
\def\zigzag{\psline(0,0)(.5,1)(1.5,-1)(2,0)}%

\psset{unit=.25,linewidth=1.5pt}

\multips(0,0)(2,0){8}{\zigzag}

PSTricks is distributed with a much more general loop macro, called
\multido. You must input the file multido.tex or multido.sty. See the

multido documentation multido.doc for details. Here is a sample of what you can
do:

\begin{pspicture}(-3.4,-3.4)(3.4,3.4)

\newgray{mygray}{0} % Initialize ‘mygray’ for benefit

\psset{fillstyle=solid,fillcolor=mygray} % of this line.

\SpecialCoor

\degrees[1.1]

\multido{\n=0.0+.1}{11}{%

\newgray{mygray}{\n}

\rput{\n}{\pswedge{3}{-.05}{.05}}

\uput{3.2}[\n](0,0){\small\n}}

\end{pspicture}

0.0

0.1

0.2
0.3

0.4

0.5

0.6

0.7

0.8
0.9

1.0

All of these loop macros can be nested.

26 Axes

The axes command described in this section is defined in pst-plot.tex /
pst-plot pst-plot.sty, which you must input first. pst-plot.tex, in turn, will auto-

matically input multido.tex, which is used for putting the labels on the
axes.

Axes 47

The macro for making axes is:

\psaxes*[par]{arrows}(x0,y0)(x1,y1)(x2,y2)

The coordinates must be Cartesian coordinates. They work the same
way as with \psgrid. That is, if we imagine that the axes are enclosed
in a rectangle, (x1,y1) and (x2,y2) are opposing corners of the rectangle.
(I.e., the x-axis extends from x1 to x2 and the y-axis extends from y1 to
y2.) The axes intersect at (x0,y0). For example:

0 1 2 3 4
0

1

2

3

(x2,y2)
(x0,y0)

(x1,y1)

\psaxes[linewidth=1.2pt,labels=none,

ticks=none]{<->}(2,1)(0,0)(4,3)

If (x0,y0) is omitted, then the origin is (x1,y1). If both (x0,y0) and (x1,y1)

are omitted, (0,0) is used as the default. For example, when the axes
enclose a single orthont, only (x2,y2) is needed:

0 1 2 3
0

1 \psaxes{->}(4,2)

Labels (numbers) are put next to the axes, on the same side as x1 and
y1. Thus, if we enclose a different orthont, the numbers end up in the
right place:

0 1 2 3
0

-1
\psaxes{->}(4,-2)

Also, if you set the arrows parameter, the first arrow is used for the tips
at x1 and y1, while the second arrow is used for the tips at x2 and y2.
Thus, in the preceding examples, the arrowheads ended up in the right
place too.12

12Including a first arrow in these examples would have had no effect because arrows
are never drawn at the origin.

Axes 48

When the axes don’t just enclose an orthont, that is, when the origin
is not at a corner, there is some discretion as to where the numbers
should go. The rules for positioning the numbers and arrows described
above still apply, and so you can position the numbers as you please by
switching y1 and y2, or x1 and x2. For example, compare

0 1 2-1-2

1

2

\psaxes{<->}(0,0)(-2.5,0)(2.5,2.5)

with what we get when x1 and x2 are switched:

0-1-2 1 2

1

2

\psaxes{<->}(0,0)(2.5,0)(-2.5,2.5)

\psaxes puts the ticks and numbers on the axes at regular intervals, using
the following parameters:

Horitontal Vertical Dflt Description

Ox=num Oy=num 0 Label at origin.

Dx=num Dy=num 1 Label increment.

dx=dim oy=dim 0pt Dist btwn labels.

When dx is 0, Dx\psxunit is used instead, and similarly for dy. Hence,
the default values of 0pt for dx and dy are not as peculiar as they seem.

You have to be very careful when setting Ox, Dx, Oy and Dy to non-
integer values. multido.tex increments the labels using rudimentary
fixed-point arithmetic, and it will come up with the wrong answer un-
less Ox and Dx, or Oy and Dy, have the same number of digits to the
right of the decimal. The only exception is that Ox or Oy can always
be an integer, even if Dx or Dy is not. (The converse does not work,
however.)13

13For example, Ox=1.0 and Dx=1.4 is okay, as is Ox=1 and Dx=1.4, but Ox=1.4 and
Dx=1, or Ox=1.4 and Dx=1.15, is not okay. If you get this wrong, PSTricks won’t
complain, but you won’t get the right labels either.

