
Draft documentation for the Ω system

John Plaice∗ Yannis Haralambous†

7 March 1998

1 Introduction

The Ω (Omega) typesetting system, an extension of Donald Knuth’s TEX, is
designed for the typesetting of all the world’s languages. It normally uses the
Unicode character encoding standard as internal representation, although it
can accept any other character set for input or output. Since it allows one to
dynamically define finite state automata to translate from one encoding to an-
other, it is possible to define complex contextual analysis for ligature choice,
character cluster building or diacritic placement, as required for scripts such as
Arabic, Devanagari, Hebrew or Khmer. It also allows any number of translit-
erations, allowing anyone to type texts for any script, using any other script.
Ω currently supports multidirectional writing, therefore allowing typesetting of
Hebrew, Arabic, Chinese, Japanese, Mongolian and many other scripts.
A Unicode-based font is also being designed for the alphabetic scripts. This

font is made up of four subfonts: (1) Latin, Greek, Cyrillic, Armenian, Geor-
gian, punctuation; (2) Hebrew, Arabic, Syriac; (3) Dingbats and non-letterlike
symbols; (4) Indic and South-East Asian scripts. This font consists of all the
glyphs required to properly typeset each of the scripts, which means much more
than designing one glyph for each Unicode position.
This document is the draft documentation for the Ω typesetting system,

designed and developed by the authors. This draft document accompanies the
1.5 release of Ω, which is available at:

ftp://ftp.cse.unsw.edu.au/users/plaice/Omega

or at any of the CTAN sites.
This documentation should be considered cursory. In particular, it only

describes the drivers that have been developed for typesetting and viewing, and
only presents the tools that are based on web2c.
For more information, see our Web page, currently at:

http://www.ens.fr/omega

∗School of Computer Science and Engineering, University of New South Wales, Sydney
2052, Australia. plaice@cse.unsw.edu.au

†Atelier Fluxus Virus, 187, rue Nationale, F-59800 Lille, France. yannis@fluxus-virus.com

1

2 Implementation

The canonical Ω implementation is based on the standard web2c TEX distri-
bution. Currently, Ω is based on web2c-7.2. This means that the following
standard distributions automatically include Ω:

• Thomas Esser’s TeTEX (Unix).
Look up http://www.tug.org/tetex/
or mailto:te@informatik.uni-hannover.de .

• Fabrice Popineau’s TEXWin32 (Windows95/NT).
Look up ftp://ftp.ese-metz.fr/pub/TeX/win32
or mailto:popineau@esemetz.ese-metz.fr .

• Sebastian Rahtz’s TEXLive (CD-ROM).
Look up http://www.tug.org/texlive.html
or mailto:s.rahtz@elsevier.co.uk .

In addition, there are currently two other prepackaged TEX environments
that support Ω:

• Tom Kiffe’s CMacΩ (MacIntosh).
Look up http://www.kiffe.com/cmacomega.html
or mailto:tom@kiffe.com .

• Christian Schenk’s MiKTEX (Windows95/NT).
Look up http://www.inx.de/~cschenk/miktex
or mailto:cschenk@snafu.de .

The three files distributed with the Ω implementation are

web2c-7.2-omega-1.5.tar.gz
omegalib-1.5.tar.gz
omegadoc-1.5.tar.gz

To install Ω, you will require the standard TEX distribution as well. These files
include

web-7.2.tar.gz
web2c-7.2.tar.gz

as well as a standard texmf tree. In addition to these files, the following drivers
are needed:

dvipsk.tar.gz
odvipsk.tar.gz
gsftopk.tar.gz
xdvik.tar.gz
oxdvik.tar.gz
libwww.tar.gz

2

These files are all made available in the above ftp sites.
The installation procedure is described below. Assume that

• /usr/local/ftp contains your downloaded files;
• /usr/local/src is where you place source files; and
• /usr/local/share is where the texmf tree is to be placed;

