Lollipop Unwrapped

Victor Eijkhout

A manual for the Lollipop TEX format,
last updated 18 October 1992

1 Contents

Chapter 1

Contents

1.1 Regular sections

1 Contents i
1.1 Regular sections
1.2 Implementer’s notes i
1.3 All of the options
1.4 All of the commands v
2 Preliminaries i
2.1 What is Lollipop? wi
2.2 But is is compatible? wvi
2.3 How to Use Lollipop i
2.4 Lollipop Files wii
2.5 Processing a Lollipop file wii
2.6 The errors of Lollipop/ known bugs wiii
2.7 About this manual wviii
2.8 The most boring section in this manual iz
3 The structure of Lollipop 1
3.1 Generic Constructs 1
4 Headings &
4.1 Examples &
5 Lists &
5.1 Label alignment &
5.2 List indentation 9
5.3 Label style 9
5.4 Label width 9
5.5 Description lists 9
5.6 Suspended lists 10
5.7 Ttem counter manipulation 11
5.8 List titles and list tails 171
5.9 Between the items 12
5.10 Indentation in lists 12
6 Text Blocks 13
6.1 The textxtoption 13
6.2 More examples 14
7 output 18
7.1 Page dimensions 18
7.2 Positioning the page on the paper 19
7.3 Page head, foot, text 19
7.4 The page number 22
7.5 Page tests 22

ii

10

11

12

13

Implementer’s notes

7.6 Running heads / footers 23
7.7 Alternating page grids 26

7.8 Additional User Control 27
Referencing 28

8.1 What and how do you reference? 28
8.2 The shape of the reference 29
8.3 Local references 31

8.4 Bibliography citations 381
External Files 33

9.1 Declaring and loading an external file 33
9.2 Generating external files 33
9.3 Formatting an external file 34
9.4 Example 35

Options 37

10.1 Titles 37

10.2 Counters 39

10.3 Chunks of text 40

10.4 Labels 438

10.5 Break before / after 43

10.6 Indentation 43

10.7 Embedded constructs 43

10.8 Implicit closing 44

10.9 Testing 44

Commands 45

11.1 Counters 45

11.2 Font selection 48

11.3 Baselineskip 51

11.4 Indentation Control 52

11.5 Margins 53

11.6 White Space 54

11.7 Distances 54

11.8 Tests 54

11.9 Goodies 55

Tracing 56

12.1 Do you really want to see this? 56
The style definition for this book 57

1.2 Implementer’s notes

I-7 Defining Generic Constructs 2

I-2 Ttems Processing 3

I-8 Options 38

I-4 Page break prevention after titles 7

I-5 The environment in generic constructs 14
I-6 Implicit closing 17

1.2

iii

1 Contents

-7 Marks 25

I-8 Delimiting the title 37

I-9 Is there a title? 38

I-10 Giving a macro a title 38

I-11 Storing the title 39

I-12 The counter name 47

I-18 Allocation and representation 47
I-14 Governing and resetting 48

I-15 Dummy commands 55

1.3 All of the options

(You know, this section and the next look much better if you sort the
manual.oix and manual.cix files before you format the document the
last time. Do put a lines

\Writeopindex:no
\Writecsindex:on

somewhere in the top of the manual.tex file in order to prevent
overwriting of this file after you've sorted it.)

title 5 indentafter 5 item 8 indentation 9

itemsign 9 itemCounter 9 labeloverflow 9

description 10 text 11 breakbetween 12 whitebetween 12
indentinside 12 text 13 noimplicitclose 17 height 19
text 19 textband 19 band 20 pagerule 22 topskip 22
PageCounter 22 1label 29 external 34 file 34 item 34
FooLabel 34 title 37 HasTitle 37 counter 39
HasCounter 39 block 40 1line 41 textcolumn 42

label 43 breakbefore 43 breakafter 43 indentafter 43
indentinside 43 indentfirst 43 embedded 43
noimplicitclose 44

1.4 All of the commands

\DefineHeading 5 \DefineList 8 \SetItemSign 9
\SetItemCounterRepresentation 9 \PopIndentLevel 10
\DefineTextBlock 13 \DefinePageGrid 18 \Height 18
\PageCounter 22 \FirstPlaced 23 \LastPlaced 23
\PreviousPlaced 23 \EjectPage 27 \ToRecto 27
\ToVerso 27 \NoPages 27 \PagesOut 27
\CurrentShipout 27 \CountSheetsno 27 \SuspendOutput 27
\ResumeQutput 27 \label 29 \LocalReferences 31
\InputFile 31 \DefineExternalFile 33
\WriteFoo 33 \WriteExtern 33 \LoadExternalFile 33
iv \DefineExternalltem 34 \FooLabel 34 \FooTitle 37

All of the commands 1.4

\> 44 \>] 44 \FooCounter 45 \CounterRepresentation 45
\NewCounter 46 \GoverningCounter 46 \NewCounter 46
\label 46 \NewCounter 47 \Typeface 48 \Style 48
\PointSize 49 \SetFont 49 \PointSizelLarger 49
\PointSizeSmaller 49 \script 50 \scriptscript 50
\normal 50 \DefineTypeface 50 \SaveFont 51
\RestoreFont 51 \tt 51 \AlwaysIndent 52 \Indent 52
\basicindent 52 \LevelIndent 53 \PushIndentLevel 53
\PopIndentLevel 53 \rightmarginstretch 53
\leftmarginstretch 53 \hwhite 54 \vwhite 54 \white 54
\fillup 54 \Distance 54 \SaveAlloc 55 \RestoreAlloc 55
\NewDummy 55

2 Preliminaries

vi

Chapter 2

Preliminaries

2.1 What is Lollipop?

Lollipop is ‘TEX made easy’. Lollipop is a macro package that functions
as a toolbox for writing TEX macros. It was my intention to make
macro writing so easy that implementing a fully new layout in TEX
would become a matter of less than an hour for an average document,
and that it would be a task that could be accomplished by someone
with only a very basic training in TEX programming.

Lollipop is an attempt to make structured text formatting
available for environments where previously only wysiwyg packages
could be used because adapting the layout is so much more easy with
them than with traditional TEX macro packages.

2.2 But is is compatible?

Lollipop, like IATEX, is not compatible with plain TEX. I don’t consider
this a real problem. Lollipop is meant to be used for different
applications that those for which plain TEX, or IATEX for that matter,
are used. The typical Lollipop user has only herself to be concerned
with.

2.8 How to Use Lollipop

The following files comprise the Lollipop format:

fonts.tex lists.tex

define.tex heading.tex lollipop.tex
text.tex

document .tex lolplain.tex output.tex

tools.tex
and it is assumed that you have a file called hyphen.tex with
hyphenation patters for the language you are using.

Run IniTEX on lollipop.tex. This gives, depending on your
operating system, output that looks something like this:

> initex lollipop

This is TeX, C Version 3.0 (INITEX)

(lollipop.tex (lolplain.tex (hyphen.tex)) (tools.tex)

(define.tex) (fonts.tex)

(text.tex) (document.tex) (heading.tex) (output.tex)

(lists.tex))

Processing a Lollipop file

Beginning to dump on file lollipop.fmt
(format=lollipop 92.5.30)

3102 strings of total length 41719

27016 memory locations dumped; current usage is

142426543

2076 multiletter control sequences

\font\nullfont=nullfont

2706 words of font info for 12 preloaded fonts

17 hyphenation exceptions

Hyphenation trie of length 6075 has 181 ops out of

500

181 for language O

No pages of output.

Transcript written on lollipop.log.
As a result of this, you get a file lollipop.fmt that contains the
Lollipop format. This has to be loaded in TEX everytime you want to
format a file. To process a file, say test.tex, with Lollipop you then
type:

> tex test &lollipop
or something like that, depending on local conditions.

2.4 Lollipop Files

Any Lollipop document has to have a \Start and \Stop command.
Before the \Start there can be style definition commands, but no text.

Implementor’s Note
Before the \Start command, \everypar contains an error message. The
start command installs the default value for \everypar.

2.5 Processing a Lollipop file

Files that you make to be processed with Lollipop contain of course the
input text, but they also have to contain the design macros that
determine the layout. There are two possibilities for these design
macros:

° You can simply put them in the same file, either in the
beginning or wherever they are first needed, or
. You can put the layout definition in a separate file and make a

new format out of that. For instance, if the layout definition of a
book is complicated, processing it each time will be slow, so you
might put it in a file bookstyle.tex. IniTEX can load this
definition on top of the Lollipop format:

2.5

vii

2 Preliminaries

viii

> tex bookstyle &lollipop

*\dump
This gives you a format bookstyle.fmt, which you can use by
typing

> tex book &bookstyle

Also in the case where the style designer and the style user are on
different levels of TpXpertise it may be wise to hide the style definition
from the user by making only a format available.

Implementor’s Note
The file 1ollipop.tex contains a \dump command. This is not the way
plain TEX and IATEX operate, but | like this better.

2.6 The errors of Lollipop/ known bugs

Since Lollipop is an order of magnitude more powerful (and hence
complicated) than formats such as IATEX, its error messages can also
be an order of magnitude more cryptic. Fortunately, Lollipop is also
quite a bit better than existing formats at catching potential errors.
Typos in a style definition will usually lead to warning messages, and
also during run time Lollipop is able to track down ommisions.

In addition, you can switch on various trace modes to get
more detailed information about Lollipop’s thought processes. See
chapter 12.

These are the known bugs in Lollipop at the moment.

1 Local references have been insufficiently tested, and the code
definitely is buggy.
2 The ‘firstpage’ test in the page grids does not work.

3 Titles get written to the aux file with double spaces. This
shouldn’t cause any problem, but it has to be fixed.

4 Rules in page grids get white space around them.

5 There probably is a reason for all the underfull boxes in
formatting the output chapter of this manual.

6 External items shouldn’t declare \FooTitle or \FooCounter.

2.7 About this manual

This manual is an unashamed hodge-podge. Apart from the regular
sections (the ones you are supposed to read) there are implementor’s
sections, which you read only at your peril. They document the
internals of Lollipop in all their unscrutability.

This manual consists of a main file manual .tex, and the
following input files:

titlepag.tex prelim.tex struct.tex head.tex list.tex

The most boring section in this manual

out.tex extern.tex opt.tex comm.tex trace.tex

appendix.tex
and the style definition file mandefs. tex.

In addition, you need comment.tex which is used to format this
manual, but it is not really a part of Lollipop.

If you format this manual (which you’ll have to do three times
to get the page numbering and the table of contents straight) you’ll
notice something strange. The file example.tex is read in many, many
times. This is because this manual formats its examples along the way,
first writing them out, and then reading them in to show both their
code and their output. This way it is guaranteed that the examples in
the manual will always work.

As a result of formatting this manual you will wind up with,
apart from the usual dvi file, with manual files with extensions aux,
toc, and imp; oix and cix for indexes of options and commands, and
tct, filetix which are for the examples.

This manual needs quite some resources: here’s what TEX told
me it needed.

Here is how much of TeX’s memory you used:

1259 strings out of 4808

14894 string characters out of 21967

62606 words of memory out of 65536

3042 multiletter control sequences out of 10000
19 hyphenation exceptions out of 307
22i,4n,24p,225b,502s stack positions out of
200i,60n,60p,5000b,2000s

This should not need a ‘Big TEX’, but it comes close.

2.8 The most boring section in this manual
There are a few things about Lollipop that I want to be clear about.

2.8.1 I am going to hurt you and I am not sorry

In the secret handbook for the software industry it says that the final
test phase of a product consists of putting it in stores and having
innocent suckers pay good money for it. (You guessed it, this is the
disclaimer section.) So let me just say that Lollipop is probably good
for nothing, at least, I don’t claim it is.

2.8.2 Get a Lollipop, give one away

Lollipop is free software. You may copy it for your own purposes, or
give away copies. However, you may not ask money for it, other than
reasonable expenses such as for copying discs or manuals. If you make

2.8

ix

2 Preliminaries

changes to Lollipop these should be clearly indicated as such if you give
away copies.

The easiest way to get the current copy of Lollipop is to ftp it
from cs.utk.edu from the directory /pub/eijkhout/tex where it is
stored as lollipop.shar.Z. My apologies for how Unix slanted this is.