Axes 49

Note that \psaxes’s first coordinate argument determines the physical
position of the origin, but it doesn’t affect the label at the origin. E.g., if
the origin is at (1,1), the origin is still labeled 0 along each axis, unless
you explicitly change Ox and Oy. For example:

-2 -1 0 1 2
0

1

2

3

\psaxes[Ox=-2](-2,0)(2,3)

The ticks and labels use a few other parameters as well:

labels=all/x/y/none Default: all

To specify whether labels appear on both axes, the x-axis, the
y-axis, or neither.

showorigin=true/false Default: true

If true, then labels are placed at the origin, as long as the label
doesn’t end up on one of the axes. If false, the labels are never
placed at the origin.

ticks=all/x/y/none Default: all

To specify whether ticks appear on both axes, the x-axis, the
y-axis, or neither.

tickstyle=full/top/bottom Default: full

For example, if tickstyle=top, then the ticks are only on the side
of the axes away from the labels. If tickstyle=bottom, the ticks
are on the same side as the labels. full gives ticks extending on
both sides.

ticksize=dim Default: 3pt

Ticks extend dim above and/or below the axis.

The distance between ticks and labels is \pslabelsep, which you can
change with the labelsep parameter.

The labels are set in the current font (ome of the examples above were
preceded by \small so that the labels would be smaller). You can do
fancy things with the labels by redefining the commands:

Axes 50

\psxlabel

\psylabel

E.g., if you want change the font of the horizontal labels, but not the
vertical labels, try something like

\def\psxlabel#1{\small #1}

You can choose to have a frame instead of axes, or no axes at all (but
you still get the ticks and labels), with the parameter:

axesstyle=axes/frame/none Default: axes

The usual linestyle, fillstyle and related paremeters apply.

For example:

0-0.5-1.0-1.5
0

1

2

3

\psaxes[Dx=.5,dx=1,tickstyle=top,axesstyle=frame](-3,3)

The \psaxes macro is pretty flexible, but PSTricks contains some other
tools for making axes from scratch. E.g., you can use \psline and
\psframe to draw axes and frames, respectively, \multido to generate
labels (see the documentation for multido.tex), and \multips to make
ticks.

Axes 51

VI Text Tricks

27 Framed boxes

The macros for framing boxes take their argument, put it in an \hbox, and
put a PostScript frame around it. (They are analogous to LaTEX’s \fbox).
Thus, they are composite objects rather than pure graphics objects. In
addition to the graphics parameters for \psframe, these macros use the
following parameters:

framesep=dim Default: 3pt

Distance between each side of a frame and the enclosed box.

boxsep=true/false Default: true

When true, the box that is produced is the size of the frame or
whatever that is drawn around the object. When false, the box that
is produced is the size of whatever is inside, and so the frame is
“transparent” to TEX. This parameter only applies to \psframebox,
\pscirclebox, and \psovalbox.

Here are the three box-framing macros:

\psframebox*[par]{stuff }

A simple frame (perhaps with rounded corners) is drawn using
\psframe. The * option is of particular interest. It generates a solid
frame whose color is fillcolor (rather than linecolor, as with the
closed graphics objects). Recall that the default value of fillcolor

is white, and so this has the effect of blotting out whatever is
behind the box. For example,

Label
\pspolygon[fillcolor=gray,fillstyle=crosshatch*](0,0)(3,0)

(3,2)(2,2)

\rput(2,1){\psframebox*[framearc=.3]{Label}}

Text Tricks 52

\psdblframebox*[par]{stuff }

This draws a double frame. It is just a variant of \psframebox,
defined by

\newpsobject{psdblframebox}{psframebox}{doublesep=\pslinewidth}

For example,

\psdblframebox[linewidth=1.5pt]{%

\parbox[c]{6cm}{\raggedright A double frame is drawn

with the gap between lines equal to {\tt doublesep}}}

A double frame is drawn with the
gap between lines equal to doublesep

\psshadowbox*[par]{stuff}

This draws a single frame, with a shadow.

