pscharpath*[par]{text}

It strokes and fills the text character paths using the PSTricks linestyle
and fillstyle.

The restrictions on DVI-to-PS drivers listed on page 76 for \pstextpath

apply to \pscharpath. Furthermore, only outline (PostScript) fonts are
affected.

Stroking and filling character paths 77



Sample input and output files chartest.tex and chartest.ps are distributed
with PSTricks.

With the optional *, the character path is not removed from the PostScript
environment at the end. This is mainly for special hacks. For exam-
ple, you can use \pscharpath* in the first argument of \pstextpath, and
thus typeset text along the character path of some other text. See the
sample file denis1.tex. (However, you cannot combine \pscharpath and
\pstextpath in any other way. E.g., you cannot typeset character outlines
along a path, and then fill and stroke the outlines with \pscharpath.)

The command

\pscharclip*[par]{text} ... \endpscharclip

works just like \pscharpath, but it also sets the clipping path to the
character path. You may want to position this clipping path using \rput
inside \pscharclip’s argument. Like \psclip and \endpsclip, \pscharclip
and \endpscharclip should come on the same page and should be prop-
erly nested with respect to TEX groups (unless \AltClipMode is in effect).
The file denis2.tex contains a sample of \pscharclip.

40 Importing EPS files

PSTricks does not come with any facility for including Encapsulated
PostScript files, because there are other very good and well-tested
macros for exactly that. If using Rokicki’s dvips, then try epsf.tex/epsf.sty,
by the man himself!

What PSTricks is good for is embellishing your EPS picture. You can
include an EPS file in in the argument of \rput, as in

\rput(3,3){\epsfbox{myfile.eps}}

and hence you can include an EPS file in the \pspicture environment.
Turn on \psgrid, and you can find the coordinates for whatever graphics
or text you want to add. This works even when the picture has a weird
bounding box, because with the arguments to \pspicture you control the
bounding box from TEX’s point of view.

This isn’t always the best way to work with an EPS file, however. If the
PostScript file’s bounding box is the size you want the resulting picture
to be, after your additions, then try

Importing EPS files 78



\hbox{<picture objects> \epsfbox{<file.eps>}

This will put all your picture objects at the lower left corner of the EPS
file. \epsfbox takes care of leaving the right amount of space.

If you need to determine the bounding box of an EPS file, then you
can try of the automatic bounding box calculating programs, such as
bbfig (distributed with Rokicki’s dvips). However, all such programs
are easily fooled; the only sure way to determine the bounding box is
visually. \psgrid is a good tool for this.

41 Exporting EPS files

You must load pst2eps.tex or pst2eps.sty to use the PSTricks macros
pst2eps described in this section.

If you want to export an EPS file that contains both graphics and text,
then you need to be using a DVI-to-PS driver that suports such a fea-
ture. If you just want to export pure graphics, then you can use the
\PSTricksEPS command. Both of these options are described in this
section.

Newer versions of Rokicki’s dvips support an -E option for creating EPS
files from TEX .dvi files. E.g.,

dvipsfoo:dvi – E – ofoo:eps

Your document should be a single page. dvips will find a tight bounding
box that just encloses the printed characters on the page. This works
best with outline (PostScript) fonts, so that the EPS file is scalable and
resolution independent.

There are two inconvenient aspects of this method. You may want a
different bounding box than the one calculated by dvips (in particular,
dvips ignores all the PostScript generated by PSTricks when calculating
the bounding box), and you may have to go out of your way to turn off
any headers and footers that would be added by output routines.

PSTricks contains an environment that tries to get around these two
problems:

\TeXtoEPS

stuff

\endTeXtoEPS

Exporting EPS files 79



This is all that should appear in your document, but headers and whatever
that would normally be added by output routines are ignored. dvips will
again try to find a tight bounding box, but it will treat stuff as if there
was a frame around it. Thus, the bounding box will be sure to include
stuff , but might be larger if there is output outside the boundaries of this
box. If the bounding box still isn’t right, then you will have to edit the

%%BoundingBox <llx lly urx ury>

specification in the EPS file by hand.

If your goal is to make an EPS file for inclusion in other documents,
then dvips -E is the way to go. However, it can also be useful to generate
an EPS file from PSTricks graphics objects and include it in the same
document,17 rather than just including the PSTricks graphics directly,
because TEX gets involved with processing the PSTricks graphics only
when the EPS file is initially created or updated. Hence, you can edit
your file and preview the graphics, without having to process all the
PSTricks graphics each time you correct a typo. This speed-up can be
significant with complex graphics such as \pslistplot’s with a lot of data.

