
418 TUGboat, Volume 16 (1995), No. 4

LATEX

Never again active characters! Ω-Babel

Yannis Haralambous, John Plaice and
Johannes Braams

»Weißt Du, wo ich das Wasser
des Lebens finden kann?«

»An der Grenze Phantásiens«,
sagte Dame Aiuóla.

»Aber Phantásien hat keine Grenzen«,
antwortete er.

»Doch, aber sie liegen nicht außen,
sondern innen.«

M. Ende, Die unendliche Geschichte

Abstract

This progress report of the Ω development team (the
first two authors) presents the first major applica-
tion of Ω: an adaptation of Babel, the well-known
multilingual LATEX package, developed by the third
author. We discuss problems related to multilingual
typesetting, and show their solutions in the Ω-Babel
system.

The paper is roughly divided into two parts: the
first one (sections 1–4) is intended for average LATEX
users, especially those typesetting in languages other
than American English; the second part (section 5)
is more technical and will be of more interest to
developers of multilingual LATEX software.

TUGboat, Volume 16 (1995), No. 4 419

1 Introduction

Ω-Babel is the first real-world application of Ω: we
are in the process of adapting the multilingual LATEX
package Babel by Johannes Braams (1991a, 1991b)
to take advantage of the functionality of Ω. This
allows safer and more complete LATEX typesetting
of languages other than American English. Prob-
lems due to technical limitations of TEX are solved;
for example, the LATEX macros \MakeUppercase and
\MakeLowercase have been replaced by Ω filtering
processes. The whole process is simpler and more
natural.

In this progress report we present the first step
in adapting Babel to Ω. There will be (at least)
two more steps which we describe below; for more
information, see section 5 (the technicalities).

1. Babel adapted to Ω; we use DC font output.
\MakeUppercase and \MakeLowercase macros
are being replaced by macros launching transla-
tion processes. Various input encoding transla-
tion processes are being written. The inputenc
and fontenc packages are being adapted (their
Ω counterparts are called inpenc and fntenc).
This step has been completed.

2. UC (Unicode Computer Modern) fonts will be
released by spring 1996. These fonts contain
Latin, Greek and Cyrillic characters, and a cer-
tain number of dingbats and graphical charac-
ters. Ω-Babel uses UC fonts for output: new
languages will be dealt with (Bulgarian, Es-
peranto, Greek, Latvian, Lithuanian, Maltese,
Russian, Vietnamese, Welsh, etc.). Alan Jef-
frey’s fontinst will be adapted to make ex-
tended virtual fonts in UC encoding.
Latin letters with dieresis will be provided in

two versions: with high or low accent: French-
men like dieresis (→ tréma) to be high, Ger-
mans prefer to have it (→Umlaut) a little lower.

3. Arabic alphabet languages, Hebrew and Yid-
dish will be added at some point during 1996.

4. Soft hyphenation will be done through Ω trans-
lation processes. This allows dynamic loading
of hyphenation algorithms, independently of the
process of format creation. There will be no
need to recompile formats when adding or chang-
ing hyphenation patterns. It will also be possi-
ble to add new features to hyphenation (auto-
matic processing of German „ck→k-k“, prefer-
ential hyphenations, etc.).

2 Practically, what does this mean for me?

It means that if you are typesetting in some non-
American English language covered by current Ba-

Figure 1: Allegory: input (on the left) and
output (on the right) encodings, too close together.

bel (Bahasa, Breton, Catalan, Croatian, Czech, Dan-
ish, Dutch, English, Estonian, Finnish, French, Gali-
cian, German, Hungarian, Irish, Italian, Lower or
upper Sorbian, Norwegian, Polish, Romanian, Scot-
tish, Slovakian, Slovenian, Spanish, Swedish, Por-
tuguese or Turkish), then Ω can make it easier for
you and give you better results. All you have to do
is download the Ω implementation for your machine
from ftp://ftp.ens.fr/pub/tex/yannis/omega/
systems or the top-level omega directory1; if you
use a TEX implementation not already covered, then
(kindly) suggest to the implementor that they
consider including Ω support). Then download the
Ω-Babel package from ftp://ftp.ens.fr/pub/tex/
yannis/omega/macros/obabelor , install it on your
machine and use it! The basic syntax is the same
as in Babel, but we will discuss new options and
functionality in section 4.1.

3 General philosophy of combined Ω and
Babel

In Fig. 1, the reader can see an allegory of how TEX
works: input (the worker on the left) and output

1 At press time Ω has been ported to several UNIX ma-
chines (Sun, Silicon Graphics and others), DOS (by Kraus
Kalle) and Macintosh (by Tom Kiffe).