FTP=/usr/local/ftp
SHARE=/usr/local/share
SRC=/usr/local/src
cd $SHARE
tar xzf $FTP/texmflib.tar.gz
tar xzf $FTP/omegalib-1.5.tar.gz
cd $SRC
tar xzf $FTP/web-7.2.tar.gz
tar xzf $FTP/web2c-7.2.tar.gz
tar xzf $FTP/web2c-7.2-omega-1.5.tar.gz
cd web2c-7.2
tar xzf $FTP/dvipsk.tar.gz
tar xzf $FTP/odvipsk.tar.gz
tar xzf $FTP/gsftopk.tar.gz
tar xzf $FTP/xdvik.tar.gz
tar xzf $FTP/oxdvik.tar.gz
tar xzf $FTP/libwww.tar.gz
configure
make

You will have to choose whether your call to configure needs any arguments.

3 What does Ω offer?

The Ω system is a derivative of Donald Knuth’s TEX. As such, all of the TEX
file types can be used by Ω as well. In addition there are six new file types.
They are:

Suffix Replaces Description
.opl .pl Font property list (text)
.ofm .tfm Font metric (binary)
.ovp .vpl Virtual property list (text)
.ovf .vf Virtual font (binary)
.otp —— Ω Translation Process (text)
.ocp —— Ω Compiled Process (binary)

These different file types are described in future sections.

3

The Ω distribution contains several binaries, described below:

Binary Replaces Description
omega (Ω) TEX Typesetting engine (.tex→ .dvi)
lambda (Λ) LATEX For structured documents (.tex→ .dvi)
odvips dvips PostScript driver (.dvi→ .ps)
oxdvi xdvi Screen previewer for .dvi (.dvi→ screen)
odvicopy dvicopy De-virtualizes .dvi (.dvi→ .dvi)
odvitype dvitype Debugging for .dvi (.dvi→ text)
opl2ofm pltotf Build font metric (.opl→ .ofm)
ofm2opl tftopl Debugging for .ofm (.ofm→ .opl)
ovp2ovf vptovf Build virtual font (.ovp→ .ofm× .ovf)
ovf2ovp vftovp Debugging for .ovf (.ofm× .ovf→ .ovp)
otp2ocp —— Compile ΩTP (.otp→ .ocp)
outocp —— Debugging for .ocp (.ocp→ text)
mkofm mktextfm Generate .ofm file if needed
mkocp —— Generate .ocp file if needed

4 Sixteen-bit fonts, registers, etc.

One of the fundamental limitations of TEX3 is that most quantities can only
range between 0 and 255. Fonts are limited to 256 characters each, only 256
fonts are allowed simultaneously, only 256 of any given kind of can be used
simultaneously, etc. Ω loosens these restrictions, allowing 65 536 (0–65 535) of
each of these entities.

4.1 Characters

Each font can allow up to 65 536 characters, ranging between 0 and 65 535.
Unless other means are provided, using Ω Translation Processes (see section 8),
the input and output mechanisms for characters between 256 (hex 100) and
65 535 (hex ffff) use four circumflexes. For example, ^^^^cab0 means hex value
cab0 and ^^^^0020 is the space character.

4.2 Fonts

Up to 65 536 fonts may be used. This is handled automatically, and space is
allocated as needed.

4.3 Registers

Up to 65 536 registers of each kind may be used. The only case to be noted is
that \box255 remains the box used by the output routine.

4

4.4 Math codes

TEX allows the use of 16 (24) font families, each font of 256 (28) characters. To
access the characters in the math fonts, and to define how they are to be used,
there are several basic primitives:

• \mathcode 〈8-bit number〉 = 〈15-bit number〉:
Defines 15-bit math code for character;

• \mathcode 〈8-bit number〉:
Outputs 15-bit math code associated with character;

• \mathchar 〈15-bit number〉:
Generates a math character with 15-bit math code;

• \mathaccent 〈15-bit number〉:
Generates a math accent with 15-bit math code;

• \mathchardef 〈control-sequence〉 = 〈15-bit number〉:
Defines a control sequence with a 15-bit math code;

• \delcode 〈8-bit number〉 = 〈27-bit number〉:
Defines 27-bit delimiter code for character;

