81 DENOTATIONAL SEMANTICS 1

1. Denotational Semantics. Denotational semantics is a formal method to specify the meaning of
programming languages. We define an abstract syntax for the language (Term), a meaning function (Me),
a polymorphic store (store) and a polymorphic environment (env).

The code is laid out in this document in a logical form (rather than slavishly following the order the
compiler wants), but we must force the ML code into the right order to make sure that things are defined
before use.

('Type Definitions 2)
(Functions 52)
(Meaning Function 6);
('Test Cases 54)

2. This is the type of possible declarations, along with the start of the definition of possible terms. They
are mutually recursive definitions so they must be connected by an and. The actual declaration type are
explained below in the definition of the semantic function for declarations.
(Type Definitions 2) =
datatype Decl =

Var_Decl of stringx Term

| Val_Decl of string x Term

| Rec_Decl of string x Term

and (Term Definition 5);

See also sections 47, 48, 49, 50, and 51.

This code is used in section 1.

83 TERM AND ME 2

3. Term and Me. We define the datatype for the abstract syntax tree and the meaning function in
parallel. Web will worry about putting it all together in the right order.

The meaning function has to have type:

Me : Term — (Value env) — (Value continuation) — (Value store) — (Value x (Value store)).

That is, it maps abstract syntax trees, environments, continuations, and stores to a value,store pair.

4. The denotational semantics are given in terms of the following:

Me - this is the meaning function itself.
= - is an invalid value
€ - an expression
& - a symbol
v - a number
p - the environment (bindings from names to values)
0 - this is the continuation
© - this is a null continuation that simply returns the value
o - this is the store of values
¢ - a location in the store
z[e/v] - a substitution of the expression e for the name (or whatever) v, where x is usually p or o
z[v] - v in the context of x, where x is Me, p, o, O or V
(x,y) - the tuple composed of = and y
{e} - a continuation that evaluates e in the current context

When either of the environment or store are omitted, the environment or store from the enclosing environment
is assumed.

5. The first type of term is the name of a variable or constant. The meaning of a name is the value that
the environment contains for that name. For variables, this value is the location in the store where the value
may be found.
(Term Definition 5) =

Term = Var of string
See also sections 7, 9, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45.

This code is used in section 2.

6. Me[¢]pfo = 6(p[¢], o)

(Meaning Function 6) =
fun Me (Var z) e ¢ s = ¢ (lookup x e, s)
See also sections 8, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46.

This code is used in section 1.

7. Integer constants.

(Term Definition 5)+ =
| Numeral of int

8. Me[v]pbo = 6(V][v],o)
(Meaning Function 6)+ =
| Me (Numeral n) e ¢ s = c (intValue n, s)

§9 DECLARATIONS 3

9. Declarations.

Declarations come in 3 flavours: val, rec, and var. For all three, the declaration only holds for the
evaluation of the expression with which it is composed. val introduces a constant. rec is similar but the
symbol is introduced into the environment of the expression (which must be a function) to allow for recursive
calls. var introduces a variable.

(' Term Definition 5)+ =
| Decl of Declx Term

10. Mefvar £ = 1 ; e3]pbo = Me[ez]p[o/£]0c[Me[e1]pOo /@]
(Meaning Function 6)+ =
| Me (Decl (Var_Decl (z,V), E)) ecs =
Me Ve (
A (R,_) =let
val (S, L) = new s R;
val nE = bind x (lvalueValue L) e;
in
Me E nE ¢ S
end

) s

11. Mefval £ = ¢; ; ea3]pbo = Me[ez]p[Me[e1]pOo/£]00
{ Meaning Function 6)+ =
| Me (Decl (Val_-Decl (z, V), E))ecs =
Me Ve (
A (R,_) = Me E (bind x Re)cs
) s

12. The interpretation of the recursive declaration (Me[rec & = ¢; ; 2] pfo) is fairly difficult to describe,
short of translating the ML code. There are a couple of ways of doing this, but the one I chose is to implement
the Y combinator (fix) in the language and then apply it to the functional we want to make recursive. To
bootstrap the process, we put an entry for £ix into the environment as a var name with an initial binding
to an invalid value, which we replace once we have a definition for the function proper. If we were looking
for efficiency, we’d put these in the initial environment and store.