420 TUGboat, Volume 16 (1995), No. 4

(the one on the right) are close together. For exam-
ple, consider the fact that hyphenation patterns—
which are a language-intrinsic feature—are described
in the output font encoding. In Fig. 2 you can see
how Ω remedies this situation: input and output
are clearly separated and, in between, there is a big
container (imagine a huge barrel), the Unicode en-
coding.

Whatever you type is first of all converted into
Unicode. This conversion is language dependent;
for example, the ASCII character ‘i’ does not mean
the same thing in Turkish and in the other Latin-
alphabet languages. Unicode is very big; so you will
hardly ever ask for something not available; even if
that happens there is a “private zone” where we can
temporarily store characters of our own choice.

Once inside Unicode we deal with pure device-
independent information: we can process it in many
different ways. In Fig. 2 we list five possible trans-
forms, all pertaining to Ω-Babel, and we will discuss
these in turn. The Ω translation processes needed
for every language are activated when you enter the
corresponding Ω-Babel environment. Our goal is to
keep the technical aspects hidden: the average user
typesetting in a given language does not need to be
aware of the different transformations we have just
described.

Aliasing

We call “aliasing” the making of aliases. An alias
is the expression of a character in some convenient
way: for example in 7-bit ASCII. In German Ba-
bel, when you write "s instead of \ss{}, this is an
alias: (a) it is 7-bit, (b) you can very well avoid it if
your keyboard and screen support 8-bit characters,
and (c) in TEX, it used to be handled using active
characters.

Inherent transforms

These go deeper than aliases; they are:
1. either transforms that traditionally belong to

TEX syntax, like --- for “—”, or ‘‘ for the En-
glish opening double quote, or ?‘ for the Span-
ish inverted question mark “¿”;

2. or transforms that historically derive from dacty-
lographical keyboard traditions (for example,
the French << that gets converted into “«” with
the appropriate spacing, or the Catalan l.l
which produces “l.l”);

3. or things that are supposed to be hidden from
the user: for example, the Dutch ij which al-
ways produces the “ij” ligature, unless the user
places something invisible in between: bewijs
vs. bi{}jektie; or, in Turkish and Portuguese,

the fact that there should be no ‘ff’, ‘fi’, . . .
ligatures, etc.

See 4.4 for a good example of the difference and
combined use of aliases and inherent transforms.

Hyphenation

Hyphenation must be done on the level where the
information is most device-independent: that is, the
Unicode level. Not only can you define hyphenation
algorithms using all possible 16-bit characters (for
example to hyphenate Welsh, which uses letters such
as “ŵ”), but your algorithm is automatically valid
for any input or output encoding. We’ll come back
to this issue later in 1996, when we reach step 3 of
Ω-Babel development.

Upper/lowercasing

This is certainly not a trivial process: different let-
ters may share the same glyph for their upper or
lower forms (example: both the Icelandic eth “ð”
and the Croatian dz “�” share the glyph “Ð” for
their upper form); letters may have different upper
forms depending on the semantics of the word (ex-
ample: one possible upper form of the German “ß”
is “SS”, another one is “SZ”), or on local traditions
(in bad French typography, upper forms of accented
letters are not always accented), or on the language
itself (example: the upper form of the Turkish letter
“i” is “İ” and not “I”—the lower form of “I” is “ı”
and not “i”) these are major incompatibilities, and
hence we should be able to dynamically change the
upper/lowercasing process.

Finally, as Martin Dürst pointed out on the
omega list2, there are six kinds of letter cases:

1. regular lowercase (glyph becomes uppercase when
we apply the uppercasing process);

2. regular uppercase (glyph becomes lowercase when
we apply the lowercasing process);

3. fixed lowercase (glyph is invariant under the up-
percasing process), for example the “m” and
“b” in the German „GmbH“;

4. fixed uppercase (glyph is invariant under the
lowercasing process), for example the first letter
of a name;

5. fake lowercase (the glyph is uppercase, it be-
comes lowercase when we apply the uppercas-
ing process), for example the “i” in the mod-
ern German word “STUDENTiNNEN” (=po-
litically correct male and female students);

2 Join us on the Ω e-mail discussion forum
omega@ens.fr, by sending the usual subscription mes-
sage to listserv@ens.fr.

TUGboat, Volume 16 (1995), No. 4 421

coming from

keyboard

going to

DVI file

inherent

aliases changing case

contextual analysis

hyphenationInput encoding(s) Output encoding(s)

Figure 2: The Ω way: inserting Unicode between input and output encodings.