• \delcode 〈8-bit number〉:
Outputs 27-bit delimiter code associated with character;

• \delimiter 〈27-bit number〉:
Generates a math delimiter with 27-bit delimiter code;

• \radical 〈27-bit number〉:
Generates a math radical with 27-bit delimiter code;

where

• 〈8-bit number〉 refers to an 8-bit character;
• 〈15-bit number〉 refers to value 0x8000 or a triple

– 3 bits for math category,

– 4 bits for font family,

– 8 bits for character in font,

called a math code;

• 〈27-bit number〉 refers to a negative number or a quintuple
– 3 bits for math category,

– 4 bits for first font family,

– 8 bits for first character in font,

5

– 4 bits for second font family,

– 8 bits for second character in font,

called a delimiter code.

Ω, on the other hand, allows 256 (28) font families, each font of 65 536 (216)
characters. So, in addition to the TEX math font primitives, which continue to
work, there are 16-bit versions:

• \omathcode 〈16-bit number〉 = 〈27-bit number〉:
Defines 27-bit math code for character;

• \omathcode 〈16-bit number〉:
Outputs 27-bit math code associated with character;

• \omathchar 〈27-bit number〉:
Generates a math character with 27-bit math code;

• \omathaccent 〈27-bit number〉:
Generates a math accent with 27-bit math code;

• \omathchardef 〈control-sequence〉 = 〈27-bit number〉:
Defines a control sequence with a 27-bit math code;

• \odelcode 〈16-bit number〉 = 〈51-bit number〉:
Defines 51-bit delimiter code for character;

• \odelcode 〈16-bit number〉:
Outputs 51-bit delimiter code associated with character;

• \odelimiter 〈51-bit number〉:
Generates a math delimiter with 51-bit delimiter code;

• \oradical 〈51-bit number〉:
Generates a math radical with 51-bit delimiter code;

where

• 〈16-bit number〉 refers to a 16-bit character;
• 〈27-bit number〉 refers to value 0x8000000 or a triple

– 3 bits for math category,

– 8 bits for font family,

– 16 bits for character in font,

called a math code;

• 〈51-bit number〉 refers to a pair of numbers, either both negative or ar-
ranged as 〈27-bit number〉 〈24-bit number〉, with the first number being:

6

– 3 bits for math category,

– 8 bits for first font family,

– 16 bits for first character in font,

and the second number being:

– 8 bits for second font family,

– 16 bits for second character in font,

called a delimiter code.

Since Ω is upwardly compatible with TEX, the older primitives still continue
to function as expected. Internally, math codes are 27-bit numbers and delim-
iter codes are 51-bit numbers. However, if \mathcode〈15-bit number〉 appears
in text mode, it continues to generate a 15-bit number, to remain upwardly com-
patible with TEX: Donald Knuth defines several numerical constants through
\mathcode.

5 New typesetting routines

Most of the development in Ω has dealt with different means for manipulating
character streams. Nevertheless, there are new typesetting routines.

5.1 New infinity level

A new infinity level fi has been added. It is smaller than fil but bigger
than any finite quantity. Its original intention was for inter-letter stretching:
either filling-in-the-black, as is done for calligraphic scripts such as Arabic; or
for emphasis, as in Russian; all this without having to rewrite existing macro
packages. There is therefore a new keyword, fi, and two new primitives, \hfi
and \vfi.

5.2 Local paragraph parametrization

The Ω system allows the finetuning of layout, using local paragraph primitives.
The first two, \localinterlinepenalty and \localbrokenpenalty, are gen-
eralizations of \interlinepenalty and \brokenpenalty.
When, say, \localinterlinepenalty=200 appears, a whatsit node is de-

posited into the token list for the current paragraph. If the value is changed
again, another whatsit node is deposited. When Ω cuts the paragraph into
lines, it will add the current value of the local penalty to the penalty node that
is placed after every line in the vertical list. Similarly for \localbrokenpenalty
when a discretionary hyphen is placed at the end of a line. With these primi-
tives, it becomes possible to discourage or encourage page breaks at more specific
parts of a paragraph.