To create an EPS file from PSTricks graphics objects, use

\PSTtoEPS[par]{file}{graphics objects}

The file is created immediately, and hence you can include it in the same
document (after the \PSTtoEPS command) and as many times as you
want. Unlike with dvips -E, only pure graphics objects are processed
(e.g., \rput commands have no effect).

\PSTtoEPS cannot calculate the bounding box of the EPS file. You have
to specify it yourself, by setting the following parameters:

bbllx=dim Default: -1pt
bblly=dim Default: -1pt
bburx=dim Default: 1pt
bbury=dim Default: 1pt

Note that if the EPS file is only to be included in a PSTricks picture with
\rput you might as well leave the default bounding box.

\PSTricksEPS also uses the following parameters:

17See the preceding section on importing EPS files.

Exporting EPS files 80



headerfile=file Default: s

()This parameter is for specifying PostScript header files that are
to be included in the EPS file. The argument should contain one
or more file names, separated by commas. If you have more than
one file, however, the entire list must be enclosed in braces {}.

headers=none/all/user Default: none

When none, no header files are included. When all, the header files
used by PSTricks plus the header files specified by the headerfile
parameter are included. When user, only the header files specified
by the headerfile parameter are included. If the EPS file is to be
included in a TEX document that uses the same PSTricks macros
and hence loads the relevant PSTricks header files anyway (in
particular, if the EPS file is to be included in the same document),
then headers should be none or user.

Exporting EPS files 81



Help

A Boxes

Many of the PSTricks macros have an argument for text that is processed
in restricted horizontal mode (in LaTEX parlance, LR-mode) and then
transformed in some way. This is always the macro’s last argument,
and it is written {stuff } in this User’s Guide. Examples are the framing,
rotating, scaling, positioning and node macros. I will call these “LR-
box” macros, and use framing as the leading example in the discussion
below.

In restricted horizontal mode, the input, consisting of regular characters
and boxes, is made into one (long or short) line. There is no line-
breaking, nor can there be vertical mode material such as an entire
displayed equation. However, the fact that you can include another box
means that this isn’t really a restriction.

For one thing, alignment environments such as \halign or LaTEX’s tabular

are just boxes, and thus present no problem. Picture environments and
the box macros themselves are also just boxes. Actually, there isn’t a
single PSTricks command that cannot be put directly in the argument
of an LR-box macro. However, entire paragraphs or other vertical
mode material such as displayed equations need to be nested in a \vbox

or LaTEX \parbox or minipage. LaTEX users should see fancybox.sty and
its documentation, fancybox.doc, for extensive tips and trick for using
LR-box commands.

The PSTricks LR-box macros have some features that are not found in
most other LR-box macros, such as the standard LaTEX LR-box com-
mands.

With LaTEX LR-box commands, the contents is always processed in
text mode, even when the box occurs in math mode. PSTricks, on
the other hand, preserves math mode, and attempts to preserve the
math style as well. TEX has four math styles: text, display, script and
scriptscript. Generally, if the box macro occurs in displayed math (but
not in sub- or superscript math), the contents are processed in display
style, and otherwise the contents are processed in text style (even here
the PSTricks macros can make mistakes, but through no fault of their
own). If you don’t get the right style, explicitly include a \textstyle,
\displaystyle, \scriptstyle or \scriptscriptstyle command at the beginning of

Help 82



the box macro’s argument.

In case you want your PSTricks LR-box commands to treat math in the
same as your other LR-box commands, you can switch this feature on
and off with the commands

\psmathboxtrue

\psmathboxfalse

You can have commands (such as, but not restricted to, the math style
commands) automatically inserted at the beginning of each LR-box
using the

\everypsbox{commands}

command.18

If you would like to define an LR-box environment name from an LR-
box command cmd , use

\pslongbox{name}{cmd}

For example, after

\pslongbox{MyFrame}{\psframebox}

you can write

\MyFrame <stuff>\endMyFrame

instead of

\psframebox{<stuff>}

Also, LaTEX users can write

\begin{MyFrame} <stuff>\end{MyFrame}

It is up to you to be sure that cmd is a PSTricks LR-box command; if it
isn’t, nasty errors can arise.

