BIBTOOL

A Tool to Manipulate BIBTEX Files

Tcl Programmers Manual

Gerd Neugebauer

Abstract

BisTooL provides a library of useful C functions to manipulate BIBTRX files.
This library has been used to implement new primitives for Tcl which utilize
these functions. Thus it is easy to write tools to manipulate BIBTRX files or
graphical interfaces to them.

— This documentation is still in a rudimentary form and needs additional efforts. —

This file is part of BIBToOOL Version 2.41
Copyright (©1997 Gerd Neugebauer

BiBToOL is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
1, or (at your option) any later version.

BiBTooL is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this docu-
mentation; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass
Ave, Cambridge, MA 02139, USA.

Gerd Neugebauer

Mainzer Str. 8

56321 Rhens (Germany)

WWW: http://www.uni-koblenz.de/ gerd

Net: gerd@informatik.uni-koblenz.de
gerd@imn.th-leipzig.de

gerd@intellektik.informatik.th-darmstadt.de

Contents

1 The Tcl Module

1.1 Introduction
1.2 Functional vs. Object-Oriented Reading
1.3 Databases e
1.4 Records and Fields L
1.5 Record Fields
1.6 Key Generation L
1.7 BIBTRX Macros
1.8 Embedding (IOTEX Macroso oo v v
1.9 DeTEXIng o o
1.10 Name Formatting
1.11 Formatting e
1.12 Analyzing a WITEX aux File oL
1.13 Recognized Entry Types
1.14 The Version Number o
1.15 Using BiBTOOL Resources

2 Installation
2.1 UNIX . e

ot ot O

CONTENTS

The Tcl Module

1.1 Introduction

The following description assumes that you are familiar with Tcl [Ous94, Wel95]. Thus it
does not repeat any introductory material on this language. You are referred to one of the
books or the material to be found on the Web. If you are not familiar enough with Tcl you
are strongly encouraged to read an introductory text since there are some subtle points in
Tecl which have to be understood. Otherwise the language is not usable.

The BiBTooL library is made available for the Tcl programming language in the form
of a dynamic loadable library. To use this library it is usually sufficient to source the file
bibtool.tcl which is created during the installation of the library (see section 2) and which
can be found in the same directory where the machine dependent library resides—even
though this file is not architecture dependent. Thus the first instruction to use the library
in a Tcl program is

source bibtool.tcl

The file bibtool.tcl contains the information where the libraries can be found. It tries to find
and load the appropriate dynamic library for the operating system and version it is running
on. If you encounter problems like missing libraries then just reinstall the BiIBTooL library
on this architecture into the same directory. This will create a new subdirectory containing
the missing library.

1.2 Functional vs. Object-Oriented Reading

During the development of the BIBTOOL library an interesting question occurred. In princi-
ple there are two ways of thinking present even in plain Tcl/Tk, namely a functional /pro-
cedural and an object oriented point of view. The object oriented point of view can be seen

6 1. TuE TcL MODULE

mainly in Tk where the widgets act like objects. In Tcl most things have only a procedural
flavor.

The question arose which paradigm should be supported. The first consideration was
to use the procedural paradigm since this would require only a single new Tcl command to
be implemented. This means the simplicity argument won.

When lots of subcommands of this single command bibtool had already been imple-
mented the issue was reconsidered. It turned out that only one single wrapper function
had to be written in C to provide the object oriented point of view. Thus for many sub-
commands of bibtool—mnamely those dealing with databases or records—there are two
alternative notations available.

Consider for example the following situation. the Tcl variables rec1l and rec2 contain
references to single records (we will see later how we can come to this situation). Then the
equality of the records (in the sense of pointers to the same internal data structure) can be
checked with

bibtool equal $recl $rec2

This returns 1 upon success and 0 upon failure. In the object oriented paradigm we have to
provide a method of a record which decides whether or not it is identical to another record.
This can be written as

$recl equal $rec2

Another example is concerned with the access to a record in a database. Suppose we
have a reference to a database stored in the Tcl variable db and we have already loaded some
BIBTEX files into this database. Then we can get a reference to the first record—storing it
in the Tcl variable rec—with the following command:

set rec [bibtool first $db]
If we consider $db as an object then we can use the method first to get the first record:
set rec [$db first]

Thus we have available both paradigms in this library. This effect is achieved by using
handles to objects. These handles have the prefix =BibTcl=. For each object created a
command is defined which is an alias to the appropriate bibtool subcommand. As long as
the user does not try to define commands with this prefix everything works fine.

1.3 Databases

bibtool is designed to handle several databases simultaneously. To distinguish the different
databases they get assigned a handle—which is a unique identifier—when they are created.
This handle has to be used to refer to a database later on. Thus it is preferable to store it
in Tcl variable.

The handle can also be seen as an object in an object oriented context. The database
class provides a fixed set of methods for this object. Instead of using an object oriented

1.3. DATABASES 7

notation we have decided to use a more procedural approach. But you can have your own
model in mind when you read the code.

One consequence of the use of handles is that BIBTOOL can determine which kind of
object is addressed. In case of an invalid object an appropriate error is raised. This can
occur for instance if a database handle is used after the database has been deleted, or if an
arbitrary string is given as handle which does not correspond to an object in BIBTOOL.