7

This same local approach is taken for a completely different task: placing
fixed-width typeset material at the beginning (or the end) of every line in a
paragraph.
«The original problem to be solved was for fine French typesetting, in which

« guillemets are placed running down the left side of a paragraph, as in this
« paragraph, so long as material is being quoted. »Since TEX breaks paragraphs
in arbitrary places, it was impossible to develop a robust macro package that
could, in a single pass, place the guillemets in the right positions.
The original text for the previous paragraph was:

{<<~\localleftbox{<<~}The original problem to be solved
was for fine French typesetting, in which guillemets
are placed running down the left side of a paragraph,
as in this paragraph, so long as material is being
quoted.~>>} Since \TeX\ breaks paragraphs in arbitrary
places, it was impossible to develop a robust macro
package that could, in a single pass, place the
guillemets in the right positions.

There are currently four local primitives:

• \localleftbox{〈typeset-material〉}:
Until this primitive is redefined, then the typeset material will be placed
at the beginning of every line that follows the occurrence of this primitive
in the text.

• \localrightbox{〈typeset-material〉}:
Until this primitive is redefined, then the typeset material will be placed
at the end of every line that follows the occurrence of this primitive in the
text.

• \localinterlinepenalty= 〈penalty〉:
Until this primitive is redefined, then the given penalty value will be added
to the penalty node placed between successive lines in a paragraph.

• \localbrokenpenalty= 〈penalty〉:
Until this primitive is redefined, then each time that a line ends with
a discretionary node, then the given penalty value will be added to the
penalty node following that line.

Grouping is respected by all of the local paragraph primitives.

6 Multiple directions

Below is what is available in the experimental versions of Ω. Unfortunately
we did not consider it to be sufficiently stable for it to be released generally.
Therefore, Ω continues to support the bidirectionality functions of TeX--XeT.
In addition, with the \pagedirHR and \pagedirHL, primitives, it is possible

8

to transform the entire page into a right-to-left page or a left-to-right page.
Similarly, \pardirHR and \pardirHL allow the paragraph direction to change.
The page direction changes should occur in empty pages, and the paragraph
direction changes should occur outside of horizontal mode. To ensure that
tables are used properly, there is a primitive nextfakemath, which, put in front
of math mode, ignores that the mathematics is supposed to be typeset from
left-to-right. This is used in Λ, which goes into math mode to do tabular
environments.

Since TEX was originally designed for English, it only supports left-to-right
typesetting. This situation was improved somewhat with Knuth and MacKay’s
TeX-XeT, modified into Breitenlohner’s TeX--XeT. However, these modifications
to TEX only allow the use of right-to-left typesetting, and even then, only within
a particular paragraph. In other words, these systems do not support the type-
setting of a full text in the different writing directions.
The Ω system distinguishes sixteen different directions, which are designated

by three parameters:

1. The beginning of the page is one of T (top), L (left), R (right) or B (bot-
tom). For English and Arabic, the beginning of the page is T; for Japanese
it is R; for Mongolian it is L.

2. The beginning of the line defines where each line begins. For English, it
is L; for Arabic, it is R; for Japanese and Mongolian, it is T.

3. The top of the line corresponds to the notion of ‘up’ within a line. Nor-
mally, this will be the same as for the beginning of the page, as in TLT for
English, TRT for Arabic, RTR for Japanese, or LTL for Mongolian. How-
ever, for English included in Mongolian text, successive lines move ‘up’
the page, which gives direction LTR.

The Ω system distinguishes three levels of different writing direction: page
(\pagedir), text (\textdir) and mathematics (\mathdir). Each of these prim-
itives takes as primitive one of the above sixteen writing directions.

• \pagedir 〈direction〉: The page direction can only be changed if the cur-
rent vlist is empty. This decision avoids ambiguous situations.