6. fake uppercase (the glyph is lowercase, it be-
comes uppercase when we apply the lowercas-
ing process), for example the “I” in the the same
modern German word “StudentInnen”, written
in lowercase type.

Ω introduces two new commands to handle “fixed”
case (\fixedcase) and “fake” case (\fakecase). Us-
ing these commands, you can write

\fixedcase{T}ruth

to be sure that your word will always be “Truth,
with a big T” or

\fixedcase{S}tudent\fakecase{I}nnen

to obtain correctly spelled politically correct (fe)male
students in German. The argument of \fixedcase
or \fakecase must be a single letter.

In Table 1 we present some examples of the use
of the different case-related commands. Note in the
first example, that—contrary to the usual TEX up-
percasing commands—math mode is not affected.

Contextual analysis

This transform is perhaps less important for Latin-
alphabet languages (although it becomes important
when you want to use a “long s” at the beginning of
a word). It is extremely important for Greek (final
or medial sigma), Hebrew (there are five letters with
medial and final form), and especially for the Arabic
alphabet.

4 Details on each language

Before we start considering languages one by one, a
brief description of Ω-Babel syntax.

4.1 Ω-Babel syntax

To be able to use Ω-Babel you have to load the
omega package: this is done automatically if you
use either inpenc (the input encoding package) or
fntenc (the output font encoding package). The
former can take as an option an input encoding (the
reader can find a list of such options on Table 3),
the default value is lat1 (ISO Latin-1). The latter
can take only one option for the moment: T1. As of
step 2 of Ω-Babel development a new encoding will
be added: UT1. Here is an example of the loading of
these packages:

\usepackage[stmac]{inpenc}
\usepackage[T1]{fntenc}

As in the original Babel package, you load Ω-Babel
by using the command \usepackage, and by giv-
ing the names of languages you are going to use as
an optional argument. These names are separated
by commas, and the last one becomes the “default”
language, as in

\usepackage[turkish,german,francais]{obabel}

The names for languages are the same as in original
Babel.

Once Ω-Babel is loaded, you are in the “default
language”: captions, date, hyphenation, 7-bit input
and typographical specifications are adapted.

Contrary to the original Babel where the com-
mand \selectlanguagewas used to switch between
languages, in Ω-Babel you have to use an environ-
ment, called lang. Here is an example:
\documentclass{article}
\usepackage[stmac]{inpenc}
\usepackage[T1]{fntenc}
\usepackage[germanb,turkish,%

422 TUGboat, Volume 16 (1995), No. 4

\MakeUppercase{is it an a or a b?} → IS IT AN a OR A b
\MakeUppercase{mon \oe il} → MON ŒIL
(in German) \MakeUppercase{ma"se oder ma"ze?} → MASSE ODER MASZE?
\MakeLowercase{\MakeUppercase{ma"ze}} → maße
(in Turkish) \MakeUppercase{kap\i y\i{} i\c ceri} → KAPIYI İÇERİ
\MakeLowercase{BROWN} → brown
\MakeLowercase{\fixedcase{B}ROWN} → Brown
\MakeLowercase{\fixedcase{S}TUDENT\fakecase{i}NNEN} → StudentInnen

Table 1: Some examples of upper/lowercasing.

francais]obabel}
\begin{document}

Histoires d’oiseaux en deux langues :

\begin{lang}{german}
"Uber allen Gipfeln ist Ruh,
die V"oglein schweigen im Walde...
\end{lang}

\begin{lang}{turkish}
Kedinin yakalad\i\u g\i{} ku\c sun
t\"uyleri havada u\c cu\c suyordu...
\end{lang}

\end{document}

This is because Ω uses a stack for translation
processes: every time you enter a lang environment,
Ω pushes a set of translation processes on the stack
(see also section 5); every time you leave it, Ω pops
a set of translation processes from the stack.

The environment approach is also essential for
typesetting reasons: in right-to-left languages (Ara-
bic, Hebrew, etc.), line breaking is done differently
depending on whether we are in “global” or in “en-
capsulated” right-to-left mode.

As in the original Babel, the \languagename
macro contains the name of the language.

Finally you have the following additional Ω com-
mands: \fixedcase and \fakecase as described
above, and a command \omegaversion which re-
turns the version of your Ω implementation.

Let us now take one by one the languages cov-
ered by Ω-Babel to see what has changed.

4.2 French

French features are loaded by the francais option.
Besides the usual hyphenation, caption and date
changes, Ω-Babel transforms the punctuation you
type, whether you include blank spaces or not.