2.8.83 The status of Lollipop

Lollipop is still under development. Although I will try not to make
any drastic changes in the user interface (this says nothing about the
internals!) I really cannot guarantee anything. However, I do listen to
complaints and suggestions.
If you have suggestions or complaints about the useability

of Lollipop or the implementation, feel free to contact me at
\eijkhout@cs.utk.edu on the Internet. Or send snail mail to:

Victor Eijkhout

Department of Computer Science

University of Tennessee

107 Ayres Hall

Knoxville TN 37996

USA

2.8.4 The wish list

Lollipop is not quite perfect. Here’s a list of things that I am going to
be adding in the near future. If you want to add items to this list, just
mail me.

Raggedbottom should really, really be added. Soon!
Capitalization and initial capping of titles. If a title appears in
mixed case, it should be possible to have it in all uppercase in
running heads.

A better multi-column mode.

Interface to BibTEX.

Inserts, in particular footnotes. At the moment floating figures
are entirely lacking. (As a matter of fact, the plain TEX macros
are availble, but I'm not telling that.)

° A tabular mode. Personally I always felt \halign to be more
than sufficient, but some people seem to think otherwise.

. Maths constructs. Some things in the \egalign vein would be
nice.

° Adaptive list indents. Calculate the maximum needed

indentation, write that to the .aux file, and read it in next time.
Also do this globally, and have the possibility to have this spill
over into the \parindent and such.
° A ‘nomarks’ option to prevent wasting two token lists. For the
x expert designer?

The most boring section in this manual 2.8

2.8.5 A bit of history

The Lollipop format was begun in late 1989 to typeset my Ph.D. thesis,
‘Vectorizable and Parallelizable Preconditioners for the Conjugate
Gradient Method'. At that time I was using TEX on an Atari 1040ST.
Loading the style definition for the thesis took about two minutes.
Lollipop was heavily augmented in late 1991 to typeset my book ‘TgX
by Topic’, for which I used Sun 3 and Sun 4 computers. Writing this
manual brought Lollipop to its present state. At present I am using
Lightning Textures on a Macintosh Powerbook 145.

xi

Generic Constructs

Chapter 3
The structure of Lollipop

Lollipop provides tools for realizing the style or layout of a document.
Some of these tools are macros ready to be used by the end user; they
concern for instance selection of fonts. Others, the ‘generic constructs’,
are for the style designer so that she can use them to program the
macros for the user.

3.1 Generic Constructs

There are five ‘generic constructs’: headings, lists, text blocks, page
grids, and external items. For each construct type there is a defining
command, for instance \DefineHeading which is followed a list of
‘options’, terminated by the word ‘Stop’.

Options (possibly with values) have to be separated by a space
or a line end; the keyword Stop has to be followed by a space or a line
end. Options may have zero, one or two values; if there are values, then
the first one is separated from the option by a colon, the second is
separated from the first by an equals sign.

\DefineFoo:Bar optiona optionb optionc:value

optiond:valuea=valueb optione

optionf Stop
As a result of this definition, a command \Bar is created. If the Foo
construct was a List or TextBlock, an additional command \BarStop
is created.

This command can then be used in the ordinary way, for
instance after \DefineHeading:Foo you can type

\Foo The title
and after \DefineList:Foo you can type

\Foo

\item One item

\item And another

\FooStop
Options are mostly used to specify how a construct will look. Some
options, for instance title, indicate material that will appear on
the page. Other options are interpreted as commands, for instance
IndentAfter:yes in the definition of a heading indicates that the first
paragrah after such a heading will indent.

In addition to keywords that only exist as options, commands
can be used as options. Also, single characters are accepted as options.
For instance a definition of a subsection heading can contain:

\DefineHeading:SubSection

3.1

3 The structure of Lollipop

[...]
SectionCounter . SubSectionCounter
[...] Stop

(Here and later the [...] will denote arbitrary omitted text.)
This definition contains the commands \SectionCounter and
\SubSectionCounter and the . character.

If a number of options appears together in a number of
constructs it is convenient to have an abbreviation for them. This can
be done as follows. The options that appear together are given a
common name

\OptionsMacro:baz=optiona optionb:value optionc

Stop
and this name is then used as

macro:baz
in the option list wherever the options are needed. This is for instance
a good way of specifying identical white space around all sorts of
constructs without duplicating the typing each time.

Implementor’s Note

I-1 Defining Generic Constructs

The \Define... commands are not defined explicitly, instead they are
generated by a call such as
\@GenericConstruct{Heading}
Full definition:
\def\@GenericConstruct#i{
to be used as \@GenericConstruct{Foo}
\append@to@list{@gencons}{\\#1;}
book keeping of existing generic constructs;
\csarg\newtoks{#1@defaults}
\csn #l@defaults\ecs{}
default commands to be executed whenever an instance of this construct
is defined;
\csarg\def{add@#10default}##1
{\append@to@list{#10defaults}{##1}}
the command \add@Foo@default to add defaults for this construct;
\Install@Noops{#1}
possibility to generate error msgs for the use of an option that is not
allowed for this type of construct;
\csarg\def{Define#1}:##1 {
instances of this construct will be defined by a statement like
\DefineFoo:Bar
\def\@name{##1}\def\@class{#1}
\Tmessage [def]{Defining a #1: ##1}
DefineFoo:Bar leads to \@name begin Bar, \@class being Foo;
\the\generic@defaults
2 \csarg\the{#1@defaults}

Generic Constructs 3.1

unpack token lists of generic and specific default actions;
\Get@Items}
start recursive processing of list of options. This ends the definition of
\DefineFoo; the definition of \@GenericConstruct ends with
\csarg\def{@#10ption}##1J,
{\csarg\def {#10## 1} #### 1 ####2}
which defines the \@FooOption macro; see I-3.

}

I-2 Items Processing

Processing the list of items is recursive; at the end some concluding
actions have to be taken, mostly the actual definition of the construct.
First we have to filter out empty arguments, which can be caused
by the use of option macros (3.1, I-3).
\def\Get@Items#1
{\if\EmptyList{#1}\1let\getOnextQ@item\Get@Items
\else\def\getOnext@item{\@Get@Items#1 }\fi
\get@next@item}
Next, check if the argument is Stop (defined by \NewDummy{Stop},
I-15), in which case you have reached the end of a generic definition, and
can start performing the final rites. Otherwise, dissect this option item
and go on with the rest of the options.
\def\@Get@Items#1 {\let\get@next@item=\Get@Items
\csarg\ifx{#1}\Stop
\the\generic@stop@defaults
\let\get@next@item=\relax
\else \Item@or@Macro#l::. \fi \get@next@item}
The ::. concluding \Item@or@Macro accomodates one, possibly empty,
argument.

I-3 Options

Options can either be specific, defined as
\@FooOption{Bar}{ [...] }
in which case the option Bar can only be used inside a call to
\DefineFoo, or they can be generic, defined as
\@GenericOption{Bar}{ [...] }
For both definitions, the definition text can use up to two parameters.
Parameters are given to the options as
optiona:parl optionb:parl=par2
Specific options are defined by the line
\csarg\def{@#10ption}##1,
{\csarg\def {#10## 1} #### 1 ####2}
in \@DefineGenericConstruct; a call
\@FooOption{Bar}{ ... }
expands to
\def\Foo@Bar#1#2{ ... } 3

3 The structure of Lollipop

Generic options are defined by the following command:
\def\@GenericOption#1{
\append@to@list{@GenericOptions}{\\#1;}
\csarg\def{Option@#1}##1##2}

A call

\@GenericOption{Bar}{ ... }
expands to

\def\Option@Bar#1i#2{ ... }

Ezxamples

Chapter 4
Headings

Headings for sections, chapters, and such, are an essential part of any
TEX macro package. In Lollipop they are maybe a bit less special: all
options for headings are general options, meaning that they also apply
to text blocks and lists. There are only two things that distinguish
headings:

1 there will be no page break after a heading;
2 there is no closing command for a heading.

4.1 Examples

Headings are defined by \DefineHeading. The most obvious element

in a heading is the title, marked by the option title. The title is

anything that follows the heading command, upto the first empty line.
\SomeHeading Some title

And some text following it.

Implementor’s Note
Titles can also be terminated by \par, but knowledge of this is not
encouraged. See further I-8.

The title has to be included in a line or a textcolumn for proper
handling (see also section 10.3.4). For titles that do not exceed one line,
the line option suffices (section 10.3.2); if a title is possibly more than
one line long, the textcolumn option has to be used (section 10.3.3.

Example 4.1

\DefineHeading:TestHead Style:bold
line:start TestHeadCounter Spaces:2 title line:stop
Stop

\TestHead The Title

The text after the heading.

1 The Title
The text after the heading.

By default, the text after a heading is indented. Overriding this default
behaviour is done with the option indentafter.

Example 4.2

4.1

4 Headings

\AlwaysIndent:no % as a default, don’t indent paragraphs
\DefineHeading:TestHead Style:bold
line:start TestHeadCounter Spaces:2 title line:stop
indentafter:yes Stop
\TestHead The Title

The text after the heading.\par
The second paragraph after the heading

1 The Title

The text after the heading.
The second paragraph after the heading

Usually headings come in a hierarchy, where the counter of one type,
for instance a subsection, is reset everytime the counter of a higer
level is stepped. In Lollipop, this subordinating of headings is done
by declaring one counter to be governed by another (counters are
explained in full detail in section 11.1).

Example 4.3

\DefineHeading:0OneHead Style:bold
line:start OneHeadCounter Spaces:1 title line:stop
Stop
\DefineHeading:TwoHead Style:italic
line:start OneHeadCounter . TwoHeadCounter Spaces:1
title line:stop Stop
\GoverningCounter : TwoHead=OneHead

\OneHead Level One Heading\par
\TwoHead Level Two Heading\par
Some text.

\TwoHead Level Two again\par

More text.

\OneHead Level One is Stepped\par
\TwoHead Level Two\par

Again text.

1 Level One Heading
1.1 Level Two Heading
Some text.
1.2 Level Two again

6 More text.

Ezxamples 4.1

2 Level One is Stepped
2.1 Level Two
Again text.

Headings will often wind up in a table of contents. For this, the table of
contents will have to be declared:
\DefineExternalFile:contents=toc
and its formatting will have to be specified, but also every construct
that writes to this file has to be declared as such.
\DefineHeading:TestHead
[...]
external:contents title external:stop
Stop
Usually, the title is all that has to be written out (the counter value is
written by default), but the possibility exists for writing out other
information as well. See section 9.2.

Implementor’s Note

I-4 Page break prevention after titles

Simple prevention of page breaks is done by
\add@Heading@default{\def\Q@afterpenalty{\penalty\@M}}
The \@afterpenalty is used in \gen@open (see I-5).
A conditional \if@headed is defined, which is only true after
headings:
\newif\if@headed
\add@generic@default{\add@after@command{\@headednol}}
\add@Heading@default{\add@after@command{\Cheadedyes}}
This is used in \outer@start@commands to prevent a page break
between a heading and a subsequent generic construct
\nxp\if@headed\nxp\else
\ifforced@break@before\@beforepenalty
\else\nxp\ifnum\lastpenalty=\z@
\@beforepenalty
\nxp\fi
\fi
\nxp\fi
If \if@headed is true, then no penalty at all is placed, so that the trailing
infinite penalty of the heading will dominate page breaking at this point.

5 Lists
Chapter 5

Lists

Lists in Lollipop are defined by \DefineList:
\DefineList:Foo [...]
item:start [...] item:stop

[...] Stop
and the resulting list is used as
\Foo
\item [..text..]
\item [...]
\FooStop

where the closing command can be abbreviated as \>.

5.1 Label alignment

In general there is a default position for labels; either aligning with the
left or the right side of the margin over which the list is indented. The
two ways are indicated with the option item:

item:left [...] item:stop
and

item:right [...] item:stop
respectively. Specifying item:start gives the default left aligning
position.

Example 5.1

\DefineList:enumerate
item:start itemCounter) item:stop Stop
\DefineList:enumerateright
item:right (itemCounter) Spaces:1 item:stop Stop
\enumerate\item Some item
\item And another
\enumerateright\item First nested item
\item Next nested item\>
\item And back to the original list.\>

1) Some item
2) And another

(A) First nested item
(B) Next nested item

3) And back to the original list.