Environments like have nice properties:

18This is a token register.

Boxes 83



• The syntax is clearer when stuff is long.

• It is easier to build composite LR-box commands. For example,
here is a framed minipage environment for LaTEX:

\pslongbox{MyFrame}{\psframebox}

\newenvironment{fminipage}%

{\MyFrame\begin{minipage}}%

{\end{minipage}\endMyFrame}

• You include verbatim text and other \catcode tricks in stuff .

The rest of this section elaborates on the inclusion of verbatim text
in LR-box environments and commands, for those who are interested.
fancybox.sty also contains some nice verbatim macros and tricks, some
of which are useful for LR-box commands.

The reason that you cannot normally include verbatim text in an LR-
box commands argument is that TEX reads the whole argument before
processing the \catcode changes, at which point it is too late to change
the category codes. If this is all Greek to you,19 then just try this LaTEX
example to see the problem:

\psframebox{\verb+\foo{bar}+}

The LR-box environments defined with \pslongbox do not have this
problem because stuff is not processed as an argument. Thus, this
works:

\pslongbox{MyFrame}{\psframebox}

\MyFrame \verb+\foo{bar}+\endMyFrame

\foo{bar}

The commands

\psverbboxtrue

\psverbboxfalse

switch into and out of, respectively, a special PSTricks mode that lets
you include verbatim text in any LR-box command. For example:

19Incidentally, many foreign language macros, such as greek.tex, use \catcode tricks
which can cause problems in LR-box macros.

Boxes 84



\psverbboxtrue

\psframebox{\verb+\foo{bar}+}

\foo{bar}

However, this is not as robust. You must explicitly group color com-
mands in stuff , and LR-box commands that usually ignore spaces that
follow {stuff } might not do so when \psverbboxtrue is in effect.

B Tips and More Tricks

1 How do I rotate/frame this or that with LaTEX?

See fancybox.sty and its documentation.

2 How can I suppress the PostScript so that I can use my document with

a non-PostScript dvi driver?

Put the command

\PSTricksOff

at the beginning of your document. You should then be able to print
or preview drafts of your document (minus the PostScript, and perhaps
pretty strange looking) with any dvi driver.

3 How can I improve the rendering of halftones?

This can be an important consideration when you have a halftone in the
background and text on top. You can try putting

\pstverb{106 45 {dup mul exch dup mul add 1.0 exch sub} setscreen}

before the halftone, or in a header (as in headers and footers, not as in
PostScript header files), if you want it to have an effect on every page.

setscreen is a device-dependent operator.

Tips and More Tricks 85



4 What special characters can be active with PSTricks?

C Including PostScript code

To learn about the PostScript language, consult Adobe’s PostScript Lan-
guage Tutorial and Cookbook (the “Blue Book”), or Henry McGilton
and Mary Campione’s PostScript by Example (1992). Both are pub-
lished by Addison-Wesley. You may find that the Appendix of the Blue
Book, plus an understanding of how the stack works, is all you need to
write simple code for computing numbers (e.g., to specify coordinates
or plots using PostScript).

You may want to define TEX macros for including PostScript fragments
in various places. All TEX macros are expanded before being passed
on to PostScript. It is not always clear what this means. For example,
suppose you write

\SpecialCoor

\def\mydata{23 43}

\psline(!47 \mydata add)

\psline(!47 \mydata\ add)

\psline(!47 \mydata˜add)

\psline(!47 \mydata{} add)

You will get a PostScript error in each of the \psline commands. To see
what the argument is expanding to, try use TEX’s \edef and \show. E.g.,

\def\mydata{23 43}

\edef\temp{47 \mydata add}

\show\temp

\edef\temp{47 \mydata\ add}

\show\temp

\edef\temp{47 \mydata˜add}

\show\temp

\edef\temp{47 \mydata{} add}

\show\temp

TEX expands the code, assigns its value to \temp, and then displays the
value of \temp on your console. Hit return to procede. You fill find that
the four samples expand, respectively, to:

47 23 43add

47 23 43\ add

47 23 43\penalty \@M \ add

47 23 43{} add

Including PostScript code 86



All you really wanted was a space between the 43 and add. The com-
mand \space will do the trick:

\psline(!47 \mydata\space add)

You can include balance braces { }; these will be passed on verbatim to
PostScript. However, to include an unbalanced left or right brace, you
have to use, respectively,

\pslbrace

\psrbrace

Don’t bother trying \} or \{.