For example, whether we write << Ciel, mon
mari ! >> or <<Ciel, mon mari!>> (or even ‘‘Ciel,

mon mari!’’ if the clever option is on), the result
will be the same: « Ciel, mon mari ! ». Not a sin-
gle character is active, so there can be no possible
interference with other TEX or LATEX macros.

When we pass to step 2 of Ω-Babel develop-
ment, francais will also act on the “Unicode →
output font” level and switch to low dieresis letters3.

4.3 German

The German features are loaded by the germanb op-
tion. All original Babel aliases have been kept:

"a \"a, also implemented for the other lowercase
and uppercase vowels.

"s to produce the German ß (like \ss{}).
"z to produce the German ß (like \ss{}).
"ck for ck to be hyphenated as k-k.
"ff for ff to be hyphenated as ff-f, this is also

implemented for l, m, n, p, r and t
"S for SS to be \MakeUppercase{"s}.
"Z for SZ to be \MakeUppercase{"z}.
"| disable ligature at this position.
"- an explicit hyphen sign, allowing hyphenation in

the rest of the word.
"" like "-, but producing no hyphen sign (for com-

pound words with hyphen, e.g. x-""y).
"~ for a compound word mark without a break-

point.
"= for a compound word mark with a breakpoint,

allowing hyphenation in the composing words.
"‘ for German left double quotes (looks like „).
"’ for German right double quotes.
"< for French left double quotes (similar to <<).
"> for French right double quotes (similar to >>).

3 Default letters with dieresis will carry a “low” accent,
French “higher” accented letters will be the exception, in-
troduced by an additional translation process: this decision
of the Ω team has no political connotation %, it comes just
from the fact that French letters with tréma are far rarer than
German letters with Umlaut.

TUGboat, Volume 16 (1995), No. 4 423

(description taken from the source file, germanb.dtx).
Maybe it is not very clear from the description above,
when you should use "z instead of "s: in fact, they
both produce exactly the same result, but when
they are uppercased, the first becomes “SS” and the
second “SZ” (for example, „MASSE“ comes from
„Masse“ and „MASZE“ from „Maße“).

It should be noted also that although “French
double quotes” are called “French”, they are not
typeset with the proper French spacing, as in the
French Ω-Babel style.

The UC fonts will also contain an “ft” ligature
and closely kerned versions of “ck” and “ch” (as re-
quested by Frank Mittelbach in 1991), and the pos-
sibility of typesetting with a “long s” as in old Ger-
man (the “long s” is in fact a Unicode character,
and the UC fonts will contain all kind of ligatures
“long s + i”, “long s + l”, . . .).

4.4 Dutch

Dutch features are loaded by the dutch option. Once
again, all original Babel aliases have been kept. We
have included one automatic transformation: ij and
IJ produce the “ij” ligature, in lower and upper
form. To avoid this ligature, it suffices to introduce
an empty group between the letters, or any other
“invisible” command.

Dutch is a fine example of separation of aliases
and inherent transforms. Consider for example the
case of the letter “ï” in the word „ongeïnteresseerd”.
When this word is hyphenated as „onge-interesseerd”,
the letter “i” loses the dieresis (the dieresis is there
to indicate that “ei” is not a diphthong; by hyphen-
ating at that location there is no doubt any more
that this is the case, so the dieresis is useless).

On the TEX level, Babel solves this problem
by using a \discretionary command. This is an
essential transformation, inherent to the Dutch lan-
guage. Hence, we have both an alias and an inherent
transform:

"a
alias
−−−→ 0x00e4

inherent
−−−−−→ \allowhyphens%

\discretionary{-}{U}{^^^^00dc}%

\allowhyphens

4.5 Portuguese

Portuguese features are loaded by the portugues
option. Portuguese has just a few aliases, similar to
those of the German style. The important fact is
that Portuguese has a special inherent transform to
avoid ‘ff’, ‘fi’, ‘fl’, ‘ffi’ and ‘ffl’ ligatures. We obtain
this by inserting between these letters the character
zero width space, which—when going to the DC
output fonts—becomes a \kern0pt command.

This is not the best way of solving this problem:
we are forced to use DC fonts (until we reach step
2 of Ω-Babel development), and these fonts have an
automatic ligaturing mechanism to produce the lig-
atures: by inserting a zero-length skip we avoid the
ligature, but lose a possible kern between the letters.

The forthcoming UC fonts will have no internal
ligatures: all ligatures will be provided by transla-
tion processes, so that we can activate and deacti-
vate them ad libitum.

4.6 Catalan

The Catalan features are loaded by the catalan op-
tion. We provide the following inherent transforms:
l.l and L.L which produce “l.l” and “L.L” respec-
tively. Of course, these can also be typeset by using
the aliases "ll and "LL, as in the original Babel
style.