The first step to work with a database is the creation. This can be done with the
command bibtool new. This command returns a handle for a new database which should
be stored in a Tcl variable for later user:

set db [bibtool new]

This database is empty. If you want to load some files into this database you can give the
filenames as arguments to bibtool new. Any number of BIBTEX files can be given this way:

set db [bibtool new a.bib b.bib c.bib]

Since BIBTOOL is rather noisy by default it might be preferable to reduce the verbosity before
loading a database. This can be done by utilizing BIBTOOL resources as in the following
command:

bibtool quiet=on verbose=off

Details on the use of BIBTOOL resources can be found in section 1.15 on page 29.
But the files can not be loaded at creation time only but also later on. This is done with
the command bibtool read as shown in the following example:

bibtool read $db c.bib d.bib

bibtool read needs the next argument to be a handle for a database. Any following
arguments are taken to be file names which are loaded into the given database. Upon
success the databse handle is returned. If one of the files does not exist, can not be read,
or another error occurrs then this command issues a Tcl error. You can use catch to avoid
a termination of Tcl and implement an error recovery scheme:

foreach file {c.bib d.bib} {
if {[catch {bibtool read $db $file} messagel} {
puts stderr "x** $message"
}
}

The next important operation on a database is the writing operation. The command
bibtool write writes the named database into the given file. Again an error is raised
if this writing can not be performed. This is most probably caused by the inability to open
the file.

set file abc.bib
if {[catch {bibtool write $db $file} messagel} {
puts stderr "xx*x $message"

3

8 1. TuE TcL MODULE

Usually the database is written to the file deleting its previous contents. Sometimes it can
be desirable to append the database to an existing file. For this purpose the flag —append
can be used:

if {[catch {bibtool write $db $file -append} messagel} {
puts stderr "xx* $message"

}

There is one special case of a file name. If the file name is the empty string then the output
is written to the standard output stream.

The final operation on a database is its deletion. This can be done with the command
bibtool delete. This command takes as argument a single BIBTOOL object and performs
the delete operation for it. Now we are interested in a database object only. Thus the object
is a database handle.

bibtool delete $db

This command deletes the database $db. Any reference to it or its contents might lead to
a Tcl error. This deletion does not remove the file on the disk but only frees the handle.

With the means given in this section we can already write a useful tool. If we want to
write a Tcl program which normalizes a BIBTRX file then this can be done with the following
piece of code:

bibtool quiet=on verbose=off
bibtool write [bibtool new [lindex $argv 0]] [lindex $argv 1]

This Tcl program reads the BIBTX file given as command line argument one and writes it
to the file given as the second argument. No error detection is performed. To implement
error recovery and the generalization to several input files is left to the reader.

In fact this is a special case of the main loop of BIBToOL. The same effect could be
achieved with the following command line invocation of BIBTOOL:

bibtool -- quiet=on -- verbose=off infile -o outfile

where infile and outfile are the names of the input and output files respectively.

Next we want to have access to the records in a database. For this purpose two methods
are provided which return a handle for the first or last record in a given database respectively.
These handles should be stored in Tcl variables for later use:

set recl [$db first]
set rec2 [$db last]

If the database is empty then no handle is created and the empty string is returned.
Next we can try to find a certain record in the database by speifying its key. This can
be accomplished with the find method:

set rec [$db find $key]

1.3. DATABASES 9

DB delete

bibtool delete DB
delete a database such that no further operations are possible on them. Cf.
bibtool delete for records.

DB find KEY

bibtool find DB KEY
Return a new record handle which corresponds to the first normal record in
the database DB which has the key KEY . If none is found then the empty
string is returned.

DB first
bibtool first DB
Return a new record handle which corresponds to the first normal record in
the database DB. If the database is empty then the empty string is returned.
DB last

bibtool last DB
Return a new record handle which corresponds to the last normal record in
the database DB. If the database is empty then the empty string is returned.

Table 1.1: Summary of database operations

If no appropriate record is found then the empty string is returned. If you are finished with
the database you should release it. This is done with the delete method:

$db delete

This command tries to free the memory occupied by the database'. This operation invali-
dates the handle the the database and any handles to records therein. This means that any
access with such handles leads to a Tcl error.

One method is present which can be used to check a handle:

$db valid

This command returns 1 if the database is a valid database or record handle. Here is one
place where it is preferable to use the procedural writing:

bibtool valid $db

This works for any string argument $db not only those which have been valid BiBTooL
handles previously.
A summary of the commands discussed in this section can be found in Table 1.1.

!Currently a part of the memory is not really freed but kept internally to be reused by the next database.

10

1. TuE TcL MODULE

bibtool new
create a new database and return a handle to it.
DB preamble
bibtool preamble DB
Return the preamble of the database DB.
DB read ?FILE ...?¢
bibtool read DB ?FILE ...?¢
read the contents of the BIBTEX file FILE into the database DB.
DB record TYPE
bibtool record DB TYPE
Create a new record in the database DB with the type TYPE.
DB sort ?-reverse?

bibtool sort DB ?-reverse?
sort the database DB according to the sort keys. The sort order is ascending
or descending depending on the resource sort.reverse. If the argument -reverse
is given then this order is reversed again.

bibtool sort.format =FORMAT

DB valid

bibtool valid DB
check whether the database handle DB is still valid. A database handle is
invalidated by the delete operation.

DB write FILE ?-append?

bibtool write DB FILE ?-append?
write the contents of the database DB into the file FILE. If the option -
append is given then the contents is appended to the file. If the file is the
empty string then the output is written to stdout.

Table 1.1: Summary of database operations (continued)

1.4. RECORDS AND FIELDS 11

1.4 Records and Fields

Any BiBTooL database consists of a set of records. Currently there are three types of
records which are treated differently. The normal record consists of a set of fields which
have names and values. The following example illustrates such a normal record:

@Manualq{ neugebauer:bibtool,
author = {Gerd Neugebauer},

title = {{BibTool} -- A Tool to Manipulate {\BibTeX} Files},
edition = {2.41},
year = {1997}

}

Currently there are two kinds of special records, namely @preamble and @string records.
These types of records will be discussed later and we will focus for the moment on normal
records.