Whenever you insert PostScript code in a PSTricks argument, the dic-
tionary on the top of the dictionary stack is tx@Dict, which is PSTrick’s
main dictionary. If you want to define you own variables, you have two
options:

Simplest Always include a @ in the variable names, because PSTricks
never uses @ in its variables names. You are at a risk of over-
flowing the tx@Dict dictionary, depending on your PostScript in-
terpreter. You are also more likely to collide with someone else’s
definitions, if there are multiple authors contributing to the docu-
ment.

Safest Create a dictionary named TDict for your scratch computations.
Be sure to remove it from the dictionary stack at the end of any
code you insert in an argument. E.g.,

TDict 10 dict def TDict begin <your code> end

D Troubleshooting

1 Why does the document bomb in the printer when the first item in a LaTEX
file is a float?

When the first item in a LaTEX file is a float, \special’s in the preamble
are discarded. In particular, the \special for including PSTricks’s header
file is lost. The workaround is to but something before the float, or to
include the header file by a command-line option with your dvi-to-ps
driver.

Troubleshooting 87



2 I converted a .dvi file to PostScript, and then mailed it to a colleague. It

prints fine for me but bombs on her printer.

Here is the most likely (but not the only) cause of this problem. The
PostScript files you get when using PSTricks can contain long lines.
This should be acceptable to any proper PostScript interpreter, but the
lines can get chopped when mailing the file. There is no way to fix
this in PSTricks, but you can make a point of wrapping the lines of
your PostScript files when mailing them. E.g., on UNIX you can use
uuencode and uudecode, or you can use the following AWK script to
wrap the lines:

#! /bin/sh

# This script wraps all lines

# Usage (if script is named wrap):

# wrap < infile > outfile

awk ’

BEGIN {

N = 78 # Max line length

}

{ if (length($0)<=N)

print

else {

currlength = 0

for (i = 1; i <=NF; i++) {

if ((currlength = currlength + length($i) + 1) > N) {

printf printf currlength = length($i)

}

else

printf \ %s }

printf }

} ’

3 The color commands cause extraneous vertical space to be inserted.

For example, this can happen if you start a LaTEX \parbox or a p{} column
with a color command. The solution usually is to precede the color
command with \leavevmode.

4 The color commands interfere with other color macros I use.

Try putting the command \altcolormode at the beginning of your
document. This may or may not help. Be extra careful that the scope of

Troubleshooting 88



color commands does not extend across pages. This is generally a less
robust color scheme.

5 How do I stop floats from being the same color as surrounding material?

That’s easy: Just put an explicit color command at the beginning of the
float, e.g., \black.

6 When I use some color command in box macros or with \setbox, the

colors get all screwed up.

If \mybox is a box register, and you write

\green Ho Hum.

\setbox\mybox=\hbox{Foo bar \blue fee fum}

Hi Ho. \red Diddley-dee

\box\mybox hum dee do

then when \mybox is inserted, the current color is red and so Foo bar

comes out red (rather than green, which was the color in effect when the
box was set). The command that returns from \blue to the current color
green, when the box is set, is executed after the \hbox is closed, which
means that Hi Ho is green, but hum dee do is still blue.

This odd behavior is due to the fact that TEX does not support color
internally, the way it supports font commands. The first thing to do is to
explicitly bracket any color commands inside the box. Second, be sure
that the current color is black when setting the box. Third, make other
explicit color changes where necessary if you still have problems. The
color scheme invoked by \altcolormode is slightly better behaved if you
follow the first two rules.

Note that various box macros use \setbox and so these anomalies can
arise unexpectedly.

Troubleshooting 89



Index
\AltClipMode, 55, 78
\altcolormode, 88, 89
angle (parameter), 61, 62, 63, 72
angleA (parameter), 63–65
angleB (parameter), 63, 64
\Aput, 68
\aput, 67, 68, 68
arcangle (parameter), 61
arcangleA (parameter), 63
arcangleB (parameter), 63
arcsep (parameter), 13
arcsepA (parameter), 12, 12, 13
arcsepB (parameter), 12, 13
arm (parameter), 61, 63
armA (parameter), 63–65
armB (parameter), 63–65
arrowinset (parameter), 30, 30
arrowlength (parameter), 30, 30
\arrows, 40
arrows (parameter), 9, 11, 19, 20, 28,