Great Idea!! \psshadowbox{\bf Great Idea!!}

You can get the shadow with \psframebox just be setting the
shadowsize parameter, but with \psframebox the dimensions of
the box won’t reflect the shadow (which may be what you want!).

\pscirclebox*[par]{stuff }

This draws a circle. With boxsep=true, the size of the box is close
to but may be larger than the size of the circle. For example:

You are

here

\pscirclebox{\begin{tabular}{c} You are \\ here \end{tabular}}

\cput*[par]{angle}(x,y){stuff }

This combines the functions of \pscirclebox and \rput. It is like

\rput{<angle>}(x0,y0){\string\pscirclebox*[<par>]{<stuff>}}

but it is more efficient. Unlike the \rput command, there is no
argument for changing the reference point; it is always the center
of the box. Instead, there is an optional argument for changing
graphics parameters. For example

Framed boxes 53

0 1 2
0

1

K1 \cput[doubleline=true](1,.5){\large K_1}

\psovalbox*[par]{stuff }

This draws an ellipse. If you want an oval with square sides and
rounded corners, then use \psframebox with a positive value for
rectarc or linearc (depending on whether cornersize is relative or
absolute). Here is an example that uses boxsep=false:

At the introductory
price of $13.99, it
pays to act now!

At the introductory price of

\psovalbox[boxsep=false,linecolor=darkgray]{\$13.99},

it pays to act now!

You can define variants of these box framing macros using the \newp-
sobject command.

If you want to control the final size of the frame, independently of the
material inside, nest stuff in something like LaTEX’s \makebox command.

28 Clipping

The command

\clipbox[dim]{stuff }

puts stuff in an \hbox and then clips around the boundary of the box, at
a distance dim from the box (the default is 0pt).

The \pspicture environment also lets you clip the picture to the boundary.

The command

\psclip{graphics} … \endpsclip

sets the clipping path to the path drawn by the graphics object(s), until
the \endpsclip command is reached. \psclip and \endpsclip must be
properly nested with respect to TEX grouping. Only pure graphics (those
described in Part II and \pscustom) are permitted. An Overfull \hbox

warning indicates that the graphics argument contains extraneous output
or space. Note that the graphics objects otherwise act as usual, and
the \psclip does not otherwise affect the surrounded text. Here is an
example:

Clipping 54

“One of the best new plays
I have seen all year: cool,
poetic, ironic …” proclaimed
The Guardian upon the Lon-
don premiere of this extraordi-

\parbox{4.5cm}{%

\psclip{\psccurve[linestyle=none](-3,-2)

(0.3,-1.5)(2.3,-2)(4.3,-1.5)(6.3,-2)(8,-1.5)(8,2)(-3,2)}

‘‘One of the best new plays I have seen all year: cool, poetic,

ironic \ldots” proclaimed {\em The Guardian} upon the London

premiere of this extraordinary play about a Czech director and

his actress wife, confronting exile in America.\vspace{-1cm}

\endpsclip}

If you don’t want the outline to be painted, you need to include linestyle=none
in the parameter changes. You can actually include more than one graph-
ics object in the argument, in which case the clipping path is set to the
intersection of the paths.

\psclip can be a useful tool in picture environments. For example, here
it is used to shade the region between two curves:

0 1 2 3 4
0

1

2

3

4

\psclip{%

\pscustom[linestyle=none]{%

\psplot{.5}{4}{2 x div}

\lineto(4,4)}

\pscustom[linestyle=none]{%

\psplot{0}{3}{3 x x mul 3 div sub}

\lineto(0,0)}}

\psframe*[linecolor=gray](0,0)(4,4)

\endpsclip

\psplot[linewidth=1.5pt]{.5}{4}{2 x div}

\psplot[linewidth=1.5pt]{0}{3}{3 x x mul 3 div sub}

\psaxes(4,4)

Driver notes: The clipping macros use \pstverbscale and \pstVerb. Don’t be
surprised if PSTricks’s clipping does not work or causes problem—it is never
robust. \endpsclip uses initclip. This can interfere with other clipping operations,
and especially if the TEX document is converted to an Encapsulated PostScript
file. The command \AltClipMode causes \psclip and \endpsclip to use gsave

and grestore instead. This bothers some drivers, such as NeXTTeX’s TeXView,
especially if \psclip and \endpsclip do not end up on the same page.