To navigate through the database the methods forward and backward are provided.
These commands take a record handle as argument and modify it such that it references
the next or previous record respectively. Upon success the record handle is returned. If
there is no next or previous record then the handle is released and the empty string is
returned.

if {[$rec forward]==""} {puts {At end.}}
if {[$rec backward]==""} {puts {At beginning.}}

With these methods we are able to write down a loop which visits all normal records.
We show the loop starting from the first element and approaching to the last one. As an
application we count the number of records in the database:

set count O
for { set rec [$db first] } \

{ $rec 1= "" } \
{ set rec [$rec forward] }\
{

incr count 1

}

Like for database handles we might be interested to get rid of a record handle. For this
purpose the method delete is also provided for records. The deletion of a record handle
invalidates this handle. It does not alter the database in any way. Thus after the following
piece of code the database has not been changed.

set rec [$db first]
$rec delete

If you want to delete a database record you can use the method bibtool remove. This
takes as argument a single record and removes it from the database. Additionally the handle
is invalidated. Thus it can not be used any more.

12 1. THE TcL MODULE

Consider the problem of looping through all records and deleting some of them. For
this purpose we want to assume that we have a boolean function has_to_be_deleted which
decides whether the record given as argument has to be deleted. Then the loop can be
implemented as follows:

for {set rec [$db first]l} \
{[bibtool $rec validll} \
{set rec $next} {
set next [$rec dup]
$next forward
if {[has_to_be_deleted $recl} {$rec remove}
}

In this example we see several new things. First of all we see the method bibtool remove
in action. Next we see the method bibtool valid which can not only be used to check
valid database handles but also valid record handles. It works absolutely analogously and
is no surprise.

The new method which might be surprising is the bibtool dup. This method creates a
new record handle which points to the same record as the handle given as argument. This
is necessary since manipulations on the first handle can now be performed safely because
they do not effect the new handle—except when the record is deleted.

Let us have a look at bibtool dup with another example. Let us assume that the Tcl
variable rec contains a valid record handle for the database db. The following piece of code
creates a Tcl variable new which contains the same record handle as rec:

set new $rec
$rec forward

The bibtool forward operation on rec modifies new as well. Thus new either points to
the next record of the initial one or it is invalidated if no such record exists.

In contrast the following piece of code creates a new handle and stores it in the Tecl
variable new.

set new [$rec dup]
$rec forward

In this example new is not effected by the bibtool forward operation on rec. Even if there
is no next record and rec is invalidated then new still references the initial record.

We have to come back to bibtool valid to complete the picture. Often it is interesting
to know in advance whether the next or previous record exists without duplicating a record
handle and moving just to avoid to invalidate a record handle. For this purpose an additional
argument can be used. If this optional argument to bibtool valid after the record handle
is —next or -previous then the existence of the next resp. previous record is checked in
addition to the validity of the record handle itself.

Thus the following fragment checks whether there are at least two records in the database
$db. This is done by positioning a record at the beginning of the database and checking
the validity of this record and the next record:

1.4. RECORDS AND FIELDS 13

set rec [$db first]
if { [bibtool valid $rec] &&
[bibtool valid $rec -previous] } {
puts {At least two records.}
}

Since we have the possibility to clone a record handle with bibtool dup or allocate new
ones with bibtool first or bibtool last we need method to compare two record handles
to see whether they point to the same record. This function is called bibtool equal. This
function takes two arguments and returns 1 if they are valid and point to the same record.
If they are valid and point to different records then 0 is returned. If either one is invalid
then an error is raised.

Suppose we have a valid record handle stored in the Tcl variable rec for which a next
record exists. We execute the following piece of code:

set new $rec
$rec forward
if {[$rec equal $new]} {print yes}

The last line will always produce the answer yes. This is due to the fact that the Tcl
variables rec and new contain in fact the same record handle. Whereas the following piece
of code will never produce yes since here two independent record handles are involved which
represent successive records in the database.

set new [$rec dup]
$rec forward
if {[$rec equal $new]} {print yes}

As an convenient alias the method bibtool == is provided as an alias for the method
bibtool equal. Thus you can write

if {[$rec == $new]} {print yes}

This line will have the same effect as the last line in the example above. But beware not to
forget the outer brackets. This subtle point is illustrated in the following example:

set new [$rec dup]
if {[$rec == $new]} {print yes} else {print no}
if { $rec == $new } {print yes} else {print no}

According to the explanations given earlier it is not surprising that the first conditional
prints yes since both record handles point to the same record in the database. But they are
in fact two different handles since new is derived from rec with the bibtool dup method.
Thus the textual representation of the handles is different. These textual representations
are compared in the second conditional and turn out not to be equal. As a consequence no

is printed.
This slight distinction might lead to confusion. If you have problems of this kind try to
use equal instead of ==. On the other hand the == notation is very intuitive and you just

have to take care of the context in which it is evaluated by Tcl.

14 1. THE TcL MODULE

RECORD backward

bibtool backward RECORD
Makes RECORD reference to the predecessor of its current value. Return
RECORD upon success. If none is present then delete the record handle and
return the empty string.

RECORD delete

bibtool delete RECORD
Deletes the record handle RECORD. This does not mean that the record
itself is modified. Only the reference to it can not be used any more.

RECORD dup

bibtool dup RECORD
Create a new record handle pointing to the same record as the record handle
RECORD.

RECORD; equal RECORD.

bibtool equal RECORD1 RECORD,
compares the two records. Returns 1 if they point to the same physical
record.

RECORD,; == RECORD,

bibtool == RECORD; RECORD,
the same as equal.

RECORD fields

RECORD remove

bibtool remove RECORD
Remove the record from its database. The handle is invalidated. The record
ceases to exist.

RECORD wvalid ?-next|-previous?

bibtool valid RECORD ?-next|-previous?
check whether the record handle RECORD is still valid. If the optional
argument -previous or -next is given then it is also checked whether the
previous or next record exists. 1 is returned when all tests are successful.
Otherwise 0 is returned.

Table 1.2: Summary of record operations

1.5. RECORD FIELDS 15

1.5 Record Fields

As a database consists of a set of records, any record consists of a set of fields. The fields
are determined by their name. Each name is unique within a record. In addition to the
name any field has a value. BIBTRX itself does not impose much restrictions on the allowed
fields—except that they have some minor syntactic restrictions. Especially there is only
one field which is treated special. This is the crossref field which is used for inheritance.
Before we come to this point we want to present a method how to check for existing and
not existing fields.