29, 48
arrowscale (parameter), 30, 30
arrowsize (parameter), 30
axesstyle (parameter), 51

bbllx (parameter), 80
bblly (parameter), 80
bburx (parameter), 80
bbury (parameter), 80
\black, 89
\blue, 89
border (parameter), 25, 25, 33, 62
bordercolor (parameter), 25, 25
boxsep (parameter), 52, 53, 54
\Bput, 68
\bput, 67, 68, 68
bracketlength (parameter), 30

\Cartesian, 72, 72
\circlenode, 60
\clipbox, 54
\closedshadow, 38

\closepath, 34, 36, 36
\cnode, 60
\cnodeput, 60
\code, 39, 40
coilarm (parameter), 70, 70, 71
coilarmA (parameter), 70
coilarmB (parameter), 70
coilaspect (parameter), 70, 70, 71
coilheight (parameter), 70, 70
coilinc (parameter), 70, 70
coilwidth (parameter), 70, 70
\coor, 39, 40
cornersize (parameter), 10, 10, 54
\cput, 53, 60
curvature (parameter), 14
\curveto, 39, 39

dash (parameter), 25
dashed (parameter), 33
\dataplot, 20, 20, 21
\degrees, 8, 8, 72
\dim, 39
dimen (parameter), 26
\DontKillGlue, 42
dotangle (parameter), 16, 16
dotscale (parameter), 16
dotsep (parameter), 25
dotsize (parameter), 16, 30
dotstyle (parameter), 16, 16
dotted (parameter), 33
doublecolor (parameter), 25, 26
doubleline (parameter), 25, 25, 26, 33
doublesep (parameter), 25, 25
Dx (parameter), 49, 49
dx (parameter), 49, 49
Dy (parameter), 49, 49
dy (parameter), 49

\endoverlaybox, 73
\endpscharclip, 78, 78
\endpsclip, 54, 54, 55, 78
\endpspicture, 41

90



\endTeXtoEPS, 79
\everypsbox, 83

\file, 40
\fileplot, 20, 20
\fill, 33, 37
fillcolor (parameter), 9, 27, 28, 52
fillstyle (parameter), 9, 27, 28, 32, 33,

51, 74, 77
framearc (parameter), 10, 10
\framenode, 60
framesep (parameter), 52

gradangle (parameter), 75
gradbegin (parameter), 74, 75
gradend (parameter), 74, 75
gradlines (parameter), 75
gradmidpoint (parameter), 75
\gray, 4
\grestore, 37, 37, 38
gridcolor (parameter), 18
griddots (parameter), 18, 18
gridlabelcolor (parameter), 18
gridlabels (parameter), 18
gridwidth (parameter), 18
\gsave, 37, 37, 38

hatchangle (parameter), 27, 27
hatchcolor (parameter), 27
hatchsep (parameter), 27
hatchwidth (parameter), 27
headerfile (parameter), 81, 81
headers (parameter), 81, 81

\KillGlue, 42

labels (parameter), 50
labelsep (parameter), 44, 50
liftpen (parameter), 35, 35, 37
linearc (parameter), 10, 10, 19–21, 54,

63, 64, 71
linecolor (parameter), 8, 8, 9, 24, 28,

32, 33, 52
linestyle (parameter), 24, 25, 28, 32,

33, 51, 55, 76, 77

\lineto, 39, 39
linetype (parameter), 33, 33
linewidth (parameter), 8, 8, 11, 16, 24,

28–30, 32, 33
\listplot, 20, 21, 21
loopsize (parameter), 62, 65
\Lput, 67, 67
\lput, 62, 67, 67, 68

\movepath, 38
\moveto, 36, 36
\Mput, 67, 67
\mput, 68
\mrestore, 38, 38
\msave, 38, 38
\multido, 47, 51
\multips, 46, 46, 51
\multirput, 46, 46