29 Rotation and scaling boxes

There are versions of the standard box rotation macros:

\rotateleft{stuff }

Rotation and scaling boxes 55

\rotateright{stuff}

\rotatedown{stuff}

stuff is put in an \hbox and then rotated or scaled, leaving the appropriate
amount of spaces. Here are a few uninteresting examples:

L
ef

t

Down

R
ight

\Large\bf \rotateleft{Left} \rotatedown{Down} \rotateright{Right}

There are also two box scaling macros:

\scalebox{num1 num2}{stuff }

If you give two numbers in the first argument, num1 is used to
scale horizontally and num2 is used to scale vertically. If you give
just one number, the box is scaled by the same in both directions.
You can’t scale by zero, but negative numbers are OK, and have
the effect of flipping the box around the axis. You never know
when you need to do something like this (\scalebox{-1 1}{this}).

\scaleboxto(x,y){stuff }

This time, the first argument is a (Cartesian) coordinate, and the
box is scaled to have width x and height (plus depth) y. If one of
the dimensions is 0, the box is scaled by the same amount in both
directions. For example:

Big and long \scaleboxto(4,2){Big and long}

PSTricks defines LR-box environments for all these box rotation and
scaling commands:

\pslongbox{Rotateleft}{\rotateleft}

\pslongbox{Rotateright}{\rotateright}

\pslongbox{Rotatedown}{\rotatedown}

\pslongbox{Scalebox}{\scalebox}

\pslongbox{Scaleboxto}{\scaleboxto}

Here is an example where we \Rotatedown for the answers to exercises:

Rotation and scaling boxes 56

Question: How do
Democrats organize a
firing squad?

Answer:Firsttheygetin
acircle,…

Question: How do Democrats organize a firing squad?

\begin{Rotatedown}

\parbox{\hsize}{Answer: First they get in a circle, \ldots\hss}%

\end{Rotatedown}

See the documentation of fancybox.sty for tips on rotating a LaTEX table

or figure environment, and other boxes.

Rotation and scaling boxes 57

VII Nodes and Node Connections

All the commands described in this part are contained in the file pst-
pst-node node.tex/pst-node.sty.

The node and node connection macros let you connect information
and place labels, without knowing the exact position of what you are
connecting or of where the lines should connect. These macros are
useful for making graphs and trees, mathematical diagrams, linguistic
syntax diagrams, and connecting ideas of any kind. They are the trickiest
tricks in PSTricks!

Although you might use these macros in pictures, positioning and rotat-
ing them with \rput, you can actually use them anywhere. For example,
I might do something like this in a guide about page styles:

With the myfooters page
style, the name of the
current section appears
at the bottom of each
page.

\makeatletter

\gdef\ps@temp{\def\@oddhead{}\def\@evenhead{}

\def\@oddfoot{\small\sf

\ovalnode[boxsep=false]{A}{\rightmark}

\nccurve[ncurv=.5,angleB=240,angleA=180,nodesep=6pt]{<-}{A}{B}

\hfil\thepage}

\let\@evenfoot\@oddfoot}

\makeatother

\thispagestyle{temp}

With the {\tt myfooters} page style, the name of the current section

appears at the bottom of each \rnode{B}{page}.

You can use nodes in math mode and in alignment environments as well.
Here is an example of a commutative diagram:

Nodes and Node Connections 58

A

B C

f g

h

$

\begin{array}{c@{\hskip 1cm}c}

& \rnode{a}{A}\\[2cm]

\rnode{b}{B} & \rnode{c}{C}

\end{array}

\psset{nodesep=3pt}

\everypsbox{\scriptstyle}

\ncline{->}{a}{b}\Bput{f}

\ncline{->}{a}{c}\Aput{g}

\ncline[linestyle=dotted]{->}{b}{c}\Aput{h}

$

There are three components to the node macros:

Node definitions The node definitions let you assign a name and shape
to an object. See Section 30.

Node connections The node connections connect two nodes, identified
by their names. See Section 31.

Node labels The node label commands let you affix labels to the node
connections. See Section 32.

30 Nodes

The name of a node must contain only letters and numbers, and must
begin with a letter.