The method bibtool fields of a record returns the list of all fields defined in a record.
For instance we can reconsider the BIBTRX record on page 11. Suppose the Tcl variable rec
contains a handle pointing to this record then

fields $rec
would return the following list of fields:
author title edition year

In addition to the normal fields which are stored directly in int record some information
can be acessed as if it was stored in a field. Those pseudo-fields will be discussed later.

To check for the existence or non-existence of a field one would could extract the list
of fields and use the Tcl command lsearch. To avoid the overhead of constructing the
intermediate list the method bibtool missing is provided.

$rec missing publisher

This invocation returns 1 if there is no field with the name —publisher— in the record rec.
Otherwise 0 is returned. As always an error is raised if rec does not contain a valid record
handle.

Now we come to the access methods for field values. We need a way to retrieve the
value and a method to modify the value. The first approach to retrieve a value is using the
method bibtool get. It takes a record handle and a field name and returns the contents
of the field as a string. Let us consider the following example:

@String{ BibTool = {{BibTooll}} }
@Manual{ neugebauer:bibtcl,

title = BibTool # { -- Tcl Programmers Manuall,
crossref = {neugebauer:bibtool},
remark = {Distributed with BibTool}

}

If we want to get the value of the remark field we can use the following method:
$rec get remark

This command returns the contents of the remark field as string. Thus the result is the Tcl
string

16 1. THE TcL MODULE

Distributed with BibTool

The example has been chosen to illustrate some other points as well. In this example a
BIBTEX macro BibTool is defined which contains the BIBTOOL logo protected from case
changes in BIBTEX. This macro is used in the title field with the concatenation operator #.
Now we want to get the value of the title field:

$rec get title

This command yields as a result the string representation of the title field. For this purpose
all macros are replaced by their values and the resultings strings are concatenated. Thus
the result is

{BibTool} -- Tcl Programmers Manual

Note that the outer double quotes or braces are not contained in the result but inner braces
or doulbe quotes are. This is due to the fact that the result is a Tcl string which does not
need additional delimiters.

What would have happend if the macro BibTool would not have been defined? In this
case the result of the macro expansion is the empty string. This empty string would have
been concatenated with the rest yielding the result

—-— Tcl Programmers Manual

Sometimes it is undesirable to get the expanded version of the value. For instance if
you want to take advantage of the BIBTpX macro feature and manipulate things yourself.
For this purpose the optional flag -noexpand can be used. If this flag is given the result
is a Tcl list consisting of strings which contain the components of the value. In this case
the delimiters ({} or "") are part of the elements to distinguish the string constants from
macros. Thus the command

$rec get title -noexpand
leads to a Tcl list with the following two elements:

BibTool
{ - Tcl Programmers Manual}

Next we have to consider the case that we are asking for a field which does not exist in
the record considered. For instance we might ask for the author field:

$rec get author

Since the record does not contain an author field we get the empty string as the result.

BIBTEX has the feature to use the crossref field for inheritance. If a field is missing in
a record but it has a crossref field then the field is sought in the record whose key is the
value of the crossref field as well. This behaviour can be triggered with the optional flag
-all of the method bibtool get:

1.5. RECORD FIELDS 17

$rec get author -all

In our example the record neugebauer:bibtool would be considered in this case. If we
assume that this record—as given on page 11—is also present in the database then the
result is the string

Gerd Neugebauer

In addition to the normal fields some pseudo-fields can be queried. These pseudo-fields
give access to information not really stored as a field but present for a record, a database,
or as a global value in other form. One such a pseudo-field is the citation key. This citation
key can be referenced as $key. Thus the citation key can be retrieved with the following
Tecl construct:

set key [$rec get {$keyl}]

Since the $ is a special character for Tcl it has to be protected to be not evaluated by Tcl.
For our example the record as given on page 11 this command will set the Tcl variable key
to the value

neugebauer:bibtcl

Table 1.3 contains a list of pseudo fields. There are more pseudo fields which can be
found in the BIBTOOL documentation. But the additional pseudo fields can not be considered
really important in the context of Tcl.

Now we come to the opposite operation. We want to set the value of a field to a given
string. For this purpose the method bibtool set is provided. This method takes a field
name and a string or a list of components and sets the value accordingly. Since Tcl does
not distinguish between a list and a string the second case has to be marked with the flag
-concat. The effect of this operation is that the field has the given value afterwards. If the
field did not exist already then this field is added to the record.

Let us consider an example. The simplest desire is to set the value of a field to new
string. Suppose we want to change the value of the remark field then this can be done as
follows:

$rec set remark {Distributed as part of BibTool}

Suppose we want to change the value of the field edition from 2.41 to 2.42. This field is not
present in the record but inherited via a crossref field. Nevertheless this is not honored
by bibtool set. A new field is added to this record containing the new value. The other
record is left unchanged.

Suppose we want to add a field month to the record. This is one place where BIBTEX
macros are indispensible. Instead of using the constant "June" we should always use the
macro jun which is defined by most BIBTX styles. Thus the BIBTEX style designer can
decide to use the full month name, an abbreviation, or even switch to a different language.

If we write

$rec set month jun

18 1. THE TcL MODULE

pseudo field name meaning

$key The citation key.

$sortkey The sort key, i.e. the string used for sorting records.

$source The file the record is read from or the empty string.

$type The type of the record.

$default.key The value of the resource default.key. This string is
used as a key if the key specification failes completely.

$fmt.et.al The value of the resource fmt.et.al. This string is
used to abbreviate unnamed additional authors.