\ncangle, 64, 64, 66
\ncangles, 64, 64
\ncarc, 61, 63, 63, 65, 66
\ncbar, 63, 65, 66
\nccircle, 65, 65, 66
\nccoil, 71
\nccurve, 61, 62, 63, 65, 66
\ncdiag, 63, 64–66
\ncdiagg, 64, 66
\ncLine, 62, 65, 68
\ncline, 62, 62, 65, 66, 68, 69, 71
\ncloop, 62, 65, 66
ncurv (parameter), 61, 62, 63
\nczigzag, 71
\newcmykcolor, 5
\newgray, 5
\newhsbcolor, 5
\newpath, 36
\newpsobject, 31, 31, 54
\newpsstyle, 31, 31
\newrgbcolor, 5
nodesep (parameter), 61, 62–64, 72
nodesepA (parameter), 65
\NormalCoor, 73

offset (parameter), 61, 62–64, 67, 72

INDEX 91



\openshadow, 38
origin (parameter), 24, 33
\ovalnode, 60
\overlaybox, 73
Ox (parameter), 49, 49, 50
Oy (parameter), 49, 49, 50
oy (parameter), 49, 49

\parabola, 14, 14
parameters:

Dx, 49, 49
Dy, 49, 49
Ox, 49, 49, 50
Oy, 49, 49, 50
angleA, 63–65
angleB, 63, 64
angle, 61, 62, 63, 72
arcangleA, 63
arcangleB, 63
arcangle, 61
arcsepA, 12, 12, 13
arcsepB, 12, 13
arcsep, 13
armA, 63–65
armB, 63–65
arm, 61, 63
arrowinset, 30, 30
arrowlength, 30, 30
arrowscale, 30, 30
arrowsize, 30
arrows, 9, 11, 19, 20, 28, 29, 48
axesstyle, 51
bbllx, 80
bblly, 80
bburx, 80
bbury, 80
bordercolor, 25, 25
border, 25, 25, 33, 62
boxsep, 52, 53, 54
bracketlength, 30
coilarmA, 70
coilarmB, 70
coilarm, 70, 70, 71
coilaspect, 70, 70, 71

coilheight, 70, 70
coilinc, 70, 70
coilwidth, 70, 70
cornersize, 10, 10, 54
curvature, 14
dashed, 33
dash, 25
dimen, 26
dotangle, 16, 16
dotscale, 16
dotsep, 25
dotsize, 16, 30
dotstyle, 16, 16
dotted, 33
doublecolor, 25, 26
doubleline, 25, 25, 26, 33
doublesep, 25, 25
dx, 49, 49
dy, 49
fillcolor, 9, 27, 28, 52
fillstyle, 9, 27, 28, 32, 33, 51, 74,

77
framearc, 10, 10
framesep, 52
gradangle, 75
gradbegin, 74, 75
gradend, 74, 75
gradlines, 75
gradmidpoint, 75
gridcolor, 18
griddots, 18, 18
gridlabelcolor, 18
gridlabels, 18
gridwidth, 18
hatchangle, 27, 27
hatchcolor, 27
hatchsep, 27
hatchwidth, 27
headerfile, 81, 81
headers, 81, 81
labelsep, 44, 50
labels, 50
liftpen, 35, 35, 37

INDEX 92



linearc, 10, 10, 19–21, 54, 63, 64,
71

linecolor, 8, 8, 9, 24, 28, 32, 33,
52

linestyle, 24, 25, 28, 32, 33, 51,
55, 76, 77

linetype, 33, 33
linewidth, 8, 8, 11, 16, 24, 28–30,

32, 33
loopsize, 62, 65
ncurv, 61, 62, 63
nodesepA, 65
nodesep, 61, 62–64, 72
offset, 61, 62–64, 67, 72
origin, 24, 33
oy, 49, 49
plotpoints, 22, 22
plotstyle, 19, 19, 34
pspicture, 41
rbracketlength, 30
rectarc, 54
runit, 7, 8
shadowangle, 26, 26
shadowcolor, 26, 26
shadowsize, 26, 26, 53
shadow, 26, 26, 33
showorigin, 50
showpoints, 9, 12, 14–16, 19–21,

33
style, 31
subgridcolor, 18
subgriddiv, 18
subgriddots, 18
subgridwidth, 18
swapaxes, 24, 33
tbarsize, 16, 30
ticksize, 50
tickstyle, 50, 50
ticks, 50
unit, 7, 7, 19, 72
xunit, 7, 8, 17, 18, 72
yunit, 7, 7, 8, 17, 18, 72