(Meaning Function 6)+ =
| Me (Decl (Rec-Decl (z, V), E))ecs = let
val fixpoint = Proc ("fix-£f", Proc ("fix-x", App (App (Var "fix-£", App (Deref (Var "fix")
, Var "fix-£f")), Var "fix-x")));
val (S, L) = new s invalidValue;
val nE = bind "fix" (lalueValue L) e;
in
Me fizpoint nE (
A (FIX,_) =
Me (App (Deref (Var "fix"), Proc (z, V))) nE (
A (funcValue R, S) = Me E (bind = (funcValue R) e) ¢ S
| - = raise NotFuncDecl
) (update S L FIX)

end

813 FUNCTION OPERATIONS 4

13. Function operations.

Function abstraction. Define a function of one parameter bound in the scope of the expression.
('Term Definition 5)+ =

| Proc of stringx Term

14. Me[proc & => ¢]pfo = (N0’ NV, c'). Me[e]p[V/E]0' o', o)
(Meaning Function 6)+ =
| Me (Proc (z, E))ecs =
¢ (
funcValue (
AC =
A (V,S) = Me E (bind xVeCS

, S

)

15. Function Application. Supply one parameter to the function and execute the function.
{ Term Definition 5)+ =
| App of Termx Term

16. The interpretation of function application (Me[e;(e2)]pfo) is basically going to be a translation of
the ML code.
(Meaning Function 6)+ =
| Me (App (E1,E2))ecs =
Me E1 e (
A (funcValue f,_) =
Me E2 e (
A VS = fcVS
) s
| - = raise NotFunc

) s

17. Call the specified function passing our continuation as a functional parameter.

{ Term Definition 5)+ =
| Callcc of Term

18. The interpretation of function application (Me[callcc €]pfo) is basically going to be a translation of
the ML code.
(Meaning Function 6)+ =
| Me (Callec EYecs =
Me E e (
A (funcValue f,_) =
fel
funcValue (
A (C: Value continuation) = c
)

, S

)

| — = raise NotFunc

§19
19. Operations on Pairs.
Create a pair from the values of two expressions.

(Term Definition 5)+ =
| Pair of Termx Term

20. Me[<eq,e2>]pbo = §(Me[e1]p©Ooc, Me[e2] pO0o)

(Meaning Function 6)+ =
| Me (Pair (E1,E2))ecs =

Me E1 e (
A (VL,Z) =
Me E2 e (
A (V2,8) = c(pairValue (V1, V2), s)
) s
) s

21. Get the first element from a pair.

(Term Definition 5)+ =
| Fst of Term

22. Me[fst e]pfo = O{m1 (Me[e]pO0c), o)
(Meaning Function 6)+ =
| Me (Fst T)ecs =
Me T e (
A (pairValue (T1, T2),_) = ¢ (T1, s)
| - = raise NotPair

) s

23. Get the second element from a pair.

(Term Definition 5)+ =
| Snd of Term

24. Me[snd ¢]pfo = O{ma(Me[c]pO0c), o)
{ Meaning Function 6)+ =
| Me (Snd T)ecs =
Me T e (
A (pairValue (T1, T2),_) = ¢ (T2, s)
| -~ = raise NotPair

) s

OPERATIONS ON PAIRS

5

§25 FLOW OF CONTROL

25. Flow of control.

Conditional execution. Only one of the then or else expressions will be executed.
(Term Definition 5)+ =

| Cond of Term x Termx Term

26. Me[if &1 then 3 else €3 fi]pfo = (if Me[e1]pOoc = true then Me[ea] else Me[es])pbo
(Meaning Function 6)+ =
| Me (Cond (E1, E2,E3))ecs =
Me E1 e (
A (boolValue true,) = Me E2 ec s
| (boolValue false,) = Me E3 ec s
| - = raise NotBool