$fmt .name.pre The value of the resource fmt.name.pre. This string

is inserted between the first name and the last name.
$fmt.inter.name The value of the resource fmt . inter.name. This string
is inserted between several last names of one person.
$fmt .name.name The value of the resource fmt.name.name. This string
is inserted between two names.
$fmt.name.title The value of the resource fmt.name.title This string
is inserted between name and title.
$fmt.title.title The value of the resource fmt.title.title. This
string is inserted between different words of the title.
$fmt.key.number The value of the resource fmt .key.number. This string
is inserted between the generated key and the disam-
biguating number.

Table 1.3: Some pseudo fields

then the result would be the string jun and not the BIBTEX macro. Thus we have to use
the flag —concat.

$rec set month jun -concat

This works fine since Tcl does not distinguish the one string jun from the list containing
jun as a single element. Nevertheless the correct way would be to use a construction like
the following one:

$rec set month [list jun] -concat
If we want to add a specific day as well then this can be done like in the following example?
$rec set month [list jun {{"13}}] -concat

Beware, BIBTOOL does not check the structure or the contents of field values. Thus you
have to be careful to use only valid components in order for BIBTEX to work properly.

2Note that this does not allow switching the languages any more so easy. But this is not our topic here.

1.5. RECORD FIELDS

19

bibtool fields RECORD
This command returns a list of field names in RECORD.

RECORD forward

bibtool forward RECORD
Makes RECORD reference to the successor of its current value. Return
RECORD upon success. If none is present then delete the record handle
and return the empty string.

RECORD get FIELD %-noexpand|-all?

bibtool get RECORD FIELD ?-noexpand? ?-all?
This command returns the value of the field FIELD in the record RECORD.
The value returned has all strings expanded. If the option -noexpand is given
then the unexpanded form as it is contained in the database is returned. If
the option -all is given then the inheritance via crossref is honored. I.e. each
missing field is extracted from the crossrefed record (etc). If the field does
not exist then the empty string is returned.

RECORD missing FIELD

bibtool missing RECORD FIELD
This command returns 1 if the field FIELD is missing in the record
RECORD. Otherwise it returns O.

RECORD remove FIELD

bibtool remove RECORD FIELD
Delete the field FIELD from the record RECORD. If it does not exist then
nothing is changed.

RECORD set FIELD VALUE

bibtool set RECORD FIELD VALUE
This command changes the value of the field or pseudo field FIFLD to
VALUE. The field is added if it has not been present already.

Table 1.4: Summary of field operations

20 1. THE TcL MODULE

special format meaning

empty Use the default key.

short Use the last names of authors or editors and the first
relevant word from the title.

long Use the names of authors or editors with initials and
the first relevant word from the title.

new.short Like short but only applied to records without a key.

new.long Like long but only applied to records without a key.

Table 1.5: Special format specifiers

To complete the operations on record fields we need a method to get rid of a certain
field. For this purpose the method bibtool remove can be used. We have seen this method
already on page 11. If a field is given together with the record then this field is removed
from the record. Thus

$rec remove remark

Deletes the remark field from the given record. If the field is not present in the record given
then nothing is done. This can be especially confusing if a field is inherited via a crossref
field. The value can be retrieved with the bibtool get method even when the field has
been removed:

$rec remove author
$rec get author -all

The result of the second command is Gerd Neugebauer even so the field has been deleted
before.

1.6 Key Generation

The generation of new reference keys has been one of the first functionalities present in BiB
TooL. The keys are generated according to a specification described in detail in the BiB
TooL documentation. Thus it is not repeated here.

The format specification can be specified with a resource command (see section 1.15.
For convenience the command bibtool key.format is provided. It can be used to set the
key format. It is important to construct the argument such that the string which arrives
in the resource command is constructed properly. This means that you have to be careful
which characters might need quoting. The easiest way is to enclose the complete format
with braces. Thus nearly everything works as expected.

Usually the function bibtool key.format adds the given format specification as a fur-
ther alternative after the specification already present. Thus it is possible to iteratively
construct the specification by giving cases in decreasing order. This exception to this rule

1.6. KEY GENERATION 21

bibtool key RECORD
This command creates a new reference key for RECORD according to the
specification in effect and stores it in RECORD. This string is returned.

bibtool key DB
This command creates a new reference key for each record in DB according
to the specification in effect. The empty string is returned.

bibtool key.format =FORMAT
bibtool ignored.word =WORD

Table 1.6: Summary of key generation operations

are the special specifications shown in Table 1.5. Those special specifiers are not added but
they entirely replace the old values. Thus the following instruction can be used to clear the
old value before adding new alternatives:

bibtool key.format {empty}

Two practical schemes are provided as convenient abbreviations, namely short and long.
They use the names of authors or editors of a record together with the first relevant word
of the title.

bibtool key.format {short}

The relevant word is determined by skipping over all words which are added to the list
of ignored words with bibtool ignored.word. This list usually contains articles from
different languages. and is initialized at compile time.

Now we are ready to generate a new key. This cam be done either globally by applying
the function bibtool key to a database. In this case the new key is generated for each
record in this database.

bibtool key $db

The alternative is to apply they key generation algorithm to a single record. In this
case only the key of this record is generated. As a side effect the new key of this record is
returned.

set key [bibtool key $rec]
puts $key

To be completed.

22 1. THE TcL MODULE

1.7 BIBTpX Macros

In section 1.5 we have already seen BIBTpX macros and their expansion when the value of a
field is retrieved. Since it is possible to get the value of a field in unexpanded form we need
a way to get our hands on the value of a macro. For this purpose the database method
bibtool string get is provided.

$db string get BibTool

returns the value of the string BibTool as Tcl string. If this macro is not defined then
the empty string is returned. The same remarks as for the values of fields hold for BIBTEX
macros as well. They can be defined in terms of other macros with the concatenation
operation (#). If you want to get the unexpanded definition the you have to use the flag
-noexpand. In this case the value returned is a list of components to be concatenated. In
this case the string delimters are included to allow you to distinguish strings—which are
enclosed in delimiters—from macros.

