Building a Language-Independent WEB*

Norman Ramsey!
Odyssey Research Associates

November 18, 1998

In the fall of 1987 I started planning the implementation of a suite of
tools for building verified Ada programs [Ramsey 89]. The first tool to be
built was a verification condition generator, which was to be formally defined
using the typed lambda calculus. I was eager to include the definition with
the code so that it would be easy to check the code’s correctness. Using
WEB would have made this easy, but, unfortunately, the target programming
language was SSL (a language for specifying structure editors), and the only
languages for which WEB implementations were available were Pascal and C.

Writing a new WEB from scratch didn’t make sense, so I decided to modify
Silvio Levy’s implementation of WEB in C [Levy 87], to get a WEB that would
be written in C, but would read and write SSL code. From my previous
experiences modifying WEB, I knew that the most time-consuming job would
be fine-tuning the grammar that WEAVE uses to prettyprint code. I believed
I could make debugging that grammar a lot less painful if, instead of trying
to make dozens of small modifications by hand, I wrote a simple program,
perhaps an AWK script, that would read a description of the grammar and
generate C code for WEAVE. That AWK script became SPIDER, a program
that turns language descriptions into C code for TANGLE and WEAVE. I have
used SPIDER to generate WEBs for C, AWK, SSL, Ada, and a couple of other
languages. I won’t go into the details of SPIDER; instead, I'll try to describe
what SPIDER does to accomplish its mission, or how to take the “essence of
WEB” and make it language-independent.

When using WEB, a programmer writes a single source file, foo.web,

*This research has been sponsored in part by the USAF, Rome Air Development Center,
under contract number F30602-86—C—0071.

fCurrent address: Department of Computer Science, Princeton University, Princeton,
New Jersey 08544

Figure 1: Processing a C web file

foo.c «© foo.0 ;d» Executable foo
/CTANGLE
f00.web?
\CWEAVE
TEX dvi .
foo.tex foo.dvi - Typeset documentation for foo
driver

that holds both code and documentation. TANGLE and WEAVE read that
file. TANGLE extracts the code from the WEB file and rewrites it in a form
suitable for compiling. WEAVE passes the documentation parts to a document
formatter (TEX), and prettyprints the code parts. The whole process is
shown in Figure 1, for C programs written in WEB. The § represents files that
have to be written by hand. Slant type is used for the names of executable
programs. CTANGLE and CWEAVE are the C-language versions of TANGLE
and WEAVE, cc is a C compiler, and Id is a loader.

SPIDER is used to construct instances of TANGLE and WEAVE, and these
instances are used to process programs as shown in Figure 1. Code for the
language-dependent parts of these instances is generated by SPIDER when
it reads a language description file written by a WEB designer. Figure 2
shows how instances of TANGLE and WEAVE are generated. SPIDER converts
a hand-written description of a programming language into C WEB code
for the language-dependent parts of TANGLE and WEAVE. In Figure 2 the
target programming language is a hypothetical “X,” and the description file
is called “x.spider.” CTANGLE combines the code SPIDER writes with the
“master copies” of tangle.web and weave.web, which contain the language-
independent parts of TANGLE and WEAVE. The result is C source code for
XTANGLE and XWEAVE. After that code is compiled and loaded with WEB’s I/O
code, the resulting executable versions of XTANGLE and XWEAVE can be used
to process X-language programs written in WEB format, as shown around the
periphery of Figure 2.

The master copies of tangle.web and weave.web are about 1800 and

Figure 2: Building and using an instance of WEB (for language X)

X. spider§

/ Executable foo
foo.o
foo.x /
Master
tangle.web
XTANGLE 4& Xta_ngle .C M
xt.web
fo0o.web’ SPIDER
XwW.web
XWEAVE <14 | ieave.c [CTANGLE
Master
weave.web

foo.tex \

foo.dvi

\ Typeset documentation for foo

3200 lines long, respectively. About one third of these lines are comments.
To illustrate the other size, suppose X is the Ada programming language.
The ada.spider file is about 260 lines long, and from it SPIDER generates
about 1400 lines of ADATANGLE and ADAWEAVE. About one tenth of these lines
are comments. It is typical for SPIDER to generate between 5n and 6n lines
of C WEB code from an n line language description.