) s

27. Expression composition. Execute the expressions sequentially.

(Term Definition 5)+ =
| Seq of Termx Term

28. Me[ey;ea]pbo = Me[ei]p{Melea]pb}o
(Meaning Function 6)+ =
| Me (Seq (E1,E2))ecs =
Me E1 e (
A (V,S) =MeE2ecS
) s

29. Indefinite iteration. Execute the second expression as long as the first expression evaluates to true.

(Term Definition 5)+ =
| While of Termx Term

30. Me[while £ do &3 od]pbo = (if Me[e1]Oc = true then Melez]p{Me[while...]pb} else O)o
{Meaning Function 6)+ =
| Me (While (E1, E2))ecs =
Me E1 e (
A (boolValue true, S) =
Me E2 e (
A (V,S) = Me (While (E1, E2))ec S
) S
| (boolValue false, S) = ¢ (invalidValue, S)
| - = raise NotBool

) s

6

831 STORAGE REFERENCES AND UPDATES 7

31. Storage References and Updates.
Allocate storage for a value and return the location of the value in the store.

(Term Definition 5)+ =
| Ref of Term

32. Me[ref ¢]pho = 0(¢p,c[Me[e]pOa/d])
(Meaning Function 6)+ =
| Me (Ref E)ecs
Me E e (
A (V,2) =let
val (nS, L) = new s V;
in
¢ (lvalueValue L, nS)
end

) s

33. Given the location of a datum, get the value currently stored there.

(Term Definition 5)+ =
| Deref of Term

34. Me[.e]pfo = {c[Me[e]pOa], o)
(Meaning Function 6)+ =
| Me (Deref E)ecs =
Me E e (
A (lalueValue V, S) = ¢ (access SV, s)
| - = raise NotLValue

) s

35. DModify the storage at the location specified by the first expression to have the value of the second
expression.
{ Term Definition 5)+ =

| Assign of Termx Term

36. Me[e;:=e2]pbo = (Me[e2]pO0c, c[Me[e2] pOc/Me[e1]pO0a])
{ Meaning Function 6)+ =
| Me (Assign (E1, E2))ecs =
Me E1 e (
A (lalueValue L, _) =
Me E2 e (
A (V,) = ¢ (V, update s L' V)
) s
| - = raise NotLValue

) s

837 INTEGER OPERATIONS 8

37. Integer Operations.
Add two integers together.
(Term Definition 5)+ =
| Add of Termx Term

38. Me[ei+ez]pbo = 0(O[+](Me[e1]pOc, Me[e2]pO0c), o)
{ Meaning Function 6)+ =
| Me (Add (E1,E2))ecs =
Me E1 e (
A (intValue V1,_) =
Me E2 e (
A (intValue V2,_) = ¢ (intValue (V1 + V2), s)
| = = raise NotInteger
) s

| = = raise NotInteger

) s

39. Multiply two integers.

(Term Definition 5)+ =
| Mult of Termx Term

40. Me[eixez]pbfo = 6(O[x](Me[e1]pOc, Me[e2] pO0), o)
{ Meaning Function 6)+ =
| Me (Mult (E1, E2))ecs =
Me E1 e (
A (intValue V1,_) =
Me E2 e (
A (intValue V2,_) = ¢ (intValue (V1*V2), s)
| = = raise NotInteger
) s

| - = raise NotInteger

) s

41. Calculate the negative of an integer.

(Term Definition 5)+ =
| Neg of Term

42. Me[—¢]pbo = 6(—Me[e]pO0c, o)
{ Meaning Function 6)+ =
| Me (Neg E)ecs =
Me E e (
A (intValue V,_) = ¢ (intValue (0 —V), s)
| - = raise NotInteger