Description lists

5.2 List indentation

The amount over which the text of a list (excluding the item labels) is
indented is controled by a list of indentations. This is explained in
section 11.4. The indentation amount is most of the time also equal to
the value of the paragraph indentation outside that list.
In the rare case where the indentation of a list has to be
controlled explicitly, there is an option indentationwith one value.
\DefineList:SomelList indentation=30pt [...] Stop

5.8 Label style

Every list that uses the itemsignoption is an ‘itemize’ list, no matter
what it’s name, and there is a counter in Lollipop that keeps track
of how deep you are in itemize lists. Similarly, every list that uses
itemCounteris an ‘enumerate’ lists, and these are counted too.
On every next level a new style of item sign or counter is used.
For item signs this is in sequence: o, o, — and - for all higher levels.
The style of sign can be changed by \SetItemSign:
\SetItemSign:6=m
where the letter indicating the sign is interpreted as: b e (bullet), ¢ o
(circle), d ¢ (diamond), m — (em-dash), n — (en-dash), . -.
Similarly, the counter style can be set by
\SetItemCounterRepresentation:
\SetItemCounterRepresentation:2=i
where the letter representing the style is interpreted as: 1 Arabic,
I uppercase roman, i lowercase roman, A uppercase characters,
a lowercase characters.

5.4 Label width

The default width for a label is at most the width of the margin over
which the list is indented. Using item:1left or item:right will have
the label pushed to the left or right side of this margin respectively.
Now what if the label material is wider than this margin? Usually you
want the label then to expand to the right, and that is indeed what
happens, unless you specify labeloverflowwith value left, in which
case the right boundary of the label will not budge, and the label will
start protruding into the outer margin.

5.5 Description lists

A common type of list is the type where each item label consists of

5.5

5 Lists

a piece of text. Such a list is called a ‘description’ list in Lollipop,
and it recognized by the occurrence of the option descriptionin its
definition. A description list can also use the item sign or the item
counter, of course.

Using a description list, the description text is everything that
follows the command \item, up to the end of the line.

Example 5.2

\DefineList:Describelt
item:left Style:bold itemCounter . Spaces:1 description

Spaces:2 item:stop Stop

\DescribeIt\item Do

A deer, a female deer.\item Re

According to mr. Fowler only a legal term.

\item Mimi Lafrenz-Jett

The owner/founder of ETP\>

1. Do A deer, a female deer.
2. Re According to mr. Fowler only a legal term.
3. Mimi Lafrenz-Jett The owner/founder of ETP

As you can see, the problem of label overflow can easily occur with
description lists. Thus it is a good idea to end the item material with
some white space, as in the above example.

Exceptional situation: if you use an empty description text, you
should write \item{}.

5.6 Suspended lists

Occasionally the is a need to resume an enumerate list, that is, after a
piece of text that is not part of the list an enumerate list should start
counting from the previous value on. In Lollipop this phenomenon can
be realized by never ending the enumerate list, and simply moving the
text one indentation level back with \PopIndentLevel.

Example 5.3

\DefinelList:enumerate item:left itemCounter item:stop Stop
\enumerate\item First some item\par

{\PopIndentLevel \Indent:no

This text seems to be outside the list. Don’t you believe
it.\par}

\item And another item\>

1 First some item
10 This text seems to be outside the list. Don’t you believe it.

List titles and list tails 5.8

2 And another item

Note that the ‘popped’ text has to be in a group (otherwise the
subsequent items will also be popped back), and it has to be separated
from the preceding and following text by \par; the trailing \par has to
be in the group.

5.7 Item counter manipulation

The item counter can be manipulated explicitly. This is necessary for
instance for starting a list at another value than one. What you need to
realize here is that the command \item starts by incrementing the
counter. Furthermore, the only way to access the item counter is
through the commands for counters; see section 11.1.

Example 5.4

\DefineList:enumerate item:left itemCounter item:stop Stop
\enumerate \SetCounter:item=-1

\item Escape: usually the backslash.

\item Begin Group.\>

0 Escape: usually the backslash.
1 Begin Group.

5.8 List titles and list tails

Lists can have titles. The title follows the command that invokes

the list, in the usual manner. Material to follow the list can also be
specified: anything following the option textis considered to be trailing
material.

Example 5.5

\DefineList:TitledList hrule line:start Style:bold title
line:stop

item:left Style:italic itemCounter item:stop

text vwhite:3pt hrule Stop
\TitledList In the last fiscal year, have you:\par
\item Eaten peanuts? \item Walked the dog?
\item Bought a Frank Zappa record?\>

In the last fiscal year, have you:
1 Eaten peanuts?
2 Walked the dog? 11

5 Lists

12

3 Bought a Frank Zappa record?

In case you wonder what happens with textual material after
item:stop and before any text, well, that is taken to be inserted
immediately after each item label.

5.9 Between the items

There are special list options controlling what happens in between
items. Lollipop has an option breakbetween, analogous to
breakbefore and breakafter; see section 10.5. This item be default
has a value of —50, implying that breaks in between items should be
preferred slightly over breaks in between the lines of an item.
Similarly, there is an option whitebetweencontrolling
the amount of white space in between items that is analogous to
whitebefore and whiteafter. Like these two options, it can also be
set by the \Distance command (section 11.7).

5.10 Indentation in lists

An item can be considered to be consisting of at least one paragraph.
That paragraph is never indented. For the behaviour of any next
paragraph within the same item, the option indentinsidecan be used.
This option has values yes/no. In case paragraphs inside an item
indent, the indentation amount is level-controlled; see section 11.4.

The text option

Chapter 6
Text Blocks

The ‘text block’ is a way of treating a moderate sized chunk of text in
a different way from the surrounding text. Text blocks are created by
\DefineTextBlock. Here is a small example.

Example 6.1

\DefineTextBlock:Quote

PushIndentLevel PointSize:9 SetFont text Stop
\Indent:no In some context it has been written that
\Quote No man is an island.\QuoteStop

In another:

\Quote Run don’t walk to the nearest island.\>
Sometimes one would wish women weren’t so logical.

In some context it has been written that
No man is an island.

In another:
Run don’t walk to the nearest island.

Sometimes one would wish women weren’t so logical.

Note that the text block has an explicit closing command, consisting of
the name of the block followed by Stop, and that implicit closing by \>
is possible.

6.1 The text option

Text blocks have only one specific option: text. This option is used to
separate material heading the block from material trailing the block.
Example:

Example 6.2

\DefineTextBlock:DisplayEq

whitebefore:abovedisplayskip whiteafter:belowdisplayskip
line:start white:parindent $ displaystyle text $ line:stop
Stop

The formula

\DisplayEq e~ {\pi i}+1=0\>

contains nature’s five most interesting constants.

The formula

6.1

13

6 Text Blocks

14

e +1=0

contains nature’s five most interesting constants.

Here one dollar comes before the text, and one after, so the first is
inserted by \DisplayEq and the second by the corresponding closing
command.

6.2 More examples

A text block can encompass more than one paragraph, so the options
indentinside and indentfirst are particularly useful here.

Example 6.3

\AlwaysIndent:no

\DefineTextBlock:TestBlock PushIndentLevel
indentafter:yes indentfirst:no indentinside:yes
text unskip hfill $ bullet $ par Stop

One paragraph.\par The next paragraph

\TestBlock Inside the block one paragraph.\par
Inside the block the next paragraph.\>

Outside the following paragraph.\par And the last

paragraph.

One paragraph.
The next paragraph

Inside the block one paragraph.
Inside the block the next paragraph.

Outside the following paragraph.
And the last paragraph.

Implementor’s Note

I-5 The environment in generic constructs

The text block is just about the purest use of the Lollipop environment
mechanism. Here is how a text block is defined:
\def\@DefineTextBlock{
\csarg\edef{\@name}{\@genopen
\the\before@coms
}
\@Def ineStopCommand{\the\after@coms \O@gen@close}
}
The \before@coms and \after@coms are two token lists with the
heading and trailing commands.

More examples

It is important to note that the definition of the control sequence
of the block is defined by \edef. This first of all unwraps the token lists,
but it also has an important effect on \@gen®@open/close. These control
sequences contain a lot of conditionals which, in combination with the
\edef give a really dynamic definition of generic constructs in Lollipop.

First of all, the opening and closing commands induce a group so
that various quantities can be set locally.

\def\@gen@open{\outer@start@commands

\begingroup \inner@start@commands}

\def\@gen@close{\inner@end@commands

\endgroup \outer@end@commands}
The outer start commands concern global actions such as backspacing
previous skips, incrementing counters and setting references.

\def \outer@start@commands{/,

\iftext@construct
\ifleft@embedded@construct
\nxp\bsp@hack
\else \nxp\leavehmode

\nxp\bvwit{\the\@whitebefore}\fi
The ‘embedded construct’ tests are only true if the construct can be
embedded in a paragraph. A rare occurence most of the time.

% backspace previous white space while it’s
visible
\nxp\if@headed\nxp\else
\ifforced@break@before\@beforepenalty
\else\nxp\ifnum\lastpenalty=\z@
\@beforepenalty\nxp\fi
\fi
\nxp\fi
A subtle point: a preceding heading will have placed \nobreak followed
by a skip. It is dangerous to place any sort of penalty after this because
it might induce a page break.
Now the counter, title, and stuff connected to that.
\fi
\ifhas@counter
\nxp\StepCounter:\expandafter\@name\@space
% This sets the \current@label by default
Since this is used inside an \edef we can use some trickery to get the
space token after the argument to \StepCounter.
\ifhas@marks \edef\nxp\csQe
{\nxp\nxp\nxp\refresh@mark@item
{\@name Counter}{\CSname{\@name
Counter}}}
\nxp\cs@e
\fi
\fi
\iflabel@defined
\global\current@label={\the\@labelcoms}\fi
\ifhas@title \install@title@code
This title business is explained in I-11. This piece of code also refreshes
the title in the mark structure. This has to be done after any page break

6.2

15

6 Text Blocks

16

for the benefit of headers/footers.
\fi
\ifhas@marks\nxp\ifnin{\nxp\place@mark}\fi
%otherwise IniTeX’ing Lollipop will output a
page
\nxp\xx@label\the\extern@toks\penalty\@M
% also subtle: if this white space would be
higher, it would
% be invisible because of marks et cetera.
% insert nobreak after marks/writes to
prevent page breaks.
\iftext@construct
\ifleft@embedded@construct
\else

\nxp\@vwhite{\the\@whitebefore}\fi
\fi
}

Inner start commands are concerned with setting local values.

\def\inner@start@commands{%
\nxp\Open@Group\CSname{\@class}\CSname{\@name}

The \Open@Group call makes it possible to track down groups that have
inadvertendly been left open. Since we now know the name we can give
helpful error msgs.
\install@stop
Install the right implicit closing, see 10.8 and I-6.
\ifleft@embedded@construct
\else \nxp\hold@parskip
\nxp\@defaulteverypar
\ifwhiteleft@defined \advance\leftskip
\the\@whiteleft \relax \fi
\ifwhiteright@defined \advance\rightskip
\the\@whiteright \relax \fi
\nxp\let\nxp\par=\nxp\@par %explain to me
again why this is necessary...
\inside@indent \first@indent
\fi
\advance\nest@depth\@ne
The nest depth is used for determining indentation levels.
}
End commands set up some conditions, most of which will be tested by
the start of any next construct.

\def\inner@end@commands{’
\nxp\Close@Group\CSname{\@class}\CSname{\@namel}y
\ifright@embedded@construct \else \nxp\leavehmode

\fi
\@afterpenalty
\ifright@embedded@construct \else

\nxp\@vwhite{\the\@whiteafter}\fi
}

\def\outer@end@commands{’

\the\after@toks

More examples 6.2
\ifright@embedded@construct

\nxp\@headedno \nxp\esp@hack
\else

\after@indent \nxp\dono@parskip
\fi}

I-6 Implicit closing

Constructs with an explicit closing command, lists and text blocks, can
be closed by \>, which simply closes the current construct. A more
drastic version, \>], closes all currently open constructs.