We must point out that for the moment this
character is produced in a very unorthodox way (28
lines of code!!). We will obtain real typesetting of
Catalan only after step 2 of Ω-Babel development,
since “l.l” and “L.L” are characters of the UC fonts
(this is not the case for DC fonts: the dots have to
be dragged to the right place. . .).

4.7 Spanish

The Spanish features are loaded by the spanish
option. All aliases requested by the author of the
original Babel style have been included in the Ω-
Babel adaptation, except one: ~n ~N for ñ, Ñ. In
TEX, the character ~ is traditionally used to obtain
a non-breakable space, and this should be valid for
all languages.

In some languages (like in Greek) one can argue
that letters carrying the tilde accent do not appear
at the beginning of a word. This is unfortunately
not the case of Spanish (we found four such words
in a pocket dictionary: ñandú, ñoño, ñudo, ñudoso,
there might be more. . .). That’s why we decided
not to retain this alias for Spanish (fortunately, the
author of the Spanish style also has a second alias
for the same letter: ’n ’N).

4.8 Turkish

The Turkish features are loaded by the turkish op-
tion. This language has two versions of letter “i”:
with and without dot. The glyph “I” is the upper-
case form of letter “ı” and the glyph “İ” is the upper-
case form of letter “i”. The distinction is essential,
both for hyphenation and for upper/lowercasing. To
solve this problem, we have defined new codes in
(the private zone of) Unicode, for the Turkish up-
percase form of ‘i’ and the Turkish lowercase form

424 TUGboat, Volume 16 (1995), No. 4

of ‘I’. Whenever you switch to Turkish, the inher-
ent translation process sends all of your (otherwise
innocent) ‘i’s and ‘I’s to these far away locations in
the code (0xe083 and 0xe084, that is decimal 57475
and 57476!!), so that Ω has no doubt on the infor-
mation it is processing. Of course, after processing,
we return to the usual ‘i’ and ‘I’ glyphs of the DC
fonts.

Like French, Turkish needs special punctuation
spacing for the colon, exclamation mark and equal
sign. This is also done through the inherent trans-
lation process.

Finally, like Portuguese, Turkish avoids ‘ff’-like
ligatures: the same methods are applied.

4.9 Breton, Danish, Estonian, Finnish,
Galician, Polish, Slovene, Upper
Sorbian

These language styles use aliases, mostly similar to
those of the German style (Breton aliases and in-
herent transforms are similar to the French ones, a
coincidence?). We have adapted these aliases; there
have been no further changes.

4.10 Bahasa, Croatian, English, Czech,
Irish, Italian, Lower Sorbian,
Hungarian, Norwegian, Romanian,
Scottish, Slovakian, Swedish

Last, but not least, these language styles use no
aliases at all (either due to their simplicity, or to
the wishes (or keyboard facilities?) of the respective
authors). They all have the same trivial alias and
inherent translation processes.

4.11 Forthcoming language styles

To prepare a Babel or Ω-Babel language style the
most difficult task is to create the hyphenation pat-
terns. We already haveWelsh, Esperanto and Lithua-
nian hyphenation patterns. As for non-Latin alpha-
bet languages, we have hyphenation patterns and
fonts for Greek, Russian, Bulgarian and Serbian: all
these languages will be covered by Ω-Babel, in step
2 of Ω-Babel development.

5 Let’s get technical!

There are two main differences between TEX and Ω:
(a) the latter works with bigger numbers (more code
positions, more fonts, more boxes, more registers,
etc.), (b) it uses translation processes. Translation
processes are organized in lists, which are pushed
on a stack. Inside a list, a translation process has
an ID, a (not necessarily integer) number between 1
and 4095. When you push a stack on a list, transla-
tion processes with the same IDs replace each other;

Input encoding (for example, Macintosh
Standard Roman → Unicode, or codepage
437 → Unicode, etc.)

500

Aliases (for example, "a → ä, "z → “spe-
cial” ß, etc.) and inherent transforms (for
example, French guillemets, Dutch ‘ij’ lig-
ature, avoiding ‘ff’ ligatures in Turkish and
Portuguese, etc.)

1000

Hyphenation (not available yet) 2000
Contextual analysis (Greek final sigma,
Hebrew final letters, Arabic alphabet con-
textual forms, etc.)

2500

Case change (lower to uppercase, case in-
version, etc.)

3000

Output encoding (for example, Unicode to
DC, or Unicode to UC, etc.)