PS Warning: Bad node names can cause PostScript errors.

\rnode[refpoint]{name}{stuff}

This assigns the name to the node, which will have a rectangular
shape for the purpose of making connections, with the “center”
at the reference point (i.e., node connections will point to the
reference point. \rnode was used in the two examples above.

\Rnode(x,y){name}{stuff}

This is like \rnode, but the reference point is calculated differently.
It is set to the middle of the box’s baseline, plus (x,y). If you omit
the (x,y) argument, command

\RnodeRef

Nodes 59

is substituted. The default definition of \RnodeRef is 0,.7ex. E.g,
the following are equivalent:

\Rnode(0,.6ex){stuff}

{\def\RnodeRef{0,.6ex}\Rnode{stuff}}

\Rnode is useful when aligning nodes by their baaelines, such as in
commutative diagrams. With \rnode horizontal node connections
might not be quite horizontal, because of differences in the size
of letters.

\pnode(x,y){name}

This creates a zero dimensional node at the point (x,y) (default
(0,0)).

\cnode*[par](x,y){radius}{name}

This draws a circle and assigns the name to it.

\circlenode*[par]{name}{stuff}

This is a variant of \pscirclebox that gives the node the shape of
the circle.

\cnodeput*[par]{angle}(x,y){name}{stuff}

This is a variant of \cput that gives the node the shape of the
circle.

\ovalnode*[par]{name}{stuff}

This is a variant of \psovalbox that gives the node the shape of
the ellipse.

The reason that there is no \framenode command is that using \psframe-

box (or \psshadowbox or \psdblframebox) in the argument of \rnode
gives the desired result.

31 Node connections

All the node connection commands begin with nc, and they all have the
same syntax:

\<nodeconnection>[<par>]{<arrows>}{<nodeA>}{<nodeB>}

Node connections 60

A line of some sort is drawn from nodeA to nodeB. Some of the node
connection commands are a little confusing, but with a little experimen-
tation you will figure them out, and you will be amazed at the things
you can do.

The node and point connections can be used with \pscustom. The
beginning of the node connection is attached to the current point by a
straight line, as with \psarc.14

When we refer to the A and B nodes below, we are referring only to the
order in which the names are given as arguments to the node connection
macros.

When a node name cannot be found on the same page as the node
connection command, you get either no node connection or a nonsense
node connection. However, TEX will not report any errors.

The node connections use the following parameters:

nodesep=dim Default: 0

The border around the nodes added for the purpose of determining
where to connect the lines.

offset=dim Default: 0

After the node connection point is calculated, it is shift up for
nodeA and down for nodeB by dim, where “up” and “down”
assume that the connecting line points to the right from the node.

arm=dim Default: 10pt

Some node connections start with a segment of length dim before
turning somewhere.

angle=angle Default: 0

Some node connections let you specify the angle that the node
connection should connect to the node.

arcangle=angle Default: 8

This applies only to \ncarc, and is described below.

ncurv=num Default: .67

This applies only to \nccurve and \pccurve, and is described
below.

14See page 71 if you want to use the nodes as coordinates in other PSTricks macros.

Node connections 61

loopsize=dim Default: 1cm

This applies only the \ncloop and \pcloop, and is described below.

You can set these parameters separately for the two nodes. Just add an
A or B to the parameter name. E.g.

\psset{nodesepA=3pt, offsetA=5pt, offsetB=3pt, arm=1cm}

sets nodesep for the A node, but leaves the value for the B node un-
changed, sets offset for the A and B nodes to different values, and sets
arm for the A and B nodes to the same value.

Don’t forget that by using the border parameter, you can create the
impression that one node connection passes over another.

Here is a description of the individual node connection commands:

\ncline*[par]{arrows}{nodeA}{nodeB}

This draws a straight line between the nodes. Only the offset and
nodesep parameters are used.

Idea 1

Idea 2

\rput[bl](0,0){\rnode{A}{Idea 1}}

\rput[tr](4,3){\rnode{B}{Idea 2}}

\ncline[nodesep=3pt]{<->}{A}{B}

\ncLine*[par]{arrows}{nodeA}{nodeB}

This is like \ncline, but the labels (with \lput, etc) are positioned
as if the line began and ended at the center of the nodes. This is
useful if you have multiple parallel lines and you want the labels
to line up, even though the nodes are of varying size, e.g., in
commutative diagrams.