\def\outer@stop@command{\Emessage{Vacuous group
closing}}

\let\default@stop@command\outer@stop@command

\def\>{\default@stop@command[fool the editor
\ifNextChar]{%

\ifx\default@stop@command\outer@stop@command
\xp\take@one
\else \xp\>\fi}{}}

The \outer@stop@command is meant to give an error msg if the user
attempts to close a group while none is open.

The current meaning of \> is installed in
\inner@start@commands:

\def\install@stop{\if@implicitclose
\def\nxp\default@stop@command

{\CSname{\stop@command}}/,
\else \let\nxp\default@stop@command

\nxp\outer@stop@command
\fi}

By default, constructs can be closed implicitly, but there is an option
noimplicitcloseto disable this.
\newif\if@implicitclose
\add@generic@default{\@implicitcloseyes}

\@GenericOption{noimplicitclose}{\@implicitcloseno}
This option is for instance used in the examples in this manual. Otherwise
closing a construct in the example would also close the example itself.

17

7 output

Chapter 7

output

Every page is formatted according to a ‘page grid’ consisting of three

elements:

1 the page head, this is everything that’s over the running text;
the page foot, this is everything that is below the running text;

3 the running text. TEX acts as if text is on a long scroll, and the
running text part of a page is simply a portion cut off from this
scroll.

Either or both of the head and foot of the page can be empty, but
usually one of the two contains a page number.

Example 7.1

\DefinePageGrid:TestPage height:page=3cm width:page=5cm
pagerule textband:start text textband:stop

pagerule band:start PageCounter band:stop Stop
\TestPage This page does not contain much
special.\EjectPage

This page is hardly better.

This page does not contain This page is hardly
much special. better.
T 2

This example illustrates how you first define a page grid by
\DefinePageGrid, and then activate it by calling its name. That
last action is in fact not necessary: each definition of a page grid
automatically installs that grid as the current one.

7.1 Page dimensions

Most of the time it is easiest to specify the total height of a page, that
is, including head and bottom, but sometimes it is more convenient to
specify the height of the text, and let the head and foot simply go over
and under that.
In the first case you can give the command \Heightwith two
18 parameters:

Page head, foot, text

\Height :Page=23.5cm
or inside a page grid definition the option height:page=.. ..
In the second case you can give the command
\Height:Text=19.55cm
or inside a page grid definition the option height:text=....
In page grid definitions there is the additional option
height:1lines=23.
The \Height command cannot be used in a page grid definition.

7.2 Positioning the page on the paper

If your printer driver is up to specs (and you have not done any
creative macro writing) it should have the upper left corner of the text
landing at 2.54cm from the top and left side of the paper. If the result
is not to your liking, you can shift the page by

\Distance:hoffset= ...

\Distance:voffset= ...
These offset parameters are zero ordinarily, and they indicate the
extra shift added to the customary 2.54cm in horizontal and vertical
direction.

7.3 Page head, foot, text

Somewhere in the page grid the option texthas to appear. This option
has to be inside a textband:

textband:start text textband:stop
This is not a case of overspecification, because inside a textband the
text option can appear more than once. In this manner a multicolumn
page grid can be specified.

Example 7.2

\DefinePageGrid:TestPage height:page=3cm width:page=5.6cm
pagerule textband:start text hwhite:3mm text textband:stop
pagerule band:start PageCounter band:stop Stop

\FlushRight:no \sometext

words, words.

Just a bit of

words, words.

Just a bit of

words, words.

Just a bit of

Just a bit of

words, words.

Just a bit of

words, words.

Just a bit of

1

7.3

19

7 output

words, words.

Just a bit of

words, words.

Just a bit of

words, words.

Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
words, words.

2

Just a bit of
words, words.

3

Next to the option textband there is band. Both are ways of creating
a page wide band. The option band is used for all material that is not
a text column, for instance footers, as in the above examples.

The option band can have one unusual parameter: invisible.
This makes the band act as if it has zero height or width, depending
on whether it is below or above the text, respectively.

Example 7.3

\DefinePageGrid:TestPage height:page=3cm width:page=5.6cm
pagerule textband:start text hwhite:3mm text
textband:stop

pagerule

band:invisible block:start Style:bold PageCounter
Spaces:2

stickout:left band:stop Stop
\FlushRight:no \sometext

Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
words, words.

Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
1 words, words.

words, words.
Just a bit of
words, words.
Just a bit of
words, words.

B Just a bit of

Page head, foot, text 7.3

7.8.1 More about text bands

The text band is that part of the page that has the text in it. You
can also put other material in it, such as rules or white space.

Example 7.4

\DefinePageGrid:TestPage height:page=3cm width:page=140pt
pagerule

textband:start vrule white:3pt text white:3pt vrule
textband:stop

pagerule band:start white:fillup PageCounter band:stop
Stop

\TestPage This page contains some text, a bit more text,
and even more than that. In all still just a few
lines.\EjectPage

This page contains more text, still more text, and still
more.

This page contains some text, This page contains
a bit more text, and even more text, still more text, and
more than that. In all still still more.

just a few lines.

In the previous example the width of the page was specified. If
we only give the width of the text, the page width is calculated
dynamically.

Example 7.5

\DefinePageGrid:TestPage height:page=3cm width:text=140pt
pagerule

textband:start vrule white:3pt text white:3pt vrule
textband:stop

pagerule band:start white:fillup PageCounter band:stop
Stop

\noindent This page contains some text, a bit more text,
and even more than that. In all still just a few
lines.\EjectPage

This page contains more text, still more text, and still
more.

21

7 output

22

This page contains some text, a This page contains more
bit more text, and even more text, still more text, and still
than that. In all still just a few | | more.
lines.

1 2

Note how the pageruleand band objects stretch with the page.

7.83.2 Topskip

In between the page head and the text is some white space, the
topskip, with special properties. The topskip is defined from the
bottom of the head to the bottom of the first line of the text. If the
height of this first line varies from page to page the topskip acts as a
buffer, keeping the bottom-to-bottom distance constant.

Topskip is set by the option topskip, for example

topskip:25pt

but if this option is left out, the page grid uses the value of \topskip
that was current at the time of the definition. Unfortunately there is
no way to change this value after the definition.

7.4 The page number

The page number behaves as if it had been defined by
\NewCounter:Page
\CounterRepresentation:Page=1
Thus you can use any command from section 11.1 on it. For instance,
you can have page numbers in roman numerals by specifying
\CounterRepresentation:Page=I
The page number is typically used as the option PageCounter, but
for some applications the corresponding command \PageCountercan
be used.

7.5 Page tests

The page grid definition can set/query several properties of the page.
The following tests have been provided (see section 11.8 for tests):
\DefineTest:IsRightPage
\DefineTest:IsLeftPage
\DefineTest:FirstPage
\DefineTest:LastPage
\DefineTest:FlushBottom

Running heads / footers

° The tests for left/right pages are done by testing whether the
page number of odd or even.

° The first/last page tests can be used either for the whole
document, or for a file that’s loaded as an \InputFile.

° The first page test doesn’t work at present.

Example 7.6

\DefinePageGrid:TestPage height:page=3cm width:page=5cm
pagerule textband:start text textband:stop pagerule
band:start ifIsLeftPage else hwhite:fillup fi PageCounter

band:stop Stop

This is a left hand page. \EjectPage

This page is on the right side of a spread.

This is a left hand page. This page is on the right
side of a spread.

7.6 Running heads / footers

Above it was explained how pages can be given a head and foot part.
Quite often you want changing information in such parts, for instance
the head of a left page often contains the number or title of section
that was current when that page started; the head of a right page
often contains the number or title of the section that was current
when that page ended.

In Lollipop all constructs that have a title or a counter can
have that information referenced in page grids.

\FirstPlaced:SectionTitle Take the title of the first section that
started on this page, or the last one that started before this
page if no section started on this page.

\LastPlaced:SubSectionCounter Take the title of the last
subsection that started on this page, or the last one that
started before this page if no subsection started on this pgae.

\PreviousPlaced:SectionCounter Take the counter value of the last
section that started before this page.

Example 7.7

\DefinePageGrid:TestPage height:page=3cm width:page=5cm

7.6

23

7 output

pagerule textband:start text textband:stop pagerule
band:start Style:italic FirstPlaced:HeadTitle
white:fillup PageCounter band:stop Stop

\DefineHeading:Head Style:bold

line:start HeadCounter Spaces:2 title line:stop Stop
\Head A first section\par And some text.\EjectPage
This page contains text. \Head A second Section\par
And more text.

1 A first section This page contains text.

And some text. 2 A second Section

And more text.

A first section 1 A second Section 2

The commands \FirstPlaced and \PreviousPlaced are typically
used on left pages; \LastPlaced is more common on right pages. You
can test on what sort of page you are; see section 7.5.

Example 7.8

\DefinePageGrid:TestPage height:page=3cm width:page=5cm
pagerule textband:start text textband:stop pagerule
band:start Style:italic

ifIsLeftPage FirstPlaced:HeadTitle white:fillup fi
PageCounter

ifIsRightPage white:fillup LastPlaced:HeadTitle fi
band:stop Stop

\DefineHeading:Head Style:bold
line:start HeadCounter Spaces:2 title line:stop Stop

\Head A first section\par And some text.

\Head Second section\par More text.\EjectPage

\Head Third section\par Is on the right page.

\Head Fourth section\par Concludes this page.

1 A first section 3 Third section

And some text. Is on the right page.

2 Second section 4 Fourth section

More text. Concludes this page.

1 Second section Third section 2

24 Implementor’s Note

Running heads / footers

I-7 Marks

All constructs that can have marks add their mark items to a globally
maintained list:
\newtoks\mark@items
Only headings and page grids can have marks. Hence by default mark
generation is switched off.
\newif\ifhas@marks
\add@generic@default{\has@marksno}
At the moment all counters and titles wind up in the mark structure:
\def\install@counter#1q{
\xp\add@mark@item\xp{\@name Counter} ... }
\add@generic@stop@default
{\ifhas@title\xp\add@mark@item\xp{\@name
Title}\fi}
The test whether the object currently being defined has marks is
performed by \add@mark@item:
\def\add@mark@item#1{\ifhas@marks
\csarg\newtoks{mark@toks@#11}7,
\Tmessage [mark] {Adding mark item #1}J,
\global\mark@items\xp{\the\mark@items{#1}}\fi}
This routine allocates a token list per mark item. For instance, for a
\SectionTitle a \mark@toks@SectionTitle will be allocated. Every
time a \Section occurs, a call
\refresh@mark@item{SectionTitle}{the title}
will then be made. This merely refreshes the contents of the specific
token list:
\def\refresh@mark@item#1#2,
{\csarg\global{mark@toks@#1}{#2}}
Also, a call to \place@mark will be made, which puts a mark on the
current page, containing a list of item name / item value pairs. This
proceeds fully by expansion.
\def\get@mark@items#1{\if\EqualStringX{#1}{SM}7
\else{#1}{\csarg\the{mark@toks@#1}}%
\xp\get@mark@items
\fi}
\def\place@mark
{\mark{\xp\get@mark@items\the\mark@items{SM}}}
Retrieving information out of a mark consists of traversing the list of
pairs, and taking the value of the keyword requested. Thus you can call
\FirstPlaced:SectionTitle.
\def\FirstPlaced:#1
{\Tmessage [mark] {First Placed #1 from \firstmarkl}y,
\xp\get@placed\xp{\firstmark}{#1}}
The \PreviousPlaced and \LastPlaced commands are analogous, but
based on the \topmark and \botmark.
Again, everything here proceeds by expansion only, so the string
tester will consume some processor power.
\def\get@placed#1#2{\get@0placed{#2}#1{SM}{}$}7 SM:
StopMarker

7.6

25

7 output

\def\get@@placed#1#2#3{\if\EqualStringX{#2}{SM}/,
\xp\take@to@dollar
\else\if\EqualStringX{#1}{#2}%
\maybe@uppercase{#3}%
\xp\xp\xp\take@to@dollar
\else\xp\xp\xp\get@@placed\fi
\fi{#1}}

7.7 Alternating page grids

In Lollipop it is very easy to switch page grids: you simply specify
NextPageGrid:otherpage

as one of the options in the definition. If no next grid is indicated, the

same page grid keeps being used continuously until another page grid is

activated explicitly.