) s

§43 BOOLEAN OPERATIONS 9

43. Boolean Operations. Determine if the first integer expression is lower in value than the second.
Return a boolean truth value.
(Term Definition 5)+ =

| Less of Termx Term

44. Melei<ez]pbo = 0(0[<](Me[e1]pO0c, Me[e2]pO0), o)
{ Meaning Function 6)+ =
| Me (Less (E1, E2))ecs =
Me E1 e (
A (intValue V1,_) =
Me E2 e (
A (intValue V2,_) = ¢ (boolValue (V1 < V2), s)
| = = raise NotInteger
) s

| = = raise NotInteger

) s

45. Calculate the boolean complement of the expression.

(Term Definition 5)+ =
| Not of Term

46. Me[—¢]pbo = 0(-Me[e]pOa, o)
{ Meaning Function 6)+ =
| Me (Not E)ecs =
Me E e (
A (boolValue true, _) = ¢ (boolValue false, s)
| (boolValue false,_) = ¢ (boolValue true, s)
| - = raise NotBool

) s

847 ENVIRONMENTS 10

47. Environments. An environment captures the bindings of names to values (in this case locations).
This trivial implementation has dreadful performance, but it is at least fairly obviously correct.

(Type Definitions 2)+ =
abstype a env =
Env of string — «
with
exception unbound_variable of string;
val newenv =
Env (

)i
fun bind z ¢t (Env f) =
Env (
Ay =
if x =y then
t
else

Iy

A x = raise unbound_variable x

)i
fun lookup x (Env f) = f «
end;

§48 STORES 11

48. Stores. A store binds locations to values. Once again, this is just about the most inefficient
implementation you could come up with (although there actually was a bug in the first version). A store
can be thought of as a mapping from locations to values, where new locations are created on demand.

(Type Definitions 2)+ =
abstype a store =
Store of intx (int — «)
and lvalue =
lvalue of int
with
exception segmentation_violation;
val newstore =
Store (
0
,A x = raise segmentation_violation
)i
fun new (Store (avail, f)) v =
(Store (
avail + 1
Al =
if [= avail then
v
else
fl
)
, lwalue (avail)
)i
fun access (Store (—, f)) (lvalue loc) = f loc;
fun update (Store (avail, f)) (lwalue loc) v =

Store (
avail
Al =
if [= loc then
v
else
fl

end;

§49 VALUES AND MISCELLANEOUS DEFINITIONS 12

49. Values and Miscellaneous Definitions. Define a continuation to be a mapping from a value,state
pair to a resulting value,state.
(Type Definitions 2)+ =

type a continuation = (o X « store) — (a X « store);

50. Values. These are the set of values that can result from a computation. Only the first 3 of these were
in the original problem description. I added the others to make the language/interpreter more useful and to
catch and report errors.

(Type Definitions 2)+ =

datatype Value =
intValue of int
| lwalueValue of lvalue
| funcValue of Value continuation — Value continuation
| boolValue of bool
| pairValue of Value x Value
| invalidValue
| Missing-Name of string;

51. These are exceptions that are raised by the semantic function when values are inappropriate.
(Type Definitions 2)+ =

exception NotImplemented;

exception NotCorrect;

exception NotPair;

exception NotLValue;

exception NotBool;

exception Notlnteger;

exception NotFunc;

exception NotFuncDecl;

52. Here is an ML version of the Y fix point operator. We could use it for to implement recursion. It would
only be a minor change to make the semantic function use this rather than use ML’s builtin recursion.

(Functions 52) =
fun fis f o = f (fix f) o
See also section 53.

This code is used in section 1.

53. The empty continuation.

(Functions 52)+ =
fun nullContinuation x = z;

854 TEST OF THE MACHINE 13

54. Test of the Machine. Testing is no substitute for correct implementation, but it is somewhat
heartwarming to see such an abstract interpreter actually work.