The reverse operation to accessing a macro value is the definition of one. Analogeously
to field values the method bibtool string set can be used. This method takes a macro
name and a string and arranges that the macro expands to the string given:

$db string _set BibTool {{\sffamily BibTooll}}

To be completed.

$db string _set BibTool [list Bib Tool] -concat

If the value of a macro is the empty string we can not distinguish the case that the
macro is not defined at all from the case that the macro is defined and has the empty string
as its value. To allow this differtiation the method bibtool string missing can be used:

$db string missing BibTool

This method returns 1 if the macro BibTool is not defined and 0 otherwise. Thus we would
get 0 in our example.

Since we are now able to distinguish a not existing macro from an empty macro we need
a method to get rid of a macro completely. This can be accomplished with the method
bibtool string remove:

$db string remove BibTool

After this operation the macro BibTool is missing. If the given macro has not been defined
in the database then nothing will be done. Otherwise the macro definition is removed from
the database.

Finally we might be interested to get a complete list of all macros defined for a database.
For this purpose the method bibtool strings can be used which returns the names of all
macros as a Tcl list:

$db strings

1.7. BIBTEX MACROS

DB string_get MACRO ?-global?

bibtool string_get DB MACRO %-global?
This command retieves the value of the macro MACRO from the database
DB or the global set of macros. If the flag -global is given then only the
global maros are considered.

DB string_missing MACRO ?-global?

bibtool string missing DB MACRO ?-global?
This tests whether the macro MACRO is defined in the database DB or the
global macros. If the flag -global is given then only the global macros are
considered.

DB string_ remove MACRO %-global?

bibtool string remove DB MACRO ?-global?
Remove the definition of the macro MACRO from the database DB. If the
flag -global is given then the global macros are considered only.

DB string set MACRO VALUE ?-global?

bibtool string set DB MACRO VALUE ?-global?
This command assigns the new value VALUF to the macro MACRO in the
database DB. If the flag -global is given then the change is not made local
to the database but in the global set of macros.

Table 1.7: Summary of macro operations

24 1. THE TcL MODULE

1.8 Embedding (INTEX Macros

$db preamble

To be completed.

1.9 DeTgXing

When you are dealing with (& TEX commands it is pretty easy to get rid of macros. This
cam be done with a regsub command wich matches the macro names and replaces them by
the empty string. Suppose the Tcl variable str contains a string which should be deTEXed.

regsub -all {\\(["a-zA-Z]|[a-zA-Z]+)} $str {} str

After the invocation of this command the Tcl variable str has all macro names stripped.
For instance the string

M{\"u}1ller GmbH{\&}Co.
is translated to
Muller GmbH{}Co.

Even if the first substitution might be acceptable for non-German speaking people then the
second replancement is by far too aggressive. On the other side we could just replace the
backslashes. This can be done with a Tcl command like

regsub -all {\\} $str {} str
results in
M"uller GmbH{&}Co.

This leaves the & but also the crippled ". Th eother problem are the arguments. They
require matching braces. this can not be expressed with regular expressions. Thus BiB
TooL provides a command to define TEX macros and expand in a string them.

The command bibtool tex define can be used to define TEX macros which should be
used for expansion lateron. For our previous example we would have needed the following
definitions:

bibtool tex define {\&=&}
bibtool tex define {\"[1]=#1le}

The argument of bibtool tex define is one string containing a control sequence on the
left side optionally followed by the number of arguments in brackets. It is completed by
a equality sign and the replacement text. If no arguments are given then the macro is
assumed to have no arguments.

In the example above the first definition makes a macro \& without arguments and
the second definition makes \" a macro with one argment. Like in TEX the sequence #n
represents the n® argument.3

3Note that in German ae is the representation of & without the umlaut accent.

1.9. DETEXING 25

bibtool tex define mac?/n/?=repl
Define the TEX macro or active character mac. If [n/ is given then n must be
a single digit which is interpreted as the muber of arguments of the macro.
The replacement text is repl. In ttthe replacement text #n represents the
n" macro argument.

bibtool tex expand STRING
This command returns the string which results from STRING by replacing
each defined macro or active character and the optional arguments by it’s
replacement text.

bibtool tex reset
This command deletes all macros and active characters previously defined.

Table 1.8: Summary of operations on TEX strings

There is one additional case which has not been described already. If you are a little
bit familiar with TEX you might know that you can make a character active and assign a
macro to this character. Thus you can omit the leading backslash.

This case is coverd in bibtool tex define as well. If the macro name consists of a
single character only which is not the backslash then this character is made active then the
remainder is used to assign a macro to it.

As a side note I want to note that the reading and macro expansion apparatus of TEX is
internally imitated to a certain degree. This included catagory codes. But those catagory
codes can (currently) not be modified except by making a character active as described
above.

Initially no macros are defined in BIBTooL. This can also be reached with the following
command:

bibtool tex reset

After this command has been executed no macros are defined an no characters are active.

But now we want to come to the point where we make use of thsoe definitions. This
is achieved with the caommand bibtool tex expand. All defined macros are replaced
by their replacement text. Undefined macros are left unchanged. Thus we could use the
following invocation:

set str [bibtool tex expand $str]

With the definitions given above and the value of the Tcl variable str given in the example
above we get as a result the following new value in the Tcl variable str:

M{ue}ller GmbH{&}Co.

Now we could savely strip the braces (and possibly remaining TEX macros with the method
described above.

26 1. THE TcL MODULE

1.10 Name Formatting

bibtool name list

To be completed.

bibtool name count

To be completed.

bibtool name format $format $name

To be completed.

1.11 Formatting

In principal Tcl provides everything neccessary to extract the contents of records and create
a formatted string which is stored in a field. Since BIBTOOL started as a tool to autmatically
create reference keys for BIBTRX databases it has a powerful (and fast) mechanism to extract
information from a record and format it according to a given specification. For a full
description we refer to [Neu97].

The Tcl interface provides not the full functionality as a separate procedure. Instead the
basic operations are provided only. The procedure bibtool format takes a record and a
format specification and usually returnes a string representation of the format where certain
constructions are expanded.