• \textdir 〈direction〉: This primitive can appear anywhere in a text, and
Ω will allow for the moment only mixed horizontal combinations. Fu-
ture versions will allow many different combinations, with parametriza-
tion. Grouping is respected, so it is possible to have inserts within a
paragraph: these are implemented using the local paragraph mechanism
described in the previous section.

• \mathdir 〈direction〉: Normally mathematics is done in the same direc-
tion as English, namely TLT. There have been situations where it has been
written TRT. Ω allows only eight directions for mathematics, namely those
in which the first and third direction parameters are identical.

9

In addition, Ω allows one to designate the direction of a box. For example
\hbox dir TRT{...} creates a horizontal box, and uses direction TRT while
building that box.
Finally, fonts can be stored either naturally or not. In the unnatural situ-

ation, called with primitive \unnaturaldir, it is understood that glyphs in the
current font will always appear to the right of the current point, above the base-
line. In the natural situation, called with \naturaldir, glyphs appear in the
‘correct’ direction. So a natural Arabic font would have the glyphs appear to
the left of the current point, and a natural Japanese font would make the glyphs
appear below the current point.

7 Fonts for Ω

The TEX system takes the following approach to fonts. The TEX driver reads
TEX documents and generates .dvi files. The driver uses font metric files (suffix
.tfm, text version .pl) to determine how to lay out boxes on a pages. The screen
driver or printer driver transforms the .dvi file in the appropriate format, using
bitmap fonts (.pk), scaled fonts (.pfa or .pfb), or virtual fonts (.vf, text
version .vp).
In the Ω system, we make no attempt, for the moment, to change the defi-

nition of bitmaps or scaled fonts. We have focused on the font metrics (.ofm,
text version .opl), and the virtual fonts (.ovf, text version .ovp).
Currently, these new font file formats come in two versions. The first, called

level 0, corresponds to the 16-bit version of TFM files, with no new functional-
ity. Level 1 fonts are more ambitious, and provide for more powerful features,
including compression methods and additional parameters.

7.1 Level-0 ΩFM files

The level-0 ΩFM files are simply 16-bit versions of TFM files, and have corre-
sponding entries. Below is a description of the first 14 words of a level-0 ΩFM
file. Each entry is a 32-bit integer, non-negative and less than 231:

ofm-level = 0;
lf = length of the file, in words;
lh = length of the header data, in words;
bc = smallest character code in the font;
ec = largest character code in the font;
nw = number of entries in the width table;
nh = number of entries in the height table;
nd = number of entries in the depth table;
ni = number of entries in the italic correction table;
nl = number of entries in the lig-kern table;

10

nk = number of entries in the kern table;
ne = number of entries in the extensible character table;
np = number of font parameter words;

font-dir = direction of font.

We must have that bc − 1 ≤ ec ≤ 65535. Furthermore, the following identity
must hold:

lf = 14 + lh + 2 ∗ (ec − bc + 1) + nw + nh + nd + ni +
2 ∗ nl + nk + 2 ∗ ne + np.

Note that a font may contain as many as 65536 characters (if bc = 0 and
ec = 65535), and as few as 0 characters (if bc = ec − 1).
As with TFM files, if two or more octexts are combined to form an integer

of 16 or more bits, the most significant octets appear first in the file. This is
called BigEndian order.
Also as with TFM files, the rest of the file is a sequence of ten data arrays

having the informal specification

header : array [0..lh − 1] of stuff
char-info : array [bc..ec] of char-info-word

width : array [0..nw − 1] of fix-word
height : array [0..nh − 1] of fix-word

depth : array [0..nd − 1] of fix-word
italic : array [0..ni − 1] of fix-word

lig-kern : array [0..nl − 1] of lig-kern-command
kern : array [0..nk − 1] of fix-word

exten : array [0..ne − 1] of extensible-recipe

param : array [1..np] of fix-word

There is no need to describe the entire file, only those parts that differ from
TFM files: char-info-word , lig-kern-command and extensible-recipe. Here is a
summary of those differences.

• char-info-word (8 octets):
width 16 bits
height 8 bits
depth 8 bits
italic 8 bits
RFU 6 bits
tag 2 bits
remainder 16 bits

The meaning is as in TFM files, so there are 65536 possible widths, 256
possible widths, 256 possible heights and 256 possible italic corrections.

