A PROGRAM TO SOLVE “THE CONVICT PROBLEM?”

The Problem. 1
The SOIULION . o oot e e e 2
Epilogue . . oo 11

This is a ProTeX variant of the CWEB puzzle program of Lee Wittenberg.

1

1. The Problem

Our task is to help a convict escape from prison. The prison is 4 cells square and the convict (represented
by ‘C’ in the diagram, below) is in the northwesternmost cell. He can move horizontally or vertically (not
diagonally) from cell to cell. The only exit is in the southeasternmost cell.

C P P P
P P P P
P P P P
P P P

Complicating the problem are the 14 policemen (represented by ‘P’s in the diagram) blocking the convict’s
way. The convict must kill all the policemen before he can leave, but cannot return to any cell he has already
been in (that would be too easy).

2. The Solution

The program that solves the problem will be laid out like most C programs:

program

Header files used by the program|

define

[Global variables]|

Functions

|The main program|

Header files used by the PrOZIam .« « o oo v v v v v v v e vnnnnnnnnn 25
FUNCHONS + ¢ v v v v e e e me e et omne e e ine e eeeneeenns 267 PTOBIAII « « + v e e e e e et e e e e e et et e e e et 2

Global variables « o « o ¢ o o o o o o v vt vttt et e 2310 The mMain Program « « « o o o o o o o o o o oo s oo o oo ot o oo oo ons 24

3. We will need to represent the prison—a 2-dimensional array seems the logical choice. As the convict
“visits” each cell, we will put a number denoting the order in which the cell was visited into the appropriate
array element (we will use zero to represent a cell that has not yet been visited). Thus we can use the
zero-ness of a cell to determine whether or not it has been visited.

We can also use this property to avoid making special cases out of the outer cells (which have fewer
than 4 exits to other cells). We create an array 2 elements wider than the prison and initialize all the array
elements that do not correspond to actual cells to —1 (marking them as “already visited”—a convenient

2

fiction). All cells in the prison now have 4 neighbors and can be treated exactly alike.

define

#define has_been_visited(m,n) (prison[m] [n]!=0)

has_been _visited « e v v v v v v vttt it 37
PIISOI « ¢ v v e v ettt et e tie et ettt 33679

Global variables

int prison[6][6] = {

{-1,-1,-1,-1,-1,-1%},

{-1, 0, 0, 0, 0,-1},

{-1, 0, 0, 0, 0,-1},

{-1, 0, 0, 0, 0,-1},

{-1, 0, 0, 0, 0,-1},

{_1’_1’_1’_1’ 1’ 1}

};
Global variables « « ¢ o ¢ o o o o s o vt o vttt it 2310 23 L 3 33679
4. The main program is simple. We let the —solve— function do all the work. If —solve— succeeds

for the initial cell (1, 1), we print the configuration of the prison (showing the order in which the cells were
visited); if not, we print an error message. The latter case should never happen—it will occur only if there
is a bug in the program or if we have misunderstood the problem.

The main program

void
main(void)
{
if (solve(1,1))
print_prison();
else
fprintf(stderr, "Impossible\n");

}
PLANE_DIISOM « = o + e e v e n e e e e e et e e e e 46 BOLVE + v e v v e bt it it e e e 47
The Main PrOZIAIL « o « v o o o o o e v s s o oo e oneneneneneenenens 24
5. In order to produce the necessary output we need to include the “Standard I/O” library:

Header files used by the program

#include <stdio.h>

Header files used by the PrOZIam « « « v v v v v v e v ve e e ennnnnnn 25

6. Printing the prison configuration is trivial, so we might as well get it out of the way.

Functions
void print_prison(void)
{
register int 1i,j;
for (i=1; i<=4;i++)
for (j=1; j<=4;j++)
printf ("%2d%c", prison([i] [j], j==47’\n’:’\t’);
putc(’\n’,stdout) ;
}
FUICEIOTIS + « ¢ 4 o o 4 s o st e s e e aeeonenneenneeneenennes 267 L R R I 46
= DIISOT « + v v e e v e e e e e e e e e e e et 336709
7. The —solve— function is fairly straightforward, but it has a few special cases to deal with. The

parameters represent the row and column numbers of the next cell to visit. If the cell has already been
visited, it can’t be visited again, so the current attempt at a solution fails. The solution can also fail
prematurely if the convict attempts to visit the exit cell (4, 4) without having visited all the other cells (and
killing the policemen therein).