\parametricplot, 22, 22, 23
\pcangle, 66

\pcarc, 65
\pcbar, 65
\pccoil, 71
\pccurve, 61, 65
\pcdiag, 65
\pcline, 65, 67, 71
\pcloop, 62, 66
\pczigzag, 71
\plotfile, 20
plotpoints (parameter), 22, 22
plotstyle (parameter), 19, 19, 34
\pnode, 60
\Polar, 72, 72
\psaddtolength, 7
\psarc, 12, 12, 13, 61
\psarcn, 13, 13
\psaxes, 17, 48, 49–51
\psbezier, 13, 13, 34, 35
\psborder, 25
\psccurve, 15, 19
\pscharclip, 78, 78
\pscharpath, 77, 78
\pscircle, 11, 26
\pscircle*, 11
\pscirclebox, 52, 53, 53, 60
\psclip, 54, 54, 55, 78
\psCoil, 70, 70, 71
\pscoil, 70, 70, 71
\pscurve, 15, 15, 19, 34, 37
\pscustom, 13, 32, 32–34, 36, 37, 39,

46, 54, 61
\psdblframebox, 53, 60
\psdots, 15, 19, 34
\psecurve, 15, 19
\psellipse, 12, 26
\psfill, 32
\psframe, 9, 10, 11, 11, 26, 51, 52
\psframebox, 52, 52–54, 60
\psgrid, 17, 17–19, 34, 48, 78, 79
\pshatchcolor, 27
\pslabelsep, 44, 50, 68
\pslbrace, 87
\psline, 7, 10, 10, 11, 19, 22, 31, 34,

51, 65, 86

INDEX 93



\pslinecolor, 8
\pslinewidth, 8
\pslongbox, 83, 84
\psmathboxfalse, 83
\psmathboxtrue, 83
\psovalbox, 52, 54, 60
\psoverlay, 73, 74
\pspicture, 17, 41, 41, 42, 54, 78
pspicture (parameter), 41
\psplot, 21, 21–23
\pspolygon, 10, 11, 19, 28
\psrbrace, 87
\psrunit, 8
\psset, 5, 6, 6, 11, 41
\pssetlength, 7
\psshadowbox, 53, 60
\pstextpath, 76, 76, 77
\pstheader, 76
\PSTricksEPS, 79, 80
\PSTricksOff, 85
\pstroke, 32
\pstrotate, 46
\PSTtoEPS, 20, 80, 80
\pstunit, 32
\pstVerb, 5, 42, 46, 55, 69, 74
\pstverb, 32
\pstverbscale, 42, 55, 69, 74
\psunit, 8, 77
\psverbboxfalse, 84
\psverbboxtrue, 4, 84, 85
\pswedge, 12, 26
\psxlabel, 51
\psxunit, 8, 19
\psylabel, 51
\psyunit, 8, 19
\pszigzag, 70, 70, 71
\putoverlaybox, 74

\qdisk, 11, 34
\qline, 10, 34

\radians, 8
rbracketlength (parameter), 30
\rcoor, 40

\rcurveto, 39
\readdata, 20, 20, 21
rectarc (parameter), 54
\red, 4
\rlineto, 39
\Rnode, 59, 60, 68
\rnode, 59, 59, 60, 68, 69
\RnodeRef, 59, 60
\rotate, 38
\Rotatedown, 56
\rotatedown, 56
\rotateleft, 55
\rotateright, 55
\Rput, 45, 45, 67
\rput, 41, 43, 43–46, 53, 58, 67, 71,

78, 80
runit (parameter), 7, 8

\savedata, 20, 20
\scale, 38
\scalebox, 56
\scaleboxto, 56
\setcolor, 40
shadow (parameter), 26, 26, 33
shadowangle (parameter), 26, 26
shadowcolor (parameter), 26, 26
shadowsize (parameter), 26, 26, 53
showorigin (parameter), 50
showpoints (parameter), 9, 12, 14–16,

19–21, 33
\SpecialCoor, 7, 8, 72, 72, 73
\stroke, 33, 36
style (parameter), 31
subgridcolor (parameter), 18
subgriddiv (parameter), 18
subgriddots (parameter), 18
subgridwidth (parameter), 18
\swapaxes, 38
swapaxes (parameter), 24, 33

tbarsize (parameter), 16, 30
\TeXtoEPS, 79
ticks (parameter), 50
ticksize (parameter), 50

INDEX 94



tickstyle (parameter), 50, 50
\TPoffset, 77
\translate, 38

unit (parameter), 7, 7, 19, 72
\uput, 44, 44, 45, 68

xunit (parameter), 7, 8, 17, 18, 72

yunit (parameter), 7, 7, 8, 17, 18, 72

INDEX 95