A WEB program is a collection of “sections,” each of which has a doc-
umentation part, a definition part, and a code part. The documentation
part describes what the section is supposed to do, and is intended to be
processed by a formatter—my WEBs use TEX, which is especially convenient
for mathematical symbols like those used in writing a formal semantics. The
definition part contains macro definitions. Each macro may have parame-
ters or not, as the programmer chooses. The code in the code part is a
fragment of the whole program. It is called a “module” and can be named
or unnamed. When the module is named, the module name “stands for”
that code, just as a macro name stands for the code in its definition. The
unnamed module is special; the code in the unnamed module is considered
to be “the program.”

Figure 3: Table Inversion

@ The array |to_ascii| converts an EBCDIC code to
an ASCII code, or to |-1| if there is no ASCII
equivalent to the given code.
@d UNDEFINED_CODE = -1
@<Invert |to_asciil|, producing |to_ebcdic|@>=
@<Set |to_ebcdic[i]=UNDEFINED_CODE| for all |i|@>@;
for (i=0; i<256; i++)
if (to_asciil[i] != UNDEFINED_CODE)
to_ebcdic[to_ascii[i]]l=1i;

@ @<Set |to_ebcdic[i]=UNDEFINED_CODE| for all |i|@>=
for (i=0; i<128; i++) to_ebcdic[i] = UNDEFINED_CODE;

Figure 3 shows a fragment of a WEB program; the fragment inverts an
EBCDIC-to-ASCII table to obtain an ASCII-to-EBCDIC table. The target
programming language is C. One module, (Invert to_ascii, producing to_ebedic),
uses the code defined in the other, (Set to_ebcdicli] «— UNDEFINED_CODE for all i).
The program, foo, of which this fragment is a part, can be input to CTANGLE
and CWEAVE, to produce foo.c and foo.tex respectively, as shown in Fig-
ure 1.

TANGLE’s job is to take a collection of sections and to produce a compi-
lable program. TANGLE reads all the sections, skipping the documentation
parts completely, but storing the macro definitions from the definition parts
and the module definitions from the code parts. After it has read all the
sections, TANGLE then writes out the code in the unnamed module. But
whenever it encounters a module name in that code, instead of writing out
the name, it writes out the code for which this name stands. That code may
itself contain module names, which are replaced with the code for which they
stand, and so on until TANGLE reaches code which contains no occurrences
of module names. TANGLE processes macros similarly, except that macros
may have parameters (modules may not).

As I've described it, the “essence of tangling” is language-independent.
In the full implementation of TANGLE there are only a few language-dependent
details, and almost all of them come up only in lexical analysis. During its
input phase, TANGLE converts macro definitions and module definitions into

token lists. The major kinds of tokens are module name tokens, identifier to-
kens, and ordinary tokens. Identifier tokens may be expandable (when they
are macro names) or unexpandable (when they are programming-language
identifiers). Module name tokens are always expandable, and ordinary to-
kens are never expandable. TANGLE uses a stack to write out the token list
corresponding to the unnamed module, expanding expandable tokens as it
goes. No token is ever expanded until the time comes to write that token
on the output.

To build the language-dependent part of TANGLE, it is enough to tell
TANGLE how to tokenize the input and how to write out a token list. TANGLE
uses a “lowest common denominator” lexical analyzer to tokenize its input.
The set of tokens recognized by this lexical analyzer is the union of the sets
of legal tokens of many different languages. For example, different ways of
delimiting string literals are recognized. Identifiers may have underscores,
even though some languages (e.g. Pascal) may not permit underscores in
identifiers, and others (e.g. Ada) may not permit consecutive underscores
in an identifier. In general, TANGLE and WEAVE do the right thing with legal
programs, but they do not detect illegalities in a program.

TANGLE’s lexical analyzer recognizes a fixed set of tokens representing
identifiers, string literals, and numeric literals. Any printable ASCII char-
acter which is not part of some other token forms a token all by itself. A WEB
builder can specify that certain strings should be treated as single tokens,
and SPIDER will convert the specifications into appropriate code for TANGLE.
For example, when building WEB for C, we tell SPIDER that the strings ++,
==, and && (and many others) should be treated as single tokens, by putting
the statements

token ++ ...
token == ...
token && ...

into the language description file, c.spider.