Example 7.9

\DefinePageGrid:LTestPage height:page=3cm width:page=5cm
pagerule textband:start text textband:stop pagerule
band:start Style:italic

FirstPlaced:HeadTitle white:fillup PageCounter
band:stop NextPageGrid:RTestPage Stop

\DefinePageGrid:RTestPage height:page=3cm width:page=5cm
pagerule textband:start text textband:stop pagerule
band:start Style:italic

PageCounter white:fillup LastPlaced:HeadTitle
band:stop NextPageGrid:LTestPage Stop

\DefineHeading:Head Style:bold
line:start HeadCounter Spaces:2 title line:stop Stop

\LTestPage

\Head A first section\par And some text.

\Head Second section\par More text.\EjectPage

\Head Third section\par Is on the right page.

\Head Fourth section\par Concludes this page.

1 A first section 3 Third section

And some text. Is on the right page.

2 Second section 4 Fourth section

More text. Concludes this page.

1 1 2 Fourth section

Another very useful application of this mechanism is to have a special
definition for the opening page of a chapter. This manual uses a
26 one-shot page grid \EmptyPage to remove the header and footer on the

Additional User Control 7.8

title page. It installs \LeftPage as the next grid.

7.8 Additional User Control

7.8.1 Elementary manipulation

There are a few commands for simple page manipulation:

\EjectPage The current page is filled up with white space, and a new
page is started.

\ToRecto As \EjectPage but if the next page is a left page (meaning
that the page number is even) then the page number is increased
by one, so that the next page is a right hand page.

\ToVerso As \ToRecto, except that the next page is a left page.

Additionally, \NoPageslets all formatting and updating of values be
performed, but no pages are written to the dvi file; \PagesOutrevert
the effect of previous command

Implementor’s Note
The test \ifsink@pages determines whether pages will be output to the
dvi file (if the test is false) or silently dropped (if true). The sheet
counter is only updated for pages written to the dvi file so that it will
takes consecutive values no matter if pages are sunk. If a pages is
dropped, \deadcycles is set to zero, otherwise it would not be possible
to drop more than \maxdeadcycles pages.

When a page is finished, the whole box is given to \CurrentShipout,
which is by default \shipout. However, you are free to define it
otherwise. See the definition of \OutputExample in the appendix for an
example. If your \CurrentShipout does not actually ship out pages,
you may want to set \CountSheetsnoto prevent the effective page
counter from being updated.

Redefining \CurrentShipout usually goes together with
\SuspendOutputand \ResumeOutput. These commands temporarily
save the page number and the current state of the page.

If you want to see te output routines in action, specify

\Trace:out
In addition

\Trace:mark
tells you what information is being saved for running head and foot
lines.

27

8 Referencing

28

Chapter 8
Referencing

In manuals and scientific documents you often want to write something
like ‘see Chapter 4’. But what if you shuffle the chapters a bit? It
would be nice if the number would be updated automatically. With
Lollipop, as with many other TEX macro packages, this is easily done.

Here is an example to set the mood for the rest of this chapter.
The sort of thing that is referred to most is a heading. So suppose you
want to refer to a section number.

Example 8.1

\DefineHeading:ASection

line:start Style:italic ASectionCounter Spaces:2 title
line:stop Stop

\ASection[one:section?] First section\par

After this section will come section™\ref [other:section!].

\ASection[other:section!] Another section\par
This is the section that came after
section~\ref[one:section?].

1 First section
After this section will come section 2.
2 Another section

This is the section that came after section 1.

8.1 What and how do you reference?

You can reference not only headings but everything that has a counter.
Thus all generic constructs can be referenced, and in addition you can
reference item numbers in a list (there are examples of this latter
possibility in section 8.4). The simplest way of referencing something is
to put the key in square brackets behind it:

\Section[this:section] The title of This Section
The key is used by typing

\ref [this:section]
As you may have guessed from the above examples, keys can contain
all sorts of characters. Only brackets, braces, and the hash sign are
excepted. You get an error message if you try to use the same key twice.

The shape of the reference

Another way of declaring a key is to use the command
\labelcarrying the key

\label [the:key]
This can be useful if you want to declare two keys for a single
reference. Make sure that the \label command is not part of the title.
Unexplained phenomena occur if you do that. Instead put the label
after the construct you want to reference:

\Section Precautions and remedies

\label[sec:precautions]\label [sec:remedies]
In this section ...

8.2 The shape of the reference

By default, a reference consists of just the number of the thing you
reference. You can customize the way an object is referenced by using
the option labelin its definition. For instance, often you want things
like parentheses around references. Putting this information in the label
definition saves you a lot of work in case you change your mind later.

Example 8.2

\DefineHeading:ASection

line:start Style:italic ASectionCounter Spaces:2 title
line:stop

label:start (ASectionCounter) label:stop Stop
\ASection[one:section?2] First section\par
After this section will come section™\ref [other:section!2].

\ASection[other:section!2] Another section\par
This is the section that came after
section™\ref [one:section?2].

1 First section
After this section will come section (2).
2 Another section

This is the section that came after section (1).

Another use of customized labels is including other counters in the
reference:

Example 8.3

\DefineHeading:AChapter
line:start Style:bold AChapterCounter / title line:stop
Stop

8.2

29

8 Referencing

\DefineHeading:ASection
line:start Style:italic ASectionCounter Spaces:2 title
line:stop
label:start AChapterCounter . ASectionCounter label:stop
Stop
\AChapter First chapter\par
Pretty short chapter
\AChapter Second chapter\par
\ASection[one:section?3] First section\par
After this section will come section”™\ref [other:section!3].

\ASection[other:section!3] Another section\par
This is the section that came after
section™\ref [one:section?3].

1/First chapter

Pretty short chapter

2/Second chapter

1 First section

After this section will come section 2.2.
2 Another section

This is the section that came after section 2.1.

A more surprising application of explicit definition of labels is inclusion
of the title in the reference.

Example 8.4

\DefineHeading:ASection
line:start Style:italic ASectionCounter Spaces:2 title
line:stop
label:start ASectionCounter literal: Spaces:1
Style:italic title label:stop Stop
\ASection[one:section?4] First section\par
After this section will come section™\ref [other:section!4].

\ASection[other:section!4] Another section\par
This is the section that came after
section™\ref [one:section?4].

1 First section

30 After this section will come section 2 Another section.

Bibliography citations
2 Another section

This is the section that came after section 1 First section.

8.8 Local references

Some documents are collated out of parts that were documents in
themselves. In such a case it may happen that the same reference key is
used in more than one part of the document. Ordinarily this would
result in incorrect references.

To prevent such collisions Lollipop can use local references: the
command \LocalReferenceshas default no, and specifying

LocalReferences:yes
creates local aux files. Furthermore, the parts of the document have to
be loaded by

\InputFile:parta

\InputFile:partb
et cetera. A document part loaded by \InputFilealways starts on a
new page.

In addition, loading files this way provides a form of error
checking; Lollipop checks at the end of such a file whether all used
constructs are balanced properly.

8.4 Bibliography citations

Lollipop has as yet no separate facilities for bibliographies such as an
interface to BibTEX. However, since a bibliography is just a list,
referencing items in it is quite easy.

Example 8.5

\DefineList:BibList item:left [itemCounter] item:stop
label:start [itemCounter] label:stop Stop

In this example we shall have occasion to refer to

\ref [Abee80] and™\ref [Ceede79] .\par

\Indent:no Bibliography

\BibList \item[Ace55] C.D. Ace, Inscrutible title.

\item[Abee80] E.F. Abee, Worthless drivel.

\item[Ceede79] G.H. Ceede, Contractual obligation.

\>

In this example we shall have occasion to refer to [2] and [3].
Bibliography

[1] C.D. Ace, Inscrutible title.
2] E.F. Abee, Worthless drivel.

8.4

31

8 Referencing

32

[3] G.H. Ceede, Contractual obligation.

Here is a way to customize the label (if you need to refresh your
memory about description lists, see section 5.5).

Example 8.6

\DefineList:BibList item:left [itemCounter] item:stop
label:start (description) label:stop Stop

In this example we shall have occasion to refer to
\ref [Abe80] and~\ref [Ceedee79].\par

\Indent:no Bibliography

\BibList \item[Aace55] Aacebb

C.D. Aace, Inscrutible title.

\item[Abe80] Abe80

E.F. Abe, Worthless drivel.

\item[Ceedee79] Ceedee79

G.H. Ceedee, Contractual obligation.

\>

In this example we shall have occasion to refer to (Abe80)
and (Ceedee79).
Bibliography

[1] C.D. Aace, Inscrutible title.
2] E.F. Abe, Worthless drivel.
[3] G.H. Ceedee, Contractual obligation.

Generating external files

Chapter 9
External Files

Some document require information to be collected during a run. Such
information typically is a table of contents or index, and it is gathered
in an external file. (The reason for gathering such information in a file
at all is that often some external manipulation, for instance sorting of
an index, is needed.) Since there are many possibilities for external files
(mathematical monographs may have a list of definitions, or a list of
notations) Lollipop does not predefine such files, but supplies all of the
tools for creating them.

External files involve four actions:

1 The file should be declared.

2 It should be specified what information is to be written to the
file.
3 The formatting of the contents of the file has to be specified.

4 The file has to be loaded.

9.1 Declaring and loading an external file

The first act, declaring the existence of the external file is very easy
with the command \DefineExternalFile: an internal name and a
three-character file name extension have to be given as parameters.

\DefineExternalFile:contents=toc
With this definition, if the document is called book.tex then the
‘contents’ will be gathered in a file called book.toc.

For each external file Foo there is a command to determine
whether that file will be regenerated in the next run of TEX:
\WriteFoowith values yes/no will allow or prevent the file
being regenerated. The value yes is default. The command
\WriteExtern(values yes/no) can be used to prevent writing out any
external files (including the .aux file that keeps track of references).

The final act, loading an external file, is as easy as declaring it:
use \LoadExternalFileas in

\LoadExternalFile:contents
This does not cause any page breaks or headings to be set over the
loaded material, so you have to do that explicitly.

9.2 Generating external files

Next, macros that write to the table of contents have to declare this

9.2

33

9 External Files

34

information. The externaloption is used for this. Any counter that the
construct has will be written out automatically, and the style designer
usually has to specify only that the title will be written out.

\DefineHeading:Section

[...]

external:contents title external:stop
There is no objection to a construct writing information to more than
one external file.

9.3 Formatting an external file

The hardest part is declaring the formatting of an external file. For this
a separate generic construct exists: the ‘external item’ with defining
command \DefineExternalltem. For example, if \Section writes to
contents, than an external item Section corresponding to this file has
to be declared. The option fileis use to declare to which file the
external item belongs. This way the same name can be reused for more
than one file.

\DefineExternalltem:Section file:contents

[...] Stop
An external item is basically a list with just one item. Thus, the option
itemis available. The elements of an external item are the label (the
counter value), the page number where the information was generated,
and the title. For the label (say for a construct \Foo) an option
FooLabelis created. Thus the typical formating looks like
\DefineExternalltem:Chapter file:contents
item:left ChapterLabel item:stop
title begingroup Spaces:2 Style:italic Page
endgroup
Stop
In fact, a control sequence \FooLabelis created, which can be used in
other external items.

Since an external item is a list in itself, you have to pull a
certain trick to get items for subsections to indent further than those
for sections. This is what the command \PushIndentLevel was
designed for.

A typical indented item looks like:

\DefineExternalltem:SubSection file:contents

PushIndentLevel PushIndentLevel

item:left Sectionlabel . SubSectionLabel
item:stop

title begingroup Spaces:2 Style:italic Page
endgroup

Stop

Ezxample

9.4 Example

The following example is for a typical table of contents that records
sections and subsections. In good old-fashioned style, the subsections
are indented with respect to the sections.

Example 9.1

\DefineExternalFile:TheContents=tct
\DefineHeading:LevelOne Style:bold

line:start LevelOneCounter Spaces:2 title line:stop
external:TheContents title external:stop Stop
\DefineExternalIltem:LevelOne file:TheContents

item:left Style:bold LevelOnelLabel item:stop title
white:5pt

Page par Stop

\DefineHeading:LevelTwo Style:italic

line:start LevelOneCounter . LevelTwoCounter Spaces:2
title line:stop

external:TheContents title external:stop Stop
\GoverningCounter:LevelTwo=LevelOne
\DefineExternalIltem:LevelTwo file:TheContents
PushIndentLevel

item:left Style:bold LevelOneLabel . LevelTwolLabel
item:stop

title white:5pt Page par Stop

\LoadExternalFile:TheContents
\LevelOne First heading\par
\LevelTwo First subheading\par
Some text might be nice.
\LevelTwo Second subheading\par
Some more text.