11

• lig-kern-command (8 octets):
skip-byte 16 bits
next-char 16 bits
op-byte 16 bits
remainder 16 bits

The meaning is as in TFM files, with every entry doubling in size.

• extensible-recipe (8 octets):
ext-top 16 bits
ext-mid 16 bits
ext-bot 16 bits
ext-rep 16 bits

Once again, the meaning is as in TFM files, but every entry has been
doubled.

7.2 Level-0 ΩPL files

The level-0 ΩPL files are the same as PL files, with the exception that values
restricted to 8 bits can now be 16 bits.

7.3 Level-0 ΩVF files

The ΩVF files are indistinguishable from VF files, except for the file suffix. They
exist only because the vast majority of drivers balk when they see characters
that are not 8 bits.

7.4 Level-0 ΩVP files

The level-0 ΩVP files are the same as VP files, with the exception that values
restricted to 8 bits can now be 16 bits.

7.5 Level-1 ΩFM files

The level-1 fonts take a different approach to level-0 fonts. They do not make the
assumption that typesetting means simply placing placing glyphs on the base-
line, one after another. Example applications include the automatic placement
of glue between characters in East Asian scripts, the building of consonental
clusters for South-Asian and South-East-Asian scripts, as well as the placing of
diacritics in Arabic and Hebrew.
Level-1 fonts are different from level-0 fonts at three levels. First, they allow

the definition of six new kinds of table:

• ivalue tables contain integers.
• fvalue tables contain fixword values that do not grow with magnification.
• mvalue tables contain fixword values that do grow with magnification.

12

• rule tables contain TEX rule definitions.
• glue tables contain TEX glue definitions.
• penalty tables contain TEX penalty definitions.

There can be several copies of each kind of table, but for the moment, there is
a maximum of 32 new tables in all.
These new tables can be used as global tables, or can be indexed on a

character-by-character basis in the char-info-word entries, which define charac-
ter parameters. So, in addition to the standard parameters of width, height,
depth and italic correction, additional parameters (of the six kinds outlined
above) can be given for the characters.
To allow these new tables to be used, changes have also been made to the

lig-kern table.

• Characters can be put into equivalence classes, where all characters in the
same class will act the same in the lig-kern table;

• Glue nodes, rule nodes and penalty nodes can be inserted automatically
into the stream, exactly as for kern nodes in TEX.

• The lig-kern program can be completely replaced by an ΩTP (see sec-
tion 8).

Now we begin with the first part of the header of a level-1 ΩFM file. Here
are the first 17 words of a level-1 ΩFM file. Each entry below is a 32-bit integer,
non-negative and less than 231.

ofm-level = 1;
lf = length of the file, in words;
lh = length of the header data, in words;
bc = smallest character code in the font;
ec = largest character code in the font;
nw = number of entries in the width table;
nh = number of entries in the height table;
nd = number of entries in the depth table;
ni = number of entries in the italic correction table;
nl = number of entries in the lig-kern table;
nk = number of entries in the kern table;
ne = number of entries in the extensible character table;
np = number of font parameter words;

font-dir = direction of font;
nco = offset of the character entries, in words;
ncw = number of character info words;
npc = number of parameters per character.

13

Most of the entries in the first part are as for level-0 fonts. The new entries
pertain to how the char-info-word entries are stored.

• nco: This value gives the offset into the file for the first word of the
char-info-word table. The nco value is required by output drivers, which
need quick access to the characters, even if the total length of the tables
preceding them is not easily computed,.

• ncw : Since many large fonts have large numbers of consecutive characters
with identical metrics. These are compressed in level-1 fonts, and so the
number of char-info-word entries is not simply ec− bc+1. The ncw value
gives the number of words used for character information, not the number
of entries.