To start with the easy case we can state, that any character except the percent sign
% is passed unchanged from the fromat to the result. The percent sign acts as an escape
character which starts an extended command. To produce a single percent sign in the
output you have to give two percent signs in the format specifier:

$rec format {123%%abc}

This instruction returns 123%abc.

The percent sign starts a format specifier which is similar to a format specifier of the Tcl
format instruction. But instead of giving arbitrary arguments to be formatted in addition
to the format specifier, the format contains the names of fields in parentheses. The values
of those fields — or pseudo-fields — are formatted according to the format specifier. The
general form is as follows:

% sign pre.post spec (field)

We will explain the meaning of the different parts from right to left. field is the name
of a field or pseudo-field. The value of this field is formatted according to the remaining
parts of the format specifier.

1.12. ANALYZING A IATEX AUX FILE 27

spec is a single letter which determines the main functionality. Details can be found
in Table 1.9. For instance the letter n denotes name formatting. The other parts of the
format specifier are optional and influence the exact operation of the formatting. In any
case characters that are not allowed are silently ignored and TEX macros are expanded.

In general spe can be preceeded by the qualifier #. But this is not meaningful in the
context of Tcl since it always returns the empty string.

Let us finally reconsider our example record from page 11. For this record $rec we get
the following results:

$rec format "¥n(author)" — Neugebauer
$rec format "J%+.3n(author)" — NEU

$rec format "J%-.2n(author)" — ne

$rec format "JYd(edition)" — 2

$rec format "JYd(edition)" — 2

$rec format "J¥+3.2d(edition)" +— 041

$rec format "%2d(year)" — 97

$rec format "JY-w(title)" — bibtool

1.12 Analyzing a BTEX aux File

BIBTEX uses inormation from the auxiliary files created during a IXTEX run. If you want
to write a program to extract the records used in a document or if you want to write
a replacement for BIBTRX you need a method to get the information from the aux file.
Since the information might be distributed in several aux files if the ITEX document uses
\include to combine several subdocuments.

Thus it is rather handsome to have a method which collects th required information.
This is done by the functions bibtool aux and bibtool aux -db.

The function bibtool aux returns a list containing all citations mentioned in the aux
file. One key is traeted special. If the key * is used then all records in the database should
be used. In TEX this is accomplished by the macro invocation

\nocite{*}

Thus if a * is recognized then the list contains only one element namely this star. Otherwise
you get the complete list with

bibtool aux $auxfile

If the document contains references to neugebauer:bibtool and neugebauer:bibtcl then
the following Tcl list is returned:

neugebauer:bibtool neugebauer:bibtcl

The other information which can be extracted from an aux file is the list of databases
to be used. This is done with the function bibtool aux databases. It takes the name of
an aux file and returns the list of databases mentioned there:

bibtool aux $auxfile -db

28 1. THE TcL MODULE

More than one databases can be used in one document by separating them by a comma (,).
In a KTEX document this might look at follows:

\bibliography{dbl,db2,db3}
In this case the function bibtool aux -db returnes the following list
dbl db2 db3

If the aux file given to either function does not exist or can not be read then a Tcl
error is raised. Thus you should always use catch and implement your own error recovery
routine.

1.13 Recognized Entry Types

In BIBTX any record has a certain type — the entry type. BIBTOOL maintains a list of known
entry types and complains if a record is read which has an unknown entry type. Such records
are not stored in the database. Usually the entry types of the standard BIBTRX styles are
already known to BIBToOOL. But if you are using some other kind of entry type then this has
to be declared in BiBTooL. This can be done with the resource command new.entry.type.

bibtool new.entry.type={Law}

Note that no spaces are allowed around the equality sign and that the braces are necce-
sary to preserve the case of the letters. This is useful since BIBTEX and BIBTOOL normally
ignore the case of letters. But the string given as entry type is not only used to determine
whether or not a record can be stored in the database but also as the printing representation
of the entry type. Thus in our example it would be possible to have records of the following
kind

@law{ ... }
@Law{ ... }
@LAW{ ... }

All of those would be accepted and be assigned the same entry type. All of them would
be printed like the second example.

As a sidemark you should note that new.entry.type can also be used to redefine the
printing representation of existing entry types. Whenever an existing entry type is encoun-
tered as argument then just this modification is performed.

For a Tcl program it might be necessary to know which entry types are defined in BIB
TooL. Thus it can present a menu to the user to select the appropriate type. For this
purpose the instruction bibtool types is provided. This can be seen in the following
fragment of a program where $menu is assumed to contain the path to a previously created
menu.

1.14. THE VERSION NUMBER 29

foreach type [bibtool types] {

$menu add checkbutton \
-variable entry_type \
-value $type \

-label $type
}

If you run this example you will see that the menu contains normal entry types only.
Currently the following entry types are considered special:

COMMENT ALIAS
PREAMBLE INCLUDE
STRING MODIFY

The three sepcial entry types to the left are well known. The entry types to the right
are likely to be introduced in BIBTRX 1.0.

If you want to get a complete list of all entry types you can give the optional argument
-all to the bibtool types command. Then the special entry types are returned in addition
to the normal entry types.

1.14 The Version Number

Finally, BibTcl provides a means to get hold of the version number. This can be useful
to give this information to the user or to see whether a new enough version is used when
older versions might miss some features. I would like to provide means to test for features
directly. But until I have descided how this will be implemented the version is the only
indicator which can be used.

The version number is returned by the function bibtool version. The return value
consists of a number major.minor where mayor is the major version number and minor is
the minor version number. Additionally some additions may be returned. Thus

bibtool version

may return 2.41 but a value of 2.41-a is also a legal value—even so it is not very likely
that you get your hands on such a release.

1.15 Using BiBTooL Resources

Nearly all resource commands of BIBTOOL are accessible through the bibtool command. If
nothing else fits then the argument of the bibtool command is passed on to the resource
evaluator. Since this is done for each single argument this means that special characters
have to be protected in a way to ensure that they arrive safely there.