If the cell has not been visited before, we mark it as having been visited and recursively check each of
the 4 neighboring cells to see if a solution exists starting from that cell (remember, all cells previously visited
have been marked and cannot be visited again). If a solution exists, we report success. Otherwise, we report
failure and pretend that the convict hasn’t actually visited this cell yet.

define

.. +

#define succeed return 1

#define fail return O
AOFITIO + v e v e e e e e 237 0 778

- SUCCEEA « + ¢ o o o o o o o o s s s o s o o o s o o s o oo oo oo o enoneeos 778
Functions

.. +

int

solve(register int m, register int n)

{

if (has_been_visited(m,n))
fail;

|If this is the exit cell, |succeed| if we have visited all the other cells, |faj

11

otherwi

prison[m] [n]=++number_of _cells_visited; /* mark cell as ‘‘visited’’ */
if (solve(m+1,n) | |Isolve(m,n+1) | |solve(m-1,n) | |solve(m,n-1))

succeed;
|Pretend that the convict hasn’t actually visited this cell yetk
fail;
fail . Tttt TS number_of _cells _viSited « v o v o v o oo v en e et eeeeeenen 780910
Functions « e covvvvvnceceornnnnnnnncncrenanana. 267 Pretend that the convict hasn’t actually visited this cell yet « . . . 7 9
has_been_visited « v v ¢« ¢ o o 0 o e o vt ottt v et 37 PIiSOI « v v v e e o e e e s e e e e e neeesoenneeeeennns 33679
If this is the exit cell, —succeed— if we have visited all the other cells, SOLVE ¢ 4 o i i e i i e e e e e e e e e e e et e e e e 47
—fail— OtherwisSe « « ¢ v o v o v o i o et et et e e e e s o s e aan 78 SUCCEEA « o ¢ 4 o s o o o o o o s o o s o o s o s o s o s o s o oo s s sennn 778

8.

If this is the exit cell, |succeed| if we have visited all the other cells, |faill| otherwise
if (m==4&&n==4) {
if (number_of_cells_visited==15) /* all other cells have been visited */
succeed;
else fail;
FAIle o v e e e e e e e e e e e e 778 —fail— otherwise « . vvvv ittt i 78
number_of _cells _visited « v v v o v v vt et e e e 78910
If this is the exit cell, —succeed— if we have visited all the other cells, SUCCEEA + « ¢ v o o o o o o o s s s o s o s o s o o s o oo oo oo o snoneeos 778
9.
Pretend that the convict hasn’t actually visited this cell yet
—-number_of_cells_visited;prison[m] [n]=0;
umber of colls ViSIed . e v e e e, 78910 Pretend that the convict hasn’t actually visited this cell yet 79
- - - PIiSOI « 4 o o o o o o o o o o oo oo o oo ososoesnnesesnnns 33679

10. We start out with no cells having been visited.

Global variables

int number_of_cells_visited=0;

Global variables

11. Epilogue
When we ran the program, it produced the ‘Impossible’ message.

extensively, we found no bugs—we did not completely understand the problem.
convict, while not allowed to return to a cell in which he has killed a policeman, is allowed to return to his

original cell. The following is a valid solution:

After checking out the program
It turns out that the

(1,1) = (1,2) = (1,1) = (2,1) = (3,1) = (4,1) = (4,2) = (3,2) — (2,2)
—(23) = (1,3) = (1,4) = (2,4) = (3,4) = (3,3) = (4,3) = (4,4)

22 1 PP 778
Ut OMIS . o o oo e 267
Global variables e 2310
has_been _visited. e 37
Header files used by the programi...... e 25
If this is the exit cell, —succeed— if we have visited all the other cells, —fail— otherwise.............. 78
number_of_cells_visited 78910
Pretend that the convict hasn’t actually visited this cell yet i 79
PTINE _PIISOTL . ..ttt e e e e 46
103 5 5703 4 PP 33679
030 1 5 1 PP 2
T0) A7 P 47
SUCCEEA . . ettt 778
The main PIrOGIaIL. . .« oottt e e e e e e e e e 24