3500

Table 2: IDs for usual translation tasks.

when there is a process of a given ID in a given list,
and you push upon it a list which has no process
with the same ID, then that process remains active.

So, for example, if you attribute ID 2500 to a
contextual analysis process, and ID 1000 to an alias-
ing and inherent transform, then you can push the
latter upon the former: both will still remain active.
But if you wish to change the language, you will
push a process of ID 1000 (for the new language),
and it will replace the previous one.

This means that we have to be consistent in
our choices of translation process IDs: we can al-
ways insert additional processes between the exist-
ing ones, but to be able to push them away automat-
ically when conditions change (for example when we
switch languages), we must keep the same IDs. In
Table 2 we present some IDs we have chosen for the
tasks described in this paper.

So, in each Ω-Babel language style a CTP list is
defined (CTP stands for “compiled translation pro-
cesses”), consisting of a CTP of ID 1000 which con-
tains both aliases and inherent transforms.4 Each
time we open a new lang environment, we push
new CTPs over it; when we leave the environment it
is automatically popped off the stack (CTP loading
obeys TEX’s grouping rules).

5.1 Description of available CTPs

5.1.1 Input encoding CTPs

In Table 3 we list the input encoding CTPs we have
prepared.

4 The original idea was to split this CTP into one for
aliases and one for inherent transforms, of IDs 1000 and 1500;
but for speed reasons we have decided to bundle these two into
a single CTP.

TUGboat, Volume 16 (1995), No. 4 425

ISO Latin-1 lat1uni.ctp
ISO Latin-2 lat2uni.ctp
ISO Latin-3 lat3uni.ctp
ISO Latin-4 lat4uni.ctp
ISO Latin-5 lat5uni.ctp
ISO Latin-6 lat6uni.ctp
Macintosh Standard Roman stmacuni.ctp
Macintosh Central Europe cemacuni.ctp
Macintosh Croatian hrmacuni.ctp
Macintosh Icelandic ismacuni.ctp
Macintosh Turkish trmacuni.ctp
Windows ANSI ansiuni.ctp
IBM codepage 437 cp437uni.ctp
IBM codepage 850 cp850uni.ctp
IBM codepage 852 cp852uni.ctp
IBM codepage 857 cp857uni.ctp
IBM codepage 860 cp860uni.ctp
IBM codepage 861 cp861uni.ctp

Table 3: Available input encoding CTPs.

Any suggestions for further enhancement of this
list will be welcome (for the moment we are deal-
ing only with Latin alphabet encodings, Greek and
Cyrillic will follow, the rest is for. . . later %).

There is not much to say about these transla-
tions. In the Macintosh encodings we have chosen
to send π and Ω to the corresponding Greek letters
in Unicode (although they are supposed to be math
symbols), ∆ to the math symbol increment and
not to the Greek letter Delta, ♦ to the geometric
shape lozenge, and the Macintosh Apple to the
(private) Unicode character 0xe090 (yes, we have
reserved a slot for the Apple logo: after all Yannis
owes that to those little machines “for the rest of
us”5).

In the codepage 437 to Unicode translation, we
send 0xd5 (a small vertical stroke) to Unicode 0x02c8
modifier letter vertical line. Once again, any
suggestions will be welcome.

5.1.2 CTPs for aliases and inherent
transforms

There is one CTP for every Ω-Babel language style,
except for Bahasa, Croatian, English, Czech, Irish,
Italian, Lower Sorbian, Hungarian, Norwegian, Ro-
manian, Scottish, Slovakian and Swedish which share
a minimal CTP called minalias.ctp. The name of
each CTP is formed by the two-letter ISO code for
the corresponding language, as described in Hara-
lambous (1992a), and the extension .ctp: for ex-
ample: fr.ctp, de.ctp, etc.

5 No, we have not reserved any slot for the Windows
logo %.

0xe000
↓ “Direct-to-Unicode” 8-bit table (see

below)
0xe0ff
0xe100
↓ Fake ASCII (see below)

0xe17f
0xe180 Uppercase German ß (glyph: SS)
0xe181 Lowercase special German ß ("z)
0xe182 Uppercase special German ß (glyph:

SZ)
0xe183 Uppercase Turkish ı (glyph: I)
0xe184 Lowercase Turkish İ (glyph: i)
0xe185 Uppercase letter kra (glyph: K)
0xe186 Uppercase Afrikaans ’n (glyph: ’N)
0xe187 Uppercase long s (glyph: S)
0xe188 Uppercase h

¯
(glyph: H

¯
)

0xe189 Uppercase ẗ (glyph: T̈)
0xe18a Uppercase ẘ (glyph: W̊)
0xe18b Uppercase ẙ (glyph: Y̊)
0xe18c Uppercase a↩ (glyph: A↩)
0xe18d Uppercase (glyph: J)
0xe18e TEX character
0xe18f Uppercase ̌ (glyph: J̌)
0xe190 Apple Macintosh logo
0xe191 Fixed case modifier
0xe192 Fake case modifier
0xe1a0
↓ Needed for Greek and Armenian

0xe1cf

Table 4: How Ω uses the Unicode private zone.