TANGLE discards comments, rather than attempting to tokenize them.
Comments are assumed to begin with a special string, and to end either
with another string or with a newline. We specify C comment conventions
by telling SPIDER

comment begin <"/*"> end <"x/">

On output, TANGLE converts tokens to text by inverting the process of
lexical analysis, so, for example, the token is written out as “++”.

TANGLE’s output phase inserts white space between adjacent identifiers and
numeric literals, but otherwise does not write white space. This can cause

problems in some cases; for example, in older C compilers the string “=-" is
ambiguous. We can solve this problem by telling SPIDER to build a TANGLE
that uses the text “= ” when writing the [=]:

token = tangleto <"= ">

In sum, we can make TANGLE language-independent with almost no effort.
We do this by using a lowest common denominator lexical analyzer whose
only parameter is a description of comments, and by providing a way to
fine-tune the way TANGLE writes tokens.

Unlike TANGLE, WEAVE does no rearranging of the sections; its job is to
translate its input into a prettyprinted program listing. The documentation
part of each section is simply copied to the output, but the definition and
code parts are prettyprinted. WEAVE’s output is handed to a document for-
matter, which is assumed to implement a prettyprinting algorithm like that
described by Oppen [Oppen 80]. Since my WEBs use TEX as the document
formatter, the back-end prettyprinting is implemented by TEX macros.

WEAVE copies the documentation parts as texts, but it converts defini-
tion and code parts to token lists using the same lexical analyzer used by
TANGLE. WEAVE’s part of the prettyprinting task (as distinct from TEX’s part)
is converting these token lists to streams of TEX text, possibly with pret-
typrinting instructions intercalated between tokens. If you like, WEAVE’s job
is to produce the input to Oppen’s algorithm. For simplicity, we’ll discuss
only three prettyprinting instructions: indent (increase the level of inden-
tation), outdent (decrease the level of indentation), and force (force a line
break).

We tell WEAVE how to convert tokens to TEX text by specifying a transla-
tion for each token. Suppose we want the C token [!=| to be printed as “#£”,
which is produced by the TEX text “\ne”. Then we write

token != translation <"\\ne">

(Two backslashes appear in the translation because SPIDER uses C conven-
tions for string literals. The angle brackets <. . .> delimit translations.) The
default for translation is just as in TANGLE, so if we want “+” on input to
produce “+” on output we need not specify a translation for the token [+].

The process of deciding where to put line breaks and indentation is the
most complicated part of WEAVE. We have to do this based on the sequence of

tokens we have, but the exact details of which token is where usually aren’t
needed to do prettyprinting. Hence we introduce the scrap, which abstracts
away from the detail not needed to do prettyprinting. A scrap has two
parts: the translation, which we have already seen, and the category, which
corresponds to a “part of speech” or a symbol in a grammar. WEAVE uses
categories to decide where to put indentation and line breaks. Since there
are usually many different tokens having the same category, prettyprinting
is simplified enormously.

WEAVE begins processing a program fragment by tokenizing the fragment,
then converting each token in the resulting token list into a scrap. It then
attempts to reduce the length of the resulting scrap list by combining adja-
cent scraps into a single scrap, possibly intercalating additional translations,
which may include indent, outdent, and force instructions. The scraps are
combined according to one of many reduction rules. WEAVE decides which
adjacent scraps are eligible to be reduced based only on the categories of the
scraps and a knowledge of the reduction rules. The reduction rules are the
productions of the prettyprinting grammar. WEAVE’s reductions of scraps are
like the reductions done in bottom-up parsing.

To take an example, suppose that we want statements to be separated
by line breaks. If we can guarantee that any scrap representing a statement
has category stmt, it will be enough to specify the reduction rule

stmt <force> stmt --> stmt

which says “two adjacent stmt scraps may be reduced to a single stmt scrap
by intercalating a forced line break between them.”

So we tell WEAVE how to prettyprint a language by telling how to assign a
category to each token and how to combine scraps. Here’s another example:
the language of C expressions. Let math be the category of expressions,
binop be the category of binary infix operators, and unop be the category
of both unary prefix and unary postfix operators. Here are some sample
tokens:

token identifier category math

token + category binop

token - category binop

token = category binop translation <"\\leftarrow">
token == translation <"\\equiv"> category binop
token (category open

token) category close

Notice we print the [=] token (assignment) as «, whereas we print the
[==] token (comparison) as =. This makes it a bit easier for us to see when
a programmer has mistakenly used [=] instead of [==].