\LevelOne Second heading\par
\LevelTwo Third subheading\par
Yet more text.

\LevelTwo Fourth subheading\par
And again: text.

TwoHead;
1 First heading 36
1.1 First subheading 36
1.2 Second subheading 36
2 Second heading 36
2.1 Third subheading 36
2.2 Fourth subheading 36

9.4

35

9 External Files

36

1 First heading

1.1 First subheading
Some text might be nice.
1.2 Second subheading
Some more text.

2 Second heading
2.1 Third subheading
Yet more text.

2.2 Fourth subheading

And again: text.

Titles

Chapter 10
Options

10.1 Titles

Any construct can have a title, although of course it is most useful for
headings. A construct has a title if the option titleappears. Example:
\DefineHeading:Section [...]
Style:bold title
[...] Stop
will define a \Section macro that has a title. The macro is then used as
\Section The title of this section

Some text in this section.
that is, the title is delimited by an empty line.
The title is actually available as a macro \FooTitle, so that you
can write a macro, for instance
\def\ComplicatedTitle{ .. \hrule ...
\vrule ... \vbox \bgroup ...
\FooTitle ...
}
and use this macro instead of the title option
\DefineBar:Foo ...
ComplicatedTitle
. Stop
However, since the option title now doesn’t appear anymore, it
becomes necessary to specify explicitly that there is a title. This can be
done with the HasTitleoption.
\DefineBar:Foo ...
HasTitle
ComplicatedTitle
. Stop

Implementor’s Note

I-8 Delimiting the title

The title is actually delimited by \par, so

\Section The title\par
is allowed. Since delimiting by an empty line delimits by a space plus
\par some extra measures are needed to get rid of the space in
exceptional cases. The title is in effect augmented by \unskip. Thus,
every time the title is typeset any trailing space is removed. See the
definition of \@Titelize in section I-10.

10.1

37

Options
I-9 Is there a title?

The options title and HasTitle both set a test \has@title to true;
this test is false by default
\newif\ifhas@title\add@generic@default{\has@titleno}
The first of the two further causes inclusion of \FooTitle in the current
option token list.
\@GenericOption{title}{
\global\has@titleyes
\ifin@label \label®@append@title
\else \edef\cs@e{\nxp\@add@toks
{\CSname{\@name Titlel}}}\csQe
\fi}
\@GenericOption{HasTitle}{
\switch {\if\EqualString{#1}}
{yes} {\global\has@titleyes}
{no} {\global\has@titleno}
{default} {\globall\has@titleyes}
\endswitch
}
Titles wind up in marks: at the end of defining \Foo the \FooTitle is
added to the mark items.
\add@generic@stop@default
{\ifhas@title\xp\add@mark@item\xp{\CGname
Title}\fi}

I-10 Giving a macro a title

Lollipop macros are first defined without titles. If necessary they are then
redefined to have a title.

The redefinition depends on how many arguments the macro

originally had; this is determined by a counter \extra@args.

\newcount\extraargs

\add@generic@default{\extraGargs\za@}

At present, only external items (section 9.3) have extra arguments.

The redefinition proceeds by storing the original definition

in \tit@Foo, the macro is then redefined as a macro with an extra
argument, which is stored in \title@toks. Often it is convenient to
have the title in a token list to prevent it from being expanded.

Additionally, an \unhskip is appended to the title, because

delimiting with an empty lines will give a space before the delimiting
\par.

\def\@Titelize#1{Y
\edef\cs@e{\let\CSname{tit@#1}=\CSname{#1}}\cs@e
\ifcase\extra@args %0:

\csarg\edef{#1}##1\par
{\ti-
tle@toks{{##1\nxp\protect\nxp\unhskip}’
\CSname{tit@#1}}

Counters

\or %1:
\csarg\edef {#1}##1##2\par
{\ti-
tle@toks{##2\nxp\protect\nxp\unhskipl}’
\CSname{tit@#1}{##1}}
\or %2:
\csarg\edef {#1}##1##2##3\par
{\ti-
tle@toks{##3\nxp\protect\nxp\unhskip}’%
\CSname{tit@#1}{##1}{##2}}
\else \Wmessage{Sorry, too many extra arguments
for ‘\@class’ : ‘\@name’}

\fi}

I-11 Storing the title

In \outer@start@commands the title is then put in the macro
\FooTitle
\def\install@title@code
{\nxp\xp\def\nxp\xp\CSname{\@name Title}\nxp\xp{%
\nxp\xp\nxp\maybe@uppercase\nxp\xp
{\nxp\the\title@toks}}%
\ifhas@marks \edef\nxp\cs@e
{\nxp\nxp\nxp\refresh@mark@item
{\@name Title}{\nxp\the\title@toks}}/
\nxp\cs@e
\fi}
This piece of code is inserted after any page break, because it refreshes
the mark information. Furthermore, its inclusion is conditional.
\ifhas@title \install@title@code
\fi

10.2 Counters

There are three ways for Lollipop to figure out that a generic construct
has a counter. First of all, in

\DefineFoo:Bar [...]

BarCounter [...]
the \BarCounter will be defined automatically.

Additionally there is the option counter, which can be used
to declare the representation of the option, for instance counter:i
allocated a counter that is printed in lowercase roman numerals. For
the available representations, see 11.1.1.

Finally, if the counter is only used in a macro, then the option
HasCounterwill cause the counter to be created anyhow. This is
analogous to the HasTitle option.

Implementor’s Note

10.2

39

10 Options

At the start of defining the construct, \BarCounter is defined to be an

option:

\add@generic@default{\has@counterno
\def\counter@repr{1}
\csarg\def{\genGoption@name{\@name Counter}}{/

\@add@toks{\@name

Counter}\global\has@counteryes}}

Then,

\add@generic@stop@default{\ifhas@counter
\xp\expandafter\xp\install@counter
\xp\counter@repr\@space\fi}
The counter is stepped, and the new value is stored in a mark item, in
\outer@start@commands:
\ifhas@counter
\nxp\StepCounter:\expandafter\@name\@space
% This sets the \current@label by default
\ifhas@marks \edef\nxp\cs@e
{\nxp\nxp\nxp\refresh@mark@item
{\@name Counter}{\CSname{\@name
Counter}}}V
\nxp\csQe
\fi
\fi

10.3 Chunks of text

Especially in headings, short chunks of text may need a special
treatment. For instance, the number may have to be filled to a certain
width, or a line may have to be drawn of the exact length of the title.
Lollipop have various general options (so they can also be used in other
contexts than headings) for handling pieces of text.

10.3.1 The block option

The blockoption takes up a piece of text and fits it on one line. It can
measure the text, or set the size. Also there are a number of ways of
placing a block.
Basic usage:

block:start [...] block:stop
This takes the enclosed text, and reproduces it. This is mostly
interesting in combination with textcolumn, see 10.3.3.

block:hang [...] block:stop
The resulting block is dropped until its top touches the baseline. For
uniformity of appearance, the resulting width of the block can be
specified:

block:start [...] fillupto:20pt

40 The name of a \Distance parameter can be used here.

Chunks of text

Example 10.1

\DefineHeading:Test
line:start block:hang PointSize:8 SetFont
TestCounter fillupto:20pt
block:hang PointSize:14 SetFont title

block:stop
line:stop Stop
\Test Top Aligning the Title

! Top Aligning the Title

The block is usually in between the margins of the text, but it can
made to stick out into the margin. For the left margin this done as
block:start [...] stickout:left
and for the right margin
block:start [...] stickout:right
The size of the box can be specified, for instance as
block:start [...] stickout:left=20pt
For a left box the material in it is pushed to the left edge, for a right
sticking box it is shifted to the right.

10.3.2 The line option

The option lineis used to create a single strip of text that fits exactly
in between the margins of the page. Most of the time, titles will be in a
line.

Example 10.2

\DefineHeading:Test
line:start block:start TestCounter Spaces:1.5
stickout:left

title line:stop Stop
\Test A Title

A Title

Another example was above. Here is another use of a line:

Example 10.3

\DefineHeading:Test
line:start TestCounter fillup title line:stop Stop
\Test The title

10.8

41

10 Options

42

1 The title

10.3.3 The textcolumn option

In the examples above all titles fit on one line comfortably. If this is not
the case, the title can be put in a textcolumnwhich can span several
lines.

Example 10.4

\DefineHeading:Test
line:start block:start TestCounter Spaces:2 block:stop
textcolumn:topline title textcolumn:stop
line:stop Stop
\Test A very very very very very very very very very very
very very
Very very very very very vVery vVery Very vVery very very very
Very very very very very very very very long title

1 A very very very very very very very very very very very very very
Very Very very very very Very very very very very very very very
very very very very very very long title

This option is mostly interesting in combination with others such as
block and line. As is apparent from the above example: a block placed
in the same line as a text column will detract from the latter’s width.

(In fact it is the other way around: Lollipop sets the line with a
text column of width zero to determine the remaining space. Then the
line is set again. This may give problems if you manipulate parameters
inside the line, because the line is in effect typeset twice. Also make
sure not to have other \vbox-es in the line than the text column.)

10.3.4 Traps

It is a bad idea to have material in headings and such that is not inside
a block, textcolumn, or line. For instance:

Example 10.5

\DefineHeading:Test
block:start TestCounter Spaces:2 block:stop
title Stop

\Test Where does the title go?

Embedded constructs

1
Where does the title go?

10.4 Labels

References to any counter will always be correct, no matter if that
counter has changed after retypesetting the document, if symbolic
references are used. Referencing is explained in detail in chapter 8.
The way a symbolic reference is formatted can be altered from
the default (just give the counter) by using the labeloption.
\DefineHeading:ASection
line:start Style:italic ASectionCounter Spaces:2
title line:stop
label:start (ASectionCounter) label:stop Stop
See further section 8.2.

10.5 Break before / after

The options breakbeforeand breakaftercontrol how eager TEX will
be to break the page before or after a construct. These options take
one value, a so-called ‘penalty’ value, meaning that the higher the
value you specify, the higher the penalty is, and therefore the less likely
it is that the page will be broken there.

Numerical values are typically in the tens or hundreds; any
value of 10 000 or more means that there will never be a break at that
point; a value of =10 000 or less means a guaranteed break. If you don’t
want to remember these rules, values of yes and no mean a guaranteed
break, and no break respectively.

A further exceptional value is breakbefore/after:0, this will cause
no penalty to be placed. The reason for this is highly TpXnical.

10.6 Indentation

The option indentaftercontrols the behaviour of the first paragraph
after a generic construct., indentinside, indentfirst.

10.7 Embedded constructs

Most generic constructs will be vertically separated from the
surrounding text. However, in rare cases (and for unusual applications)
it be desired to have a construct that is part of a paragraph. For this
the option embeddedexists.

10.7

43

10 Options

44

This option has the following values.

embedded:no
This is the default.

embedded:left
The construct continues an already started paragraph, but after the
construct a vertical break follows.

embedded:right
After the construct a paragraph can continue, but the construct is
separated vertically from preceding text.

embedded:yes
The construct is both left and right embedded.

Embedding a construct has an interesting application to
generating indexes. (See chapter 9 for general information about
external files.) This can be done by having embedded headings that
write their title to the index file.

Example 10.6

\DefineExternalFile:tIndex=tix
\DefineHeading:NewWord embedded:yes

block:start Style:bold title block:stop
external:tIndex title external:stop Stop
\def\introword#1{\NewWord #1\par}

In this sentence two \introword{flubrious} words are
\introword{stinselsed}.

In this sentence two flubriouswords are stinselsed.

Cute, ain’t it?

10.8 Implicit closing

The control sequence \>closes the current group, and \>]closes all
currently open groups. Every once in a while this is too drastic. Hence
there is an option noimplicitclosethat can be used to prevent a
construct from being closed implicitly.

10.9 Testing

There is an option test.