Language styles with no inherent transforms
(other than ‘ff’ ligatures, --- punctuation etc.) use
the common CTP minilang.ctp.

5.1.3 CTPs for hyphenation

These are under development.

5.1.4 CTPs for contextual analysis

These are also under development; the Arabic one is
up and running, but we have to bundle the complete
package.

5.1.5 Case change CTPs

We have prepared CTPs for uppercasing and low-
ercasing, called uppercas.ctp and lowercas.ctp.
These are symmetric: both uppercase followed by
lowercase, as lowercase followed by uppercase are
equal to the identity. This has been achieved by at-
tributing a few special code positions in the private
zone of Unicode. In Table 4 the reader can find an
overview of the private zone of Unicode as we are
using it at the present time.

426 TUGboat, Volume 16 (1995), No. 4

This table will certainly change in the future,
but we promise to keep the changes upwards com-
patible.

What are the “Direct-to-Unicode” slots for? Sup-
pose you are writing a macro which will produce
a character in the 8-bit range of Unicode (which
is similar to the ISO Latin-1 encoding), for exam-
ple Ç, which has code ^^c7. If you write ^^c7 or
\char"C7 (or Ç, using an ISO Latin-1 screen font),
then Ω will pass this character through the input
encoding filter: if your macro is used on a machine
with a different input encoding, the output will not
be the same. One needs a way to produce a Unicode
character ^^^^00c7 independently of the input en-
coding. This can always be done by temporarily
deactivating the input encoding: a more simple so-
lution is to apply an offset of 0xe000 to the codes
that must remain invariant by the input re-encoding
process: use ^^^^e0c7 instead of ^^^^00c7 in your
macro, and the result will always be Ç (of course,
the end user will be able to utilize macros like \c{C}:
this is how these macros are defined in our system).

And what is this “fake ASCII” all about? It is a
trick similar to the previous one, but it sends the in-
formation further down the chain of translation pro-
cesses. It is used to send information to one of the
last translation processes (for example the output
encoding translation process) which should not be
modified at all by the intermediate processes, while
staying in the same buffer. A buffer is a sequence of
bytes read by Ω and processed by translation pro-
cesses: Ω will stop reading a buffer as soon as it
encounters a character that is not of catcode 11 or
12. Why do we need that?

Suppose you are writing Arabic. Contextual
analysis is entirely done inside a buffer.6 We may
also want the central letter of a word to be typeset in
red7 (this can be of great help in an Arabic grammar
book). Inserting a \red command inside the word
will completely break the contextual analysis. We
solve the problem by transposing the characters \,
r, e, d to the private Unicode zone (by a fixed off-
set of 0xe000). The contextual analysis translation
process is aware of the fact that characters in that
range shall not interfere in the process of performing
contextual analysis. Once the contextual analysis is
done, and our candidate for being red has the right

6 Otherwise we would have to record somewhere the form
of the last-read letter: this is possible of course, but we won’t
know why the buffer was terminated: was it something harm-
less, like an empty group (in which case the contextuality is
kept), or was it something as horrible as a \newpage com-
mand? In which case we had better finish our word before
going to the next page.

7 This is rendered as a grey scale in TUGboat.

contextual form, we perform the opposite offset and
our string becomes once again a regular TEX com-
mand. We will return to this in more detail when
Arabic Ω is released.

The fixed and fake case modifiers affect the char-
acter following them: they are introduced by the
\fixedcase and \fakecase commands, and are only
considered by the uppercas and lowercas trans-
lation processes, in the following way: a character
following the fixed case modifier is not affected by
either uppercas or lowercas; a character following
the fake case modifier (like the ‘I’ in StudentInnen)
is converted “the other way around”: uppercas will
call lowercas, and lowercas will call uppercas, for
the specific character only.

The various strange characters you see on the
lists are not included in Unicode for various reasons,
we need them in particular to keep uppercas and
lowercas symetric.

5.1.6 Output font CTPs

We have already written the CTP for the Unicode
→ DC font encoding: all characters included in the
DC font table are used as is, others are constructed
by using the \accent primitive. For step 2 of Ω-
Babel development, we will prepare a Unicode →
UC translation process. We expect users to write
their own translation processes for other output font
encodings.