The prettyprinting grammar for C expressions is:

math binop math --> math
math unop —-> math
unop math --> math
open math close --> math

Using this grammar, WEAVE can take a long expression consisting of many
scraps, and reduce it all to a single scrap of category math.

What about an operator like “*” which is both binary infix and unary
prefix? This does the job:

token * category unorbinop
unorbinop math --> math
math unorbinop math --> math

There is a mechanism for assigning categories and translations to re-
served words as well as to tokens, using slightly different syntax.

To give an idea of the complexity of the grammars, the grammar de-
scribing AWK uses 24 categories in 39 productions. The Ada grammar uses
40 categories in 65 productions, and the C grammar uses 54 categories in
129 productions.

SPIDER-generated versions of TANGLE and WEAVE differ subtly from the
originals written by Donald Knuth. The most important difference is that
SPIDER-generated WEB is not self-contained: where Knuth’s Pascal WEB re-
quired only a Pascal compiler to bring up, SPIDER would need a C compiler
and an AWK interpreter to generate a Pascal WEB, and a Pascal compiler
for the resulting WEB to be of any use. Other differences are minor; for ex-
ample, Knuth’s TANGLE does arithmetic on constants at TANGLE time, but
SPIDER-generated TANGLEs do not. Knuth’s TANGLE provides three different
kinds of macros, but none with more than one parameter; SPIDER-generated
TANGLEs provide only one kind of macro, but macros of that kind may have
from zero to thirty-two parameters.

SPIDER is a WEB generator, akin to parser generators. Both read formal
descriptions of some part of a programming language, and both produce
code that processes programs written in that language. Since both produce
code that is part of the “compiler,” using them doesn’t introduce any extra

steps into the processing of user programs. SPIDER itself is a large AWK
script, written as a WEB program. spider.web is about 2600 lines long;
about a third of these are comments.

The major cost of using SPIDER is the cost of learning yet another lan-
guage. Learning this language is supposed to substitute for learning how to
modify WEB, so it is probably not an exorbitant cost. Some other limitations
are the the need for a C compiler and an AWK interpreter, and the need to
use a lowest-common-denominator lexical analyzer.

The major benefit of using SPIDER is the ease with which new WEBs can
be built. The SPIDER description of a language is much smaller than the WEB
implementation generated from that description, and SPIDER descriptions of
similar languages are similar. Using SPIDER one can build a WEB without
understanding the details of WEB’s implementation, and one can easily adjust
that WEB to change as a language definition changes.

SPIDER should make one literate programming tool, WEB, available to a
much larger audience. I hope that, by separating the language-independent
parts of WEAVE and TANGLE, SPIDER will encourage us not just to think about
what the essence of tangling and weaving is, but also about what the essence
of literate programming is.

I enjoyed many useful discussions of WEB with Charlie Mills. I am grateful
to Silvio Levy for providing his CWEB as the basis for the “master copies” of
TANGLE and WEAVE, and to Dave Hanson for comments on an earlier version
of this paper.

References

[Bentley 86] Jon L. Bentley, “Programming Pearls,” Communica-
tions of the ACM 29:5 (May 1986), 364-368, and 29:6
(June 1986), 471-483.

[Knuth 84] Donald E. Knuth, “Literate Programming,” The Com-
puter Journal 27:2(1984), 97-111.

[Levy 87] Silvio Levy, “WEB Adapted to C, Another Approach,”
TUGBoat 8:1(1987), 12-13.

[Oppen 80] Derek Oppen, “Prettyprinting,” TOPLAS 2:4 (October
1980), 465—-483.

[Ramsey 89]

[Van Wyk 87]

Norman Ramsey, “Developing Formally Verified Ada Pro-
grams,” Proceedings, Fifth International Workshop on
Software Specification and Design, to appear.

Christopher J. Van Wyk, “Literate Programming,” Com-
munications of the ACM 30:7 (July 1987), 593-599, and
30:12 (December 1987), 1000-1010.

10