Counters

Chapter 11
Commands

11.1 Counters

Counters can be declared explicitly by the user, but more often they
are defined automatically in some generic construct:
The \Foo defined by
\DefineBar:Foo ...
counter:i ...
Stop
will have a counter that counts in roman lowercase, and which is
accessible as \FooCounter. Everytime \Foo is used, this counter is
increased by one.
The use of the counter option is described in 10.2. Here are the
commands for explicit manipulation of counters.

11.1.1 Allocation and representation

A counter is created by for instance

\NewCounter:Things
This will create control sequence \ThingsCounter that will print
the value of the counter. The counter will usually be printed as an
Arabic numeral, but other counter representations can be specified by
\CounterRepresentation Here are their codes:

1 numeric

a lowercase character
A uppercase character
i lowercase roman

I lowercase roman

for instance
\CounterRepresentation:Things=i

will cause \ThingsCounter to print a lowercase Roman numeral.
However, a call such as
\CounterRepresentation:Theorem=Lemma

will make the \TheoremCounter a synonym of an earlier created

\LemmaCounter

11.1.2 Counter manipulation

The following commands can be used to manipulate counters, both

11.1

45

17 Commands

when they are created by hand using \NewCounterand when they were
generated automatically in some generic construct:
Reset the counter to one:

\StartCounter:things
Increase the counter by one:
\StepCounter:things
Decrease the counter by one:
\BackStepCounter:things
Set the counter to some specified value
\SetCounter:things=5

11.1.3 Counter hierarchies

Often counters are related to each other. For instance, when a new
section begins, the subsection counter has to be reset. The same may
be true for equation counters. In Lollipop such a relation is indicated
by a call to \GoverningCounter, for instance

\GoverningCounter:SubSection=Section

All of the counter manipulation commands applied to a governing
counter will cause all governed counters to be reset. Such a reset also
occurs if the counter was created in some generic construct.

For examples, see section 4.1.

11.1.4 Referencing counters

All counters that are declared as part of a generic construct, or
explicitly through \NewCounterautomatically become the current
reference when they are altered. Thus \label [bar] will make
\ref [bar] refer to the value of the counter most recently changed. The
way the counter is referenced can be altered by the label option in
generic constructs; see section 10.4.

For generic constructs with a counter no explicit
\labelcommands need to be given; such commands take an optional
argument with the label key:

\Section[sec:examples] Examples

11.1.5 Examples of counter usage

Items start at the value of one, so if a starting value of zero is
necessary, the following will work

\Enumerate \SetCounter:item=-1
\item ...

46 Implementor’s Note

Counters

I-12 The counter name

The \count register associated with a counter receives an internal name:
\def\counter@name#1{#10C}
Also the following common abbreviations are provided:

\def\cs@counter@ame#1{\csname#1@C\endcsname}
\def\counter@@name#1{\CSname{#1@C}}

I-13 Allocation and representation

The user command \NewCounterallocates a counter plus an associated
‘reset list":

\def\NewCounter:#1 {
\csarg\newtoks{#1@RL}

\csn #1@RL\ecs={}
\new@counter{#1}
}

\def\new@counter#1{
\new@@counter{#1}
\CounterRepresentation: {#1}=1
\StartCounter:{#1}

}

\def\CounterRepresentation:#1=#2 {
\if\UndefinedCS{\counter@name{#2}}%is deze teller
een synoniem?
\represent@counter{#1}{#2}
\else \@SynonymCounter{#1}{#2}
\fi}
\def\represent@counter#1#2{
\edef\cs@e{@\if#2iroman\else
\if#2IRoman\else \if#2alcasciilelse
\if#2Aucasciilelse arabic\fi\fi\fi\fi}
\csarg\edef{\counter@repr{#1}}{\CSname{\cs@el}}
\csarg\edef{#1Counter},
{\CSname{\counter@repr{#1}}\counter@@name{#1}}
}

\def\@SynonymCounter#1#2{\edef\cs@b{/,
\nxp\let\counter@@name{#1}=\counter@@name{#2}
\nxp\let\CSname{#1Counter}=\CSname{#2Counter}
\nxp\let\CSname{#1@RL}=\CSname{#20RL}}

\cs@b
}

\@GenericOption{sharecounter}
{\CounterRepresentation:\@name=#1 }

17 Commands

I-14 Governing and resetting

A counter can be defined as being governed by another counter;
whenever the other counter is manipulated, this counter is reset. The
implementation is through ‘reset lists': every counter is added to the
reset list of its governing counter, and whenever a counter is altered,
everything in its reset list is reset.

\def\GoverningCounter:#1=#2 {\if\UndefinedCS{#2@RL}
\Emessage{No counter defined for ‘#2’}
\else\append@to@list{#2@RL}{\\#1;}\fi}

\def\reset@subordinates#1{/,
\def\\##1;{\start@counter{##1}}%

\the\csname #1O@RL\endcsname \let\\=\relax}
The command \reset@subordinates is executed by all user leve
commands:

\def\StartCounter:#1

{\handle@user@counter{#1}{start}{}}

\def\StepCounter:#1

{\handle@user@counter{#1}{step}{}}

\def\BackStepCounter: #1

{\handle@user@counter{#1}{back@step}{}}

\def\SetCounter:#1=#2

{\handle@user@counter{#1}{set}{#2}}

\def\handle@user@counter#1#2#3

{\if\UndefinedCS{\counter@name{#1}}
\Wmessage{Unknown counter: #1}
\else \csarg\global{#2@counter}{#1}{#3}/,
\re-
set@subordinates{#1}\define@reference{#1}/,
\fi}
The system level commands have no further complications.

\def\step@counter#17,

{\increase@value{\counter@name{#1}}\@ne}

\def\back@step@counter#1/,

{\increase@value{\counter@name{#1}}\m@ne}
\def\start@counter#1/,

{\set@value{\counter@name{#1}}\z@}
\def\set@counter#1#2/,

{\set@value{\counter@name{#1}}{#2}\relax}

11.2 Font selection

In Lollipop, choosing a font is done through three parameters:

Typeface A collection of related styles and sizes. The typeface is set
by the command \Typeface.

Style Italic, bold, roman, typewriter. You know. The style is set by
48 the command \Style.

Font selection 11.2

PointSize The size of a font in typographical points (72.27 per inch).
The pointsize is set by the command \PointSize.

The most common change of font is a change in style. Therefore,
issuing a command such as

\Style:bold
immediately changes the font to the bold of the current typeface in the
current pointsize.

However, issuing a command such as

\Typeface:Goudy0ldStyle
or

\PointSize:28
will not change the font, since such changes are usually accompanied
by a change in style. In case that an immediate switch is necessary, the
command \SetFontcan be given. This evaluates the current value
of the typeface, style, and pointsize commands, and sets the font
accordingly.

A number of typeface names have been predefined in Lollipop,
however, in order to print them your printer (software) must have them
available.

Example 11.1

\SerifFace \PointSize:12

\Style:roman This \Style:italic sentence \PointSize:10 has
\SetFont way \SansFace \Style:roman too \SetFont many
\PointSize:12 \SetFont font \Style:bold changes.

This sentence has way too many font changes.

(The commands \SerifFace and \SansFace are defined in the master
file of this manual, and serve to make this manual formattable on any
system.)

11.2.1 Relative size changes

Apart from setting the pointsize explicitly, it is also possibly to

make size changes relative to the current size. For instance,
\PointSizeLargerand \PointSizeSmallerwith an optional argument
indicating the size of the change can be used. These commands are not
cumulative.

Example 11.2

\SerifFace

\PointSize:9 \SetFont Every once in a while,\SaveFont
\PointSizeLarger[2] shouting \PointSizeLarger helps.
\PointSizeSmaller [2]But most of the times it doesn’t.
\RestoreFont Unfortunately.

49

17 Commands

Every once in a while, shouting helps. But most of the times it doesn’t.
Unfortunately.

Similar to the changes in mathematics mode to script and scriptscript
size, the same relative changes are available in text mode through the
control sequences \scriptand \scriptscript. The control sequence
\normalcan be used to restore the default size.
Here is one application of such relative changes:
L\kern -.3em\raise .35ex\hbox {\script A}\kern
-.lem\TeX
which gives definition of the IATEX logo that is independent of
typeface, size and style.
The relative sizes of script and scriptscript fonts are by default
at 70% and 50%, but they can be set explicitly by
\PointSizeScriptSizes:10=10,7,5
This also gives the possibility to have the \normal size to be different
from the surrounding pointsize.

11.2.2 Typeface definition

Defining a typeface means telling Lollipop how the external font name,
that is, the name of the tfm file, is to be constructed from the internal
parameters. The command \DefineTypefacetakes four parameters and
an optional fifth. The parameters are in sequence

1 The internal name of the typeface: the name that is given to the
\Typeface command.
2 The root of the external file name. It is assumed that all font

names of different styles and sizes are constructed by appending
characters to this base.

3 Suffixes corresponding to the styles that are available.

4 Suffixes corresponding to the sizes that are available.

Here is the definition of the Computer Modern typeface:
\DefineTypeface{ComputerModern}{cm}
{roman:r; slant:sl; italic:ti; mitalic:mi;
bold:bx; tty:tt;
default:r;}
{<6:5; <7:6; <8:7; <9:8; <10:9; <11:10;
<12:10 \scaled\magstephalf;
<14:10 \scaled\magstepl; <16:10
\scaled\magstep2;
<20:10 \scaled\magstep3; >19:10
\scaled\magstep4;
default:10;}
Actually, not all combinations of styles and sizes are available. That’s
where the optional argument comes in. This argument can be used to
50 specify with TEX conditionals exceptional style/size combinations. Here

Baselineskip 11.3

some trickery is needed: internally the size is stored in \F@size, and in
order to use this parameter we need to make the at-sign a letter
temporarily.

\makeatletter
\DefineTypeface{Compu ...

default:10;}
[\ifStyle:italic \ifnum\F@size<7 ti7\fi\fi
\ifStyle:tty \ifnum\F@size<8 tt8\fi\fi]

For other typefaces specifying the size suffix may be much easier than
for Computer Modern. For instance, here is the definition of the
PostScript Helvetica typeface.

\makeatletter

\DefineTypeface{psHelvetica}{helv}
{roman:; italic:i; mitalic:i; bold:b; default:;}
{default: at \F@size pt;}

\makeatother

11.2.3 Other font matters

The combination \SaveFontwith a subsequent \RestoreFontcan be
used to save and restore the current font.
An abbreviation for a font can be defined by

\DefineFont:name=face,size,style

Even if you don’t use Computer Modern as your main typeface, the
typewriter style is not bad, so a control sequence

\def\tt{\Typeface:ComputerModern \Style:tty }

has been given that makes \ttalways refer to the cmtt fonts. You're at
liberty to change this, of course.

11.3 Baselineskip

Corresponding to a font size usually the baseline skip has to change. By
default a fixed ratio of 1.2 for this is taken, for instance using a 12 point
baseline skip for 10 point fonts. Changing the ratio can be done by

\BaselineSkipPointSizeRatio:1.3

If only for some specific size the baseline skip has to deviate from the
default ratio, then this can be set by

\SetPointSizeBaselineSkip:9=12
51

17 Commands

52

11.4 Indentation Control

11.4.1 To indent or not to indent

In most documents there is a general rule that all paragraphs indent
unless a certain condition, or that they do not indent unless certain
special conditions hold. For Lollipop documents this is determined by
the command \AlwaysIndent, with values yes/no.

To override this default setting a command \Indent(with
values yes/no) exists, but that is mostly useful as an option in generic
constructs, and even there it will not be used much. See section 10.6 for
options relating to indentation.

Important: never set \parindent to zero. Preventing
indentation globally should be done through \AlwaysIndent:no.

11.4.2 Indentation levels; indentation size

When Lollipop decides that text should be indented, it refers to a list
of indentations for the exact amount. This list contains indentation
amounts for each ‘level’ of indentation: initially the level is one, and if
you nest constructs that indent (for instance using a list inside a list)
the level goes up one step per nested construct.

There is a quantity

\Distance:basicindent
that is used on the first indentation level. By default on higher levels
a fraction of the \basicindentis used. Thus you can regulate the
indentation on all levels simultaneously by resetting the \basicindent.