• npc: This is the number of extra parameters per character.
• real-lf : This would be the length of the file, were there no compression.
The next twelve entries come in pairs. For each kind of parameter (ivalue,

fvalue, mvalue, rule, glue, penalty), the first entry states how many tables
of that kind there are, and the second states how many words these tables
require.

nki = number of ivalue tables;
nwi = number of words for ivalue tables;
nkf = number of fvalue tables;
nwf = number of words for fvalue tables;
nkm = number of mvalue tables;
nwm = number of words for mvalue tables;
nkr = number of rule tables;
nwr = number of words for rule tables;
nkg = number of glue tables;
nwg = number of words for glue tables;
nkp = number of penalty tables;
nwp = number of words for penalty tables.

We must have that bc−1 ≤ ec ≤ 65535. Furthermore, the following identity
must hold:

lf = 29 + lh + ncw + nw + nh + nd + ni +
2 ∗ nl + nk + 2 ∗ ne + np +
nki + nwi + nkf + nwf + nkm + nwm +
nkr + nwr + nkg + nwg + nkp + nwp.

Finally, the sum nki + nkf + nkm + nkr + nkg + nkp must be less than 32.

14

The rest of the file is composed of a number of arrays. The new parameter
tables are placed before the standard dimension tables, as it is difficult to esti-
mate space requirements without having read the new tables. Furthermore, the
character parameter indices in the char-info-word entries are relative and must
be translated into an absolute reference into the tables.

header : array [0..lh − 1] of stuff
ivalue-no : array [0..nki − 1] of integer

fvalue-no : array [0..nkf − 1] of integer
mvalue-no : array [0..nkm − 1] of integer

rule-no : array [0..nkr − 1] of integer
glue-no : array [0..nkg − 1] of integer

pen-no : array [0..nkp − 1] of integer
ivalue-table[0] : array [0..ivalue-no[0] − 1] of integer

...

ivalue-table[nki − 1] : array [0..ivalue-no[nki − 1] − 1] of integer

fvalue-table[0] : array [0..fvalue-no[0] − 1] of fix-word
...

fvalue-table [nkf− 1] : array [0..fvalue-no[nkf− 1] − 1] of fix-word

mvalue-table[0] : array [0..mvalue-no[0] − 1] of fix-word
...

mvalue-table[nkm− 1] : array [0..mvalue-no[nkm− 1] − 1] of fix-word

rule-table[0] : array [0..rule-no[0] − 1] of rule-entry
...

rule-table[nkr− 1] : array [0..rule-no[nkr− 1] − 1] of rule-entry

glue-table[0] : array [0..glue-no[0] − 1] of glue-entry
...

glue-table[nkg− 1] : array [0..glue-no[nkg− 1] − 1] of glue-entry

pen-table[0] : array [0..pen-no[0] − 1] of integer
...

pen-table[nkp− 1] : array [0..pen-no[nkp− 1] − 1] of integer

char-info : array [0..ncw − 1] of char-info-word
width : array [0..nw − 1] of fix-word

height : array [0..nh − 1] of fix-word
depth : array [0..nd − 1] of fix-word

15

italic : array [0..ni − 1] of fix-word

lig-kern : array [0..nl − 1] of lig-kern-command
kern : array [0..nk − 1] of fix-word

exten : array [0..ne − 1] of extensible-recipe
param : array [1..np] of fix-word

So, for parameter x, there is a table x-no, of length nkx , giving the size of
each table. In addition, there are nkx tables containing the actual entries, where
the i-th table is of length x-no[i].
The only parameter entries with an unclear structure are rule-entry and

glue-entry.

• Each rule-entry uses three words (12 octets):
1st word width 32 bits fixword
2nd word height 32 bits fixword
3rd word depth 32 bits fixword

The interpretation of the values should be clear. If one of the three values
is 0, then it can stretch in the appropriate direction, as is standard in TEX.