For instance the resource evaluator treats the equality sign as optional. Separating
spaces are enough. Thus the following two commands have the same effect:

bibtool quiet=on
bibtool {quiet on}

30 1. TuE TcL MODULE

Note however that the second form requires the braces to protect the embedded space.
B1BToOOL resources can also be queried. Since not each resource command corresponds
to a single variable not all resource commands can be used to query values. At least each
resource command which corresponds to a string, a boolean, or a numeric value can be
queried.
Consider the resource instruction from above quiet=on. This instructions sets the
boolean resource quiet. This variable can be queried with

bibtool quiet

This Tecl command returns the value of the resource variable. Booleans are returned as 0
or 1 to conform to the Tcl conventions for booleans.

To be completed.

1.15. UsiNnG BisTooL RESOURCES

31

format

meaning

%sign pre.post d(field)

%hsign pre.post D(field)

%sign pre.post n(field)

%sign pre.post N(field)
%hsign pre.post p(field)

%hsign pre s (field)

%hsign pre.post t (field)

%hsign pre.post T (field)
%sign pre.post w(field)
%hsign pre.post W(field)

The postt” number is extracted from the field — post
defaults to 1. pre digits starting from the right are
returned. If sign is + then missing digit are replaced
by 0. If sign is = and no number is found then 0 is
returned instead of the empty string.

Acts like d but does not truncate longer numbers to pre
digits.

The field is treated as a list of names. Last names are
extracted. At most pre names are used and remaining
names are indicated. At most post letters from each
name are shown. If sign is + then all letters are trans-
lated to upper case. If sign is - then all letters are
translated to lower case.

Acts like n but appends the initials as well.

Use the name format pre to format at most post names
accordingly. Translate the case according to the sign.
Use at most pre characters. Translate the case accord-
ing to the sign.

Use a list of words. The words in the ignored.word list
are not considered. At most pre words are shown. At
most post letters from each word are used. Translate
the case according to the sign. fmt.titlt.title is
inserted between words.

Acts like t but does not ignore words.

Acts like t but inserts nothing between words.

Acts like T but inserts nothing between words.

bibtool aux FILE

Table 1.9: Format specifiers

Reads the given IATEX aux file and collects a list of all citations. If one
citation is * then this * is returned. Otherwise a list of all citations found is
returned. If the ATEX document has used \include then the respective aux
files are also considered.

bibtool aux FILE -db

Reads the given ITEX aux file and collects a list of all databases requested.
If the I TEX document has used \include then the respective aux files are

also considered.

Table 1.10: Summary of operations on aux files

32 1. THE TcL MODULE

bibtool types ?-all?
Return the list of defined entry types. Normally all normal entry types are
returned. If the option -all is given then the special entry types are delivered
as well. The entry types are returned in some internal order. They are not
sorted.

bibtool version
Return the version number of BIBTOOL.

Table 1.11: Summary of misc operations

bibtool RSC_VARIABLE
Returns the contents of the resource variable RSC_-VARIABLE if this vari-
able is available. Strings, booleans, and numerics are available.

bibtool RSC ...
Passes the resource command RSC to the resource evaluator of BIBTOOL.

Each single argument is treated as a separate resource command.

Table 1.12: Summary of resource operations

Installation

This section is the last one since it is required only once. It describes the installation of the
dynamic loadable library.

2.1 UNIX

e [suppose that you have unpacked BIBTOOL. You should be in the main directory
containing the directory BibTcl.

e Configure and compile BIBTOOL—if not already done. See the files README and
INSTALL there. The object files must be present in this directory. (In a next release
a single library will be assembled and the C API might be documented.)

e Find the file tclConfig.sh. This file is created during the configuration of Tcl and
installed with it. One place to search for it is in the directory /usr/local/lib or wherever
Tecl has installed its libraries. Copy this file into the directory BibTcl.

e Go to the directory BibTcl and run
./configure
This will have a look at your system and find out which properties it has. From this
information a Makefile is created.

e Run
make LIBDIR=/usr/local/lib/BibTool
where the path on the right side of the = should point to the installed BIBTOOL.

This step should produce the shared library and a small Tcl loader bibtool.tcl which
is independent of the architecture. In fact it figures out the architecture and uses the
appropriate installed version.

33

34

2. INSTALLATION

e Run
make install LIBDIR=/usr/local/lib/BibTool

This creates a subdirectory of LIBDIR according to the OS used. This directory
contains the shared library as well as the loader script. The loader script can be freely
copied to any other place. The shared library must stay in this directory since the
location is compiled into the loader script.

Index

bibtool
o 14
RSC 32
RSC_VARIABLE 32
AUX ettt e et 31
backward i 14
delete ... 9, 14
dup .o 14
equal ... 14
flelds ..oovvni 19
find ... 9
first .o 9
forward o 19
get 19
ignored.word ool 21
KeY 21
key.format oL 21
last oo 9
missing ...l 19
TIEW oottt ettt et 10
preamble, 10
read ... 10
TECOTA ettt 10
TEIMOVE . .vtttttiiiiiaaeeeeeeeennn 14, 19
set .. 19
SOTE w ettt 10
sort.format oL 10
string_getol 23
string_missing oo 23
string_remove ool 23
stringset ool 23
tex define i, 25
tex expand ...l 25
texresetl 25
types ... 32
valid ... 10, 14
VEISION ... 32
WIIEE .« 10

36

INDEX

Bibliography

[Neu97] Gerd Neugebauer. BibTool — A Tool to Manipulate BIBTRX Files, 2.41 edition,
1997.

[Ous94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison Wesley Publishing Company,
Reading, Mass., 1994.

[Wel95] Brent B. Welch. Practical Programming in Tecl and Tk. Prentice Hall PTR, Upper
Saddle River, New Jersey, 1995.

37