\nccurve*[par]{arrows}{nodeA}{nodeB}

This draws a bezier curve between the nodes. It uses the nodesep,
offset, angle and ncurv parameters.

Node A

Node B

\rput[bl](0,0){\rnode{A}{\psframebox{Node A}}}

\rput[tr](4,3){\ovalnode{B}{Node B}}

\nccurve[angleB=180]{A}{B}

Node connections 62

\ncarc*[par]{arrows}{nodeA}{nodeB}

This is actually a variant of \nccurve. I.e., it also connects the
nodes with a bezier curve, using the nodesep, offset, and ncurv
parameters. However, the curve connects to node A at an angle
arcangleA from the line between A and B, and connects to node B

at an angle -arcangleB from the line between B and A. For small,
equal values of angleA and angleB (e.g., the default value of 8)
and with the default value of ncurv, the curve approximates an
arc of a circle. \ncarc is a nice way to connect two nodes with
two lines.

X

Y \cnodeput(0,0){A}{X}

\cnodeput(3,2){B}{Y}

\psset{nodesep=3pt}

\ncarc{->}{A}{B}

\ncarc{->}{B}{A}

\ncbar*[par]{arrows}{nodeA}{nodeB}

First, lines are drawn attaching to both nodes at an angle angleA
and of lengths armA and armB. Then one of the arms is extended
so that when the two are connected, the finished line contains 3
segments meeting at right angles. Generally, the whole line has
three straight segments. The value of linearc is used for rounding
the corners.

Connect some words!
\rnode{A}{Connect} some \rnode{B}{words}!

\ncbar[nodesep=3pt,angle=-90]{<-**}{A}{B}

\ncdiag*[par]{arrows}{nodeA}{nodeB}

First, the arms are drawn using angle and arm. Then they are
connected with a straight line. Generally, the whole line has three
straight segments. The value of linearc is used for rounding the
corners.

Node A

Node B

\rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}

\rput[br](4,0){\ovalnode{B}{Node B}}

\ncdiag[angleA=-90,angleB=90,arm=.5,linearc=.2]{A}{B}

Node connections 63

\ncdiagg*[par]{arrows}{nodeA}{nodeB}

This is similar to \ncdiag, but only the arm for node A is drawn.
The end of this arm is then connected directly to node B. The
connection typically has two segments. The value of linearc is
used for rounding the corners.

H

T

\cnode(0,0){4pt}{a}

\rput[l](3,1){\rnode{b}{H}}

\rput[l](3,-1){\rnode{c}{T}}

\ncdiagg[angleA=180,armA=2cm,nodesepA=3pt]{b}{a}

\ncdiagg[angleA=180,armA=2cm,nodesepA=3pt]{c}{a}

\ncangle*[par]{arrows}{nodeA}{nodeB}

The node connection points are determined by angleA and angleB
(and nodesep and offset). Then an arm is drawn for node B using
armB. This arm is connected to node A by a right angle, that also
meets node A at angle angleA. Generally, the whole line has three
straight segments, but it can have fewer. The value of linearc is
used for rounding the corners. Simple, right? Here is an example:

Node A

Node B

\rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}

\rput[br](4,0){\ovalnode{B}{Node B}}

\ncangle[angleA=-90,angleB=90,arm=.4cm,

linestyle=dashed]{A}{B}

\ncangles*[par]{arrows}{nodeA}{nodeB}

This is similar to \ncangle, but both armA and armB are used.
The arms are connected by a right angle that meets arm A at a
right angle as well. Generally there are four segments (hence one
more angle than \ncangle, and hence the s in \ncangles). The
value of linearc is used for rounding the corners. Compare this
example with the previous one:

Node A

Node B

\rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}

\rput[br](4,0){\ovalnode{B}{Node B}}

\ncangles[angleA=-90,arm=.4cm,linearc=.15]{A}{B}

Node connections 64

\ncloop*[par]{arrows}{nodeA}{nodeB}

The first segment is armA, then it makes a 90 degree turn to the
left, drawing a segment of length loopsize. The next segment is
again at a right angle; it connects to armB. For example:

A loop
\rnode{a}{\psframebox{\Huge A loop}}

\ncloop[angleB=180,loopsize=1,arm=.5,linearc=.2]{->}{a}{a}

\nccircle*[par]{arrows}{node}{radius}

This draws a circle from a node to itself. It is the only node
connection command of this sort. The circle starts at angle an-
gleA and goes around the node counterclockwise, at a distance
nodesepA from the node.