First of all define a test function that will accept any program in the language and execute it, returning
the result.

(Test Cases 54) =
fun test n =let
val (V,S) =
Me n newenv nullContinuation newstore
handle unbound_-variable x = (Missing-Name x, newstore);
in
v
end;
See also sections 55, 56, 57, 58, and 59.

This code is used in section 1.

55. A few dead simple tests to show that integers and pairs work properly.

(Test Cases 54)+ =

test (Numeral 3);
test (Neg (Add (Numeral 3, Numeral 39)));
test (Fst (Pair (Numeral 3, Numeral 4)));
test (Snd (Pair (Numeral 3, Numeral 4)));
test (Seq (Numeral 3, Numeral 4));

56. Test binding names, both through value declarations and A bindings. Also verify that function
abstraction, function application, and call-with-current-continuation work.

(Test Cases 54)+ =

val X = "x";
Val Y — |Iy||;
val FIX = "fix"
and F = "f",

test (Decl (Val_Decl (X, Numeral 29), Var X));

test (App (Proc (X, Numeral 17), Numeral 7));

test (App (Proc (X, Add (Var X, Numeral 1)), Numeral 7));

test (Decl (Val_Decl (X, Proc (Y, Var Y)), Add (Numeral 3, App (Var X, Numeral 55))));
test (Decl (Val_Decl (X, Proc (Y, Seq (App (Var Y, Numeral 33), Numeral 44)))

, Add (Numeral 3, Callcc (Var X))));

57. Now for some real excitement: recursive functions. Surprise! Surprise! They actually work.

(Test Cases 54)+ =
val fact = Rec_Decl (X, Proc (Y, Cond (
, Numeral 1, Mult (
test (Decl (fact, App (Var X, Numeral 1)
test (Decl (fact, App (Var X, Numeral 5)

Less (Var Y, Numeral 2)
App (Var X, Add (Var Y, Neg (Numeral 1))), Var Y))));

))7
));

b

§58 TEST OF THE MACHINE 14

58. Ok, so let’s use some CPU time! Try fibonacci

(Test Cases 54)+ =
val fibv = Rec_Decl (X, Proc (Y, Cond (Less (Var Y, Numeral 2), Numeral 1, Add (App (Var X, Add (
Var Y, Neg (Numeral 1))), App (Var X, Add (Var Y, Neg (Numeral 2)))))));

(((Var X, Numeral 1)));

test (Decl (fib, App (Var X, Numeral 5))
test (Decl (fib, App (Var X, Numeral 10)
test (Decl (fib, App (Var X, Numeral 15)
test (Decl (fib, App (Var X, Numeral 20)

(Decl (()

(Decl (()

test (Decl (fib, App

);
);
);
).
)

test (Decl (fib, App (Var X, Numeral 25
test (Decl (fib, App (Var X, Numeral 28

Y

)
)
)
)
)
)

Y

59. Finally test that reference bindings and iteration work properly.

(Test Cases 54)+ =

test (Assign (Ref (Numeral 2), Numeral 3));

test (Decl (Var_Decl (X, Numeral 1), Deref (Var X)));

test (Decl (Var-Decl (X, Numeral 1), Seq (Assign (Var X, Add (Numeral 22, Deref (Var X))), Deref (

Var X)))):

test (Decl (Var_Decl (X, Numeral 1), (Decl (Var_Decl (Y, Numeral 0), Seq (While (Less (Deref (Var
X), Numeral 11), Seq (Assign (Var Y, Add (Deref (Var Y'), Deref (Var X))), (
Assign (Var X, Add (Numeral 1, Deref (Var X)))))), Deref (Var Y))))));

§60

60. Index.

access: 34, 48.

Add: 37, 38, 55, 56, 57, 58, 59.
App: 12, 15, 16, 56, 57, 58.
Assign: 35, 36, 59.

avail: 48.
bind: 10, 11, 12, 14, 47.
bool: 50.

boolValue: 26, 30, 44, 46, 50.