Example 11.3

\Distance:basicindent=15pt

\DefineList:AList item:left itemCounter item:stop Stop
\AList\item Level one \AList\item Level two
\AList\item Level three\>]

\Distance:basicindent=25pt

\AList\item Level one \AList\item Level two
\AList\item Level three\>]

1 Level one
A Level two
I Level three

1 Level one
A Level two
I Level three

Margins

The amount of indentation on a certain level can be set explicitly with
\LevelIndent.

Example 11.4

\Distance:basicindent=15pt

\LevelIndent:2=20pt

\DefineList:AList item:left itemCounter item:stop Stop
\AList\item Level one \AList\item Level two
\AList\item Level three\>]

1 Level one

A Level two

I Level three

11.4.3 Manipulating the indentation level

Every once in a while it can be useful to move to a next indentation
level, or to return to a previous level. For this the two commands
\PushIndentLeveland \PopIndentLevelare available. One application
is for ‘interrupted lists’:

Example 11.5

\Itemize\item One
{\par\PopIndentLevel Interrupted text!\par}
\item Two\>

. One
Interrupted text!
° Two

See chapter 9 for examples of the use of \PushIndentLevel

11.5 Margins

By default, Lollipop tries to keep straight margins. You can change its
mind about that by

\FlushRight:no \FlushLeft:no
If the margins are not flush, the stretchable white space used is
\rightmarginstretchand \leftmarginstretch.

11.5

53

17 Commands

54

11.6 White Space

White space can be indicated by \hwhiteand \vwhite. They are often
useful in style definitions. Use:
\vwhite:15pt
or
\hwhite:{15pt minus 3pt}
for stretch and shrink. The command \whiteis independent of the
mode, and it expands to \hwhite or \vwhite depending on the
prevailing mode of TEX.
The command \fillupis mostly useful in style definitions: it
tries to fill up as much white space as is possible. For instance
line:start litteral:foo fillup litteral:bar
line:stop
will push foo and bar as far apart as is possibly within the margins.

Implementor’s Note
All three control sequences \white, \hwhite, \vwhite have internal
equivalents, for instance
\def\white:#1 {\@white{#1}}

11.7 Distances

The command \Distancecan be used to declare a name for a certain
distance, or in more correct TEXnical lingo, for a certain piece of glue.
For instance, declaring that
\Distance:oneline=15pt
means that you can specify in some constructs
\DefineFoo:Bar whitebefore:oneline whiteafter:oneline
If you change your mind later about the value of oneline you only
need to change one line in the style definition.
Since the second parameter of \Distance is bounded by a space
(or the line end, whatever comes first), you can specify stretchable
distances by enclosing plus and minus parts in braces:
\Distance:oneline={15pt plus 2pt minus 3pt}
Another use of \Distance is to define one distance as a synonym of
another. This may come in handy if you use some basic distance, such
as oneline for several purposes. Example: if you specify
\Distance:whitebefore=oneline
than the whitespace before a construct will be taken to be oneline if
you don’t use the whitebefore option explicitly.

11.8 Tests

Users can define tests:

Goodies 11.9

\DefineTest:SomethingTheMatter
which are set like any other test:
\SomethingTheMatter:yes
or
\SomethingTheMatter:no
Tests can be used as
\ifSomethingTheMatter ... \else ... \fi
Like any other conditional, test can be used inside constructs.
\DefineFoo:Bar [...]
ifSomethingTheMatter [...] fi
[...] Stop

11.9 Goodies

The commands \SaveAllocand subsequent \RestoreAllocsave and
reset the internal TEX allocation counters.

Implementor’s Note
Obscure goodies

I-15 Dummy commands

For purposes such as termination of an argument it is usefule to have
control sequences that have a meaning different from any other control
sequence. The command \NewDummygives such control sequences.

The call \NewDummy{some} defines \some, or gives an error msg at
redefinition.

55

12 Tracing
Chapter 12

Tracing

12.1 Do you really want to see this?

You can get glimpses of Lollipop’s internal workings by enabling some
of the internal traces. The extreme positions
\Trace:yes
and
\Trace:no
cause all trace information and no trace at all respectively to be
generated. You may find this trace interesting, or it may dumbfound
you. Of course, if your name is Victor you find it pretty useful.
The following traces are available:
\NewTrace:def 7% definition of user constructs
\NewTrace:ref ¥ cross references
\NewTrace:ext % external files
\NewTrace:doc 7% document structure
\NewTrace:font % font loading
\NewTrace:out % output routine
\NewTrace:indent % indentation control
\NewTrace:gen % general tools

Implementor’s Note
Trace messages are generated by calls to
\Tmessage [type] {text}
Setting
\Trace:no
defines \Tmessage to discard its arguments. This is the most efficient
way of generating no trace information.

Tracing is controlled by a global parameter \trace@all. A value
of —1 disables all tracing; +1 corresponds to all tracing on; 0 gives
selective tracing. In the third case a call

\Trace:xyz
set \trace:xyz positive so that only \Tmessage [xyz]{. ..} calls will
produce output. Enabling a selective trace sets \trace@all to zero, in
case it was —1.

56

Do you really want to see this? 13.1

Chapter 13

The style definition for this book

In case you were wondering how this book was typeset, here is the full
style definition. By the standards of what Lollipop can do it is pretty
pedestrian.

One thing that may have provide intellectual titilation is the
definition of \Example and \OutExample. It allowed me to keep the
examples in sync with their output.

Unfortunately that doesn’t really rely on Lollipop. It does
illustrate the fact that Lollipop is interfaceable to arbitrary macros.
(But don’t try loading Lollipop on top of IATEX!)
\chardef\busje‘\\

\def\cs#1{{\tt\char\busje#1}}
\def\con#1{{\tt#1}}
\def\n#1{{\tt#1}}
\def\file#1{{\tt#1}}

\def\Lollipop{Lollipop}

\Distance:rightmarginstretch={0cm plus 2cm}
\Distance:whitebefore={6pt plus 3pt minus 2pt}
\Distance:whiteafter=vwhitebefore

\DefineExternalFile:contents=toc

\DefineHeading:Chapter

breakbefore:yes whiteafter:20pt

line:start PointSize:14 Style:bold literal:Chapter
Spaces:1 ChapterCounter line:stop

vwhite:15pt

line:start PointSize:16 Style:bold title line:stop

external:contents title external:stop

Stop

\DefineHeading:Section
whitebefore:20pt whiteafter:14pt
line:start PointSize:14 Style:italic
ChapterCounter . SectionCounter
Spaces:1 title line:stop
external:contents title external:stop
label:start ChapterCounter . SectionCounter label:stop

Stop
57

13

58

The style definition for this book

\GoverningCounter:Section=Chapter

\DefineHeading:SubSection
whitebefore:14pt whiteafter:8pt
line:start PointSize:10 Style:italic
ChapterCounter . SectionCounter . SubSectionCounter
Spaces:1 title line:stop
label:start ChapterCounter . Spaces:.2 SectionCounter
. Spaces:.2 SubSectionCounter label:stop
Stop
\GoverningCounter:SubSection=Section

\DefineExternalFile:impnotes=imp
\DefineHeading:iSection
whitebefore:20pt whiteafter:14pt
line:start PointSize:12 Style:bold I -
Style:italic iSectionCounter
Spaces:1 title line:stop
label:start I - iSectionCounter label:stop
external:impnotes title external:stop
Stop
%\GoverningCounter:iSection=Chapter
\DefineExternalltem:iSection file:impnotes PushIndentLevel
item:left I - Style:italic iSectionlLabel item:stop
title begingroup Spaces:2 Style:italic Page endgroup
Stop

\DefineExternalIltem:Chapter file:contents
item:left ChapterLabel item:stop
title begingroup Spaces:2 Style:italic Page endgroup
Stop

\DefineExternalIltem:Section file:contents PushIndentLevel
item:left ChapterLabel . SectionlLabel item:stop
title begingroup Spaces:2 Style:italic Page endgroup
Stop

\def\impnotetxt{Implementor’s Note}
\DefineTextBlock: ImpNote PushIndentLevel

line:start PointSize:12 Style:italic impnotetxt
line:stop

SansFace PointSize:9 SetFont text

Stop

\DefineTextBlock:WizNote
PushIndentLevel PointSize:9 SetFont text
Stop

Do you really want to see this? 13.1

\DefineList:Description

item:left description Spaces:2 item:stop
whitebetween:6pt

Stop

\DefineList:cDescription
item:left tt char busje description Spaces:2 item:stop
whitebetween:6pt
Stop

\DefineList:Enumerate
item:left itemCounter item:stop
Stop

\DefineList:Itemize
item:left itemsign item:stop
Stop

\SerifFace \SetFont

\newwrite\exfile
\def\HereAndOut#1{\immediate\write\exfile{#1}}
\specialcomment{Example}

{\EExample
\immediate\openout\exfile=example.tex\relax
\let\ThisComment\HereAndOut}

{\immediate\closeout\exfile
\begingroup \tt \SetFont

\verbatimfile{example.tex}\endgroup
\SaveAlloc \input example.tex\relax \RestoreAlloc
\EExampleStop}
\DefineTextBlock:EExample whiteafter:{6pt plus 5pt}
noimplicitclose hrule vwhite:3pt
line:start literal:Example Spaces:1.5
ChapterCounter . EExampleCounter
line:stop
vwhite:3pt hrule vwhite:3pt text vwhite:3pt hrule
Stop
\GoverningCounter:EExample=Chapter

\specialcomment{OutExample}

{\EExample
\immediate\openout\exfile=example.tex\relax
\let\ThisComment\HereAndOut}
{\immediate\closeout\exfile 59

13 The style definition for this book

\begingroup \tt \SetFont
\verbatimfile{example.tex}\endgroup
\par\penaltyO\relax
\SaveAlloc \SuspendOutput \begingroup \CountSheetsno
\SetCounter:Page=1
\global\setbox\PageRow\hbox{1}/
\let\CurrentShipout\ToPageRow
\xInputFile:example
\endgroup
\ResumeQutput \RestoreAlloc
\noindent\unhbox\PageRow\hbox{}\par
\EExampleStop}
\newbox\PageRow\newbox\RowPage
\def\ToPageRow{\afterassignment\xToPageRow\setbox\RowPage}
\def\xToPageRow{\global\setbox\PageRow
\hbox{\unhbox\PageRow\box\RowPage\hfill}}

\def\opt#1{{\tt#1}}
\DefineExternalFile:optindex=0ix
\def\refopt#1{\OptToIdx #1\par}
\DefineHeading:0ptToIdx embedded:yes
block:start tt title block:stop
external:optindex title external:stop
nomarks Stop
\DefineExternalltem:0ptToIldx file:optindex
embedded:yes
begingroup tt title endgroup
nobreak Spaces:1.5 Page Spaces:2.5 Stop

\DefineExternalFile:csindex=cix

\def\refcs#1{\CsToIdx #1\par}

\DefineHeading:CsToIdx embedded:yes
block:start tt char busje title block:stop
external:csindex title external:stop
nomarks Stop

\DefineExternalltem:CsToIdx file:csindex
embedded:yes
begingroup tt char busje title endgroup
nobreak Spaces:1.5 Page Spaces:2.5 Stop

\topskip20pt
\DefinePageGrid:LeftPage width:page=11lcm height:page=20cm
band:start block:start PointSize:9 Style:italic
FirstPlaced:ChapterCounter Spaces:2
stickout:left
60 FirstPlaced:ChapterTitle band:stop

Do you really want to see this? 13.1

textband:start text textband:stop
band:invisible block:start PointSize:9 Style:bold
PageCounter Spaces:2 stickout:left band:stop
NextPageGrid:RightPage Stop
\DefinePageGrid:RightPage width:page=11cm height:page=20cm
band:start fillup PointSize:9 Style:italic
LastPlaced:SectionTitle
block:start Spaces:2 LastPlaced:ChapterCounter .
LastPlaced:SectionCounter stickout:right
band:stop
textband:start text textband:stop
band:invisible fillup
block:start PointSize:9 Style:bold Spaces:2
PageCounter stickout:right band:stop
NextPageGrid:LeftPage Stop
\DefinePageGrid:EmptyPage width:page=11cm height:page=20cm
textband:start text textband:stop
NextPageGrid:LeftPage Stop

\endinput

61