The node connection commands make interesting drawing tools as well,
as an alternative to \psline for connecting two points. There are variants
of the node connection commands for this purpose. Each begins with
pc (for “point connection”) rather than nc. E.g.,

\pcarc{<->}(3,4)(6,9)

gives the same result as

\pnode(3,4){A}\pnode(6,9){B}\pcarc{<->}{A}{B}

Only \ncLine and \nccircle do not have pc variants:

\pcline*[par]{arrows}(x1,y1)(x2,y2)

Like \ncline.

\pccurve*[par]{arrows}(x1,y1)(x2,y2)

Like \nccurve.

\pcarc*[par]{arrows}(x1,y1)(x2,y2)

Like \ncarc.

\pcbar*[par]{arrows}(x1,y1)(x2,y2)

Like \ncbar.

\pcdiag*[par]{arrows}(x1,y1)(x2,y2)

Like \ncdiag.

Node connections 65

\pcangle*[par]{arrows}(x1,y1)(x2,y2)

Like \ncangle.

\pcloop*[par]{arrows}(x1,y1)(x2,y2)

Like \ncloop.

32 Attaching labels to node connections

Now we come to the commands for attaching labels to the node con-
nections. The node label command must come right after the node
connection to which the label is to be attached. You can attach more
than one label to a node connection, and a label can include more nodes.

The node label commands must end up on the same TEX page as the
node connection to which the label corresponds.

The coordinate argument in other PSTricks put commands is a single
number in the node label commands: (pos). This number selects a point
on the node connection, roughly according to the following scheme:
Each node connection has potentially one or more segments, including
the arms and connecting lines. A number pos between 0 and 1 picks
a point on the first segment from node A to B, (fraction pos from the
beginning to the end of the segment), a number between 1 and 2 picks
a number on the second segment, and so on. Each node connection has
its own default value of the positioning coordinate, which is used by
some short versions of the label commands.

Here are the details for each node connection:

Connection Segments Range Default

\ncline 1 0≤pos≤1 0.5

\nccurve 1 0≤pos≤1 0.5

\ncarc 1 0≤pos≤1 0.5

\ncbar 3 0≤pos≤3 1.5

\ncdiag 3 0≤pos≤3 1.5

\ncdiagg 2 0≤pos≤2 0.5

\ncangle 3 0≤pos≤3 1.5

\ncloop 5 0≤pos≤4 2.5

\nccircle 1 0≤pos≤1 0.5

There is another difference between the node label commands and other
put commands. In addition to the various ways of specifying the angle

Attaching labels to node connections 66

of rotation for \rput, with the node label commands the angle can be
of the form {:angle}. In this case, the angle is calculated after rotating
the coordinate system so that the node connection at the position of the
label points to the right (from nodes A to B). E.g., if the angle is {:U},
then the label runs parallel to the node connection.

Here are the node label commands:

\lput*[refpoint]{rotation}(pos){stuff}

The l stands for “label”. Here is an example illustrating the use
of the optional star and :angle with \lput, as well as the use of the
offset parameter with \pcline:

Length \pspolygon(0,0)(4,2)(4,0)

\pcline[offset=12pt]{|-|}(0,0)(4,2)

\lput*{:U}{Length}

(Remember that with the put commands, you can omit the coor-
dinate if you include the angle of rotation. You are likely to use
this feature with the node label commands.)

With \lput and \rput, you have a lot of control over the position of
the label. E.g.,

label \pcline(0,0)(4,2)

\lput{:U}{\rput[r]{N}(0,.4){label}}

puts the label upright on the page, with right side located .4
centimeters “above” the position .5 of the node connection (above
if the node connection points to the right). However, the \aput
and \bput commands described below handle the most common
cases without \rput.15

15There is also an obsolete command \Lput for putting labels next to node connec-
tions. The syntax is

\Lput{<labelsep>}[<refpoint>]{<rotation>}(<pos>){<stuff>}

It is a combination of \Rput and \lput, equivalent to

\lput(<pos>){\Rput{<labelsep>}[<refpoint>]{<rotation>}(0,0){<stuff>}}

\Mput is a short version of \Lput with no {rotation} or (pos) argument. \Lput and
\Mput remain part of PSTricks only for backwards compatibility.