Callec: 17, 18, 56.

Cond: 25, 26, 57, 58.

continuation: 3, 18, 49, 50.

Decl: 2,9, 10, 11, 12, 56, 57, 58, 59.
Deref: 12, 33, 34, 59.

env: 1, 3, 47.

Env: 47.

El: 16, 20, 26, 28, 30, 36, 38, 40, 44.
E2: 16, 20, 26, 28, 30, 36, 38, 40, 44.
E3: 26.

fact: 57.

fib: 58.

fix: 52.

FIX: 12, 56.

fixpoint: 12.

Fst: 21, 22, 55.

funcValue: 12, 14, 16, 18, 50.
intValue: 8, 38, 40, 42, 44, 50.
invalidValue: 12, 30, 50.

Less: 43, 44, 57, 58, 59.

loc: 48.

lookup: 6, 47.

lvalue: 48, 50.

lwalueValue: 10, 12, 32, 34, 36, 50.

Me: 1,3,6,8, 10, 11, 12, 14, 16, 18, 20, 22, 24,

Missing-Name: 50, 54.
Mult: 39, 40, 57.

nk: 10, 12.

Neg: 41, 42, 55, 57, 58.
new: 10, 12, 32, 48.
newenv: 47, b4.
newstore: 48, 54.

Not: 45, 46.

NotBool: 26, 30, 46, 51.
NotCorrect: 51.
NotFunc: 16, 18, 51.
NotFuncDecl: 12, 51.
NotImplemented: 51.
Notlnteger: 38, 40, 42, 44, 51.
NotLValue: 34, 36, 51.

NotPair: 22, 24, 51.

nS: 32.

nullContinuation: 53, 54.
Numeral: 7, 8, 55, 56, 57, 58, 59.
Pair: 19, 20, 55.
pairValue: 20, 22, 24, 50.
Proc: 12, 13, 14, 56, 57, 58.
Rec_Decl: 2, 12, 57, 58.
Ref: 31, 32, 59.
segmentation_violation: 48.
Seq: 27, 28, 55, 56, 59.
Snd: 23, 24, 55.

store: 1, 3, 48, 49.

Store: 48.

INDEX

15

Term: 1,2,3,5,9, 13, 15, 17, 19, 21, 23, 25, 27,

29, 31, 33, 35, 37, 39, 41, 43, 45.
test: 54, 55, 56, 57, 58, 59.
T1: 22, 24.

T2: 22, 24.
unbound_variable: 47, 54.
update: 12, 36, 48.
Val_Decl: 2, 11, 56.
Value: 3, 18, 50.

Var: 5, 6, 12, 56, 57, 58, 59.
Var_Decl: 2, 10, 59.

VS: 16.

Vi: 20, 38, 40, 44.

V2: 20, 38, 40, 44.
While: 29, 30, 59.

860 NAMES OF THE SECTIONS 16

(Functions 52, 53) Used in section 1.

(Meaning Function 6, 8, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46) Used in section 1.
(Term Definition 5, 7, 9, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45) Used in section 2.

(Test Cases 54, 55, 56, 57, 58, 59) Used in section 1.

(Type Definitions 2, 47, 48, 49, 50, 51) Used in section 1.

Denotional Semantics and
an ML Interpreter

for a Functional Programming Language
for CS742, Dominic Duggan

Table of Contents

Section Page

Denotational SemantiCs 1
Term and Me 3
Declarations 9
Function operations 13
Operations on Pairs 19
Flow of control 25
Storage References and Updates i 31
Integer Operations e 37
Boolean Operations e 43
Environments 47
70 << T 48
Values and Miscellaneous Definitionst e 49
Test of the Machine 54
Index .o 60

(© 1991, Dave Mason <dmason@plg.uwaterloo.ca>

0 O UL Wi