6 Conclusion

We want TEX implementors to join us in the Ω ad-
venture and consider including Ω in their TEX dis-
tributions; those based in Web2C should find it very
easy. There will be virtual UC fonts, based upon real
fonts in the 0x20-0xff range.

We want DVIware developers to consider mak-
ing their DVI software compatible with our XVF and
XFM files (extended VF and extended TFM), which
are 16-bit. For the moment we have extended Peter
Breitenlohner’s dvicopy into a 16-bit version (which
we call xdvicopy); using this utility we are able to
de-virtualize extended virtual fonts into their under-
lying real fonts, which for the moment are all only
8-bit. De-virtualized DVI files are then compatible
with every DVI software in the market. But it would
be quicker and more practical for the user if software
recognized XVF and XFM files directly (after all, the
DVI standard allows up to 32-bit characters: our
DVI files conform to the standard).

Finally, we want users to give Ω and Ω-Babel
a hard try, and us a hard time in debugging the
software, the macros and (later on) the fonts. Ω will
soon grow a lot: several Oriental TEX packages are

TUGboat, Volume 16 (1995), No. 4 427

already ready and waiting to be adapted to Ω (see
references below), but before this happens, we want
to be sure that the Latin-Greek-Cyrillic part of it is
clean and robust.

References

Andulem (Amnulehe), A. “The road to Ethiopic
TEX”. TUGboat 10(3), 352–354, 1989.

Braams, J. “Babel, a multilingual style-option sys-
tem for use with LATEX’s standard document
styles”. TUGboat 12(2), 1991a.

Braams, J. “An update on the Babel system”. TUG-
boat 14(1), 1991b.

Haralambous, Y. “TEX and those other languages
. . . ”. TUGboat 12(4), 539–548, 1991.

Haralambous, Y. “TEX Conventions Concerning
Languages”. TTN 1(4), 3–10, 1992a.

Haralambous, Y. TEX et les Langues Orientales.
Paris, 1992b.

Haralambous, Y. “Typesetting the Holy Qur’ān
with TEX”. In Proceedings of the 2nd Interna-
tional Conference on Multilingual Computing—
Arabic and Latin script (Durham). 1992c.

Haralambous, Y. “The Khmer Script tamed by the
Lion (of TEX)”. In Proceedings of the 14th TEX
Users Groups Annual Meeting (Aston, Birming-
ham). 1993a.

Haralambous, Y. “Un système TEX berbère”.
In Actes de la table ronde internationale
«Phonologie et notation usuelle dans le domaine
berbère», INALCO. 1993b.

Haralambous, Y. “Indica, a Preprocessor for In-
dic Languages—Sinhalese TEX”. In Proceedings
of the 15th TEX Users Groups Annual Meeting
(Santa Barbara). 1994a.

Haralambous, Y. “Tiqwah: a Typesetting System
for Biblical Hebrew, based on TEX”. In Pro-
ceedings of the Fourth International Colloquium
“Bible and Computer: Desk and Discipline, The
impact of computers on Bible Studies” (Amster-
dam). 1994b.

Haralambous, Y. “Sabra: a Syriac TEX system”. In
Proceedings of the First International Forum on
Syriac Computing (Washington, D.C.). 1995.

Haralambous, Y. and J. Plaice. “First Applica-
tions of Ω: Greek, Arabic, Khmer, Poetica,
ISO 10646/unicode, etc.”. In Proceedings of the
15th TEX Users Groups Annual Meeting (Santa
Barbara). 1994.

Mittelbach, F. “E-TEX: Guidelines for Future TEX
Extensions”. TUGboat 11(3), 1991.

Plaice, J. “Progress in the Ω Project”. In Proceed-
ings of the 15th TEX Users Groups Annual Meet-
ing (Santa Barbara). 1994.

Velthuis, F. J. Devanagari for TEX, 1991.
Haralambous, Y. and J. Plaice. “Ω, a TEX Exten-

sion Including Unicode and Featuring Lex-like
Filtering Processes”. In Proceedings of the 1994
EuroTEX Conference (Gdansk). 1994.

� Yannis Haralambous
187, rue Nationale
59800 Lille, France
Email: haralambous@

univ-lille1.fr
URL: http://www.ens.fr/

~yannis

� John Plaice
Université Laval
Québec, Canada
Email: plaice@ift.ulaval.ca

� Johannes Braams
TEXniek
Kooienswater 62
The Netherlands
Email: JLBraams@cistron.nl