Attaching labels to node connections 67

\aput*[labelsep]{angle}(pos){stuff }

stuff is positioned distance \pslabelsep above the node connec-
tion, given the convention that node connections point to the right.
\aput is a node-connection variant of \uput. For example:

Hypotenuse \pspolygon(0,0)(4,2)(4,0)

\pcline[linestyle=none](0,0)(4,2)

\aput{:U}{Hypotenuse}

\bput*[labelsep]{angle}(pos){stuff }

This is like \aput, but stuff is positioned below the node connec-
tion.

It is fairly common to want to use the default position and rotation with
these node connections, but you have to include at least one of these
arguments. Therefore, PSTricks contains some variants:

\mput*[refpoint]{stuff }

\Aput*[labelsep]{stuff }

\Bput*[labelsep]{stuff }

of \lput, \aput and \bput, respectively, that have no angle or positioning
argument. For example:

1

\cnode*(0,0){3pt}{A}

\cnode*(4,2){3pt}{B}

\ncline[nodesep=3pt]{A}{B}

\mput*{1}

Here is another:

Label \pcline{<->}(0,0)(4,2)

\Aput{Label}

Now we can compare \ncline with \ncLine, and \rnode with \Rnode.
First, here is a mathematical diagram with \ncLine and \Rnode:

Attaching labels to node connections 68

\[

\setlength{\arraycolsep}{1cm}

\def\tX{\tilde{\tilde{X}}}

\begin{array}{cc}

\Rnode{a}{(X-A,N-A)} & \Rnode{b}{(\tX,a)}\\[1.5cm]

\Rnode{c}{(X,N)} & \Rnode{d}{\LARGE(\tX,N)}\\[1.5cm]

\end{array}

\psset{nodesep=5pt,arrows=->}

\everypsbox{\scriptstyle}

\ncLine{a}{b}\Aput{a}

\ncLine{a}{c}\Bput{r}

\ncLine[linestyle=dashed]{c}{d}\Bput{b}

\ncLine{b}{d}\Bput{s}

\]

(X – A; N – A) (˜̃X; a)

(X; N) (˜̃X; N)

a

r

b

s

Here is the same one, but with \ncline and \rnode instead:

(X – A; N – A) (˜̃X; a)

(X; N) (˜̃X; N)

a

r

b

s

Driver notes: The node macros use \pstVerb and \pstverbscale.

Attaching labels to node connections 69

VIII Special Tricks

33 Coils and zigzags

The file pst-coil.tex/pst-coil.sty (and optionally the header file pst-coil.pro)
pst-coil defines the following graphics objects for coils and zigzags:

\pscoil*[par]{arrows}(x0,y0)(x1,y1)

\psCoil*[par]{angle1}{angle2}

\pszigzag*[par]{arrows}(x0,y0)(x1,y1)

These graphics objects use the following parameters:

coilwidth=dim Default: 1cm
coilheight=num Default: 1
coilarm=dim Default: .5cm
coilaspect=angle Default: 45
coilinc=angle Default: 10

All coil and zigzag objects draw a coil or zigzag whose width (diameter)
is coilwidth, and with the distance along the axes for each period (360
degrees) equal to

coilheight x coilwidth.

Both \pscoil and \psCoil draw a “3D” coil, projected onto the xz-axes.
The center of the 3D coil lies on the yz-plane at angle pcoilaspect to
the z-axis. The coil is drawn with PostScript’s lineto, joining points that
lie at angle coilinc from each other along the coil. Hence, increasing
coilinc makes the curve smoother but the printing slower. \pszigzag
does not use the coilaspect and coilinc parameters.

\pscoiland \pszigzag connect (x0,y0) and (x1,y1), starting and ending
with straight line segments of length coilarmA and coilarmB, resp. Set-
ting coilarm is the same as setting coilarmA and coilarmB.

Here is an example of \pscoil:

Special Tricks 70