• Each glue-entry uses four words (16 octets):
1st word subtype 4 bits (0–3)

argument-kind 4 bits (0–2)
stretch-order 4 bits (0–4)
shrink-order 4 bits (0–4)
char-rule 16 bits

2nd word width 32 bits fixword
3rd word stretch 32 bits fixword
4th word shrink 32 bits fixword

– subtype is one of

0 normal
1 a-leaders
2 c-leaders
3 x-leaders

– argument-kind is one of

0 space
1 rule (subtype must be leader)
2 character (subtype must be leader)

16

– stretch-order and shrink-order are one of
0 normal
1 fi
2 fil
3 fill
4 filll

– n = char-rule depends on the value of argument-kind :
0. 0;
1. n-th rule in rule table 0;
2. n-character in font.

The explanation here only really makes sense if the reader has a clear
understanding of how glue nodes are built in TEX. More detailed docu-
mentation is forthcoming.

The new char-info-word array is of great interest. Its length is not directly
computable from the number of characters in the font. Each char-info-word
entry contains a minimum of 12 octets, and is in any case a multiple of four
octets. Each entry is as follows:

1st word width 16 bits
height 8 bits
depth 8 bits

2nd word italic 8 bits
RFU 5 bits
ext-tag 1 bit
tag 2 bits
remainder 16 bits
no-repeats 16 bits
param0 16 bits
. . .
paramnpc−1 16 bits
padding 16 bits if necessary

where npc is the number of characters per parameter.
The repeat entry allows one to state that the following no-repeats charac-

ters have identical attributes, thereby allowing the ΩFM file to be much smaller.
This attribute is essential for Chinese, Japanese and korean ideogram fonts. In
other words, this char-info-word entry is relevant to (no-repeats+1) characters.
If the ext-tag bit is on, then the lig-kern entry pointed to by remainder is

shared with all the other characters in its equivalence class, which corresponds
to param0 if there exists an ivalue table.
We are now ready for the changed lig-kern table. There are four new in-

structions, which can be distinguished by the fact that the 0-th 16-bit entry
(skip-byte) is exactly 256. In that case, then the 1st 16-bit entry (next-char)
defines an equivalence class. If the next character is of that equivalence class,
then the 2nd 16-bit entry (the op-byte) is interpreted as follows:

17

17. Add the glue node defined by entry remainder in the 0-th glue table.

18. Add the penalty node defined by entry remainder in the 0-th penalty
table.

19. Add the penalty node defined by entry remainder/256 in the 0-th penalty
table, then add the glue node defined by entry remainder mode 256 in the
0-th glue table.

20. Add the kern node defined by entry remainder in the 0-th mvalue table.

7.6 Level-1 ΩPL files

The level-1 ΩPL files are the text versions of level-1 ΩFM files. Hence, level-1
ΩPL files contain six kinds of new tables: integer (ivalue), fixed (fvalue),
magnifiable fixed (mvalue), rule (rule), glue (glue) and penalty) tables. In
addition, the character entries can include new parameters, which can then be
used in the extended lig-kern table.
We begin with the new tables. These extra tables are numbered within each

class, from 0 to n − 1, where n is the number of tables in that class. To define,
say, the fifth ivalue table, one begins as follows:

(
FONTIVALUE H 5 〈table-definition〉)

The instructions for defining tables are
(
FONTIVALUE 〈table-no〉 〈table-definition〉)(
FONTFVALUE 〈table-no〉 〈table-definition〉)(
FONTMVALUE 〈table-no〉 〈table-definition〉)(
FONTRULE 〈table-no〉 〈table-definition〉)(
FONTGLUE 〈table-no〉 〈table-definition〉)(
FONTPENALTY 〈table-no〉 〈table-definition〉)

The property lists for these tables contain as many entries as there are slots
in the table. So the fourth entry, starting from 0, in a glue table would begin
as follows:

(
GLUE H 4 〈glue-definition〉)

The instructions for defining entries are:
(
IVALUE 〈entry-no〉 〈ivalue-definition〉)(
FVALUE 〈entry-no〉 〈fvalue-definition〉)(
MVALUE 〈entry-no〉 〈mvalue-definition〉)(
RULE 〈entry-no〉 〈rule-definition〉)(
GLUE 〈entry-no〉 〈glue-definition〉)(
PENALTY 〈entry-no〉 〈penalty-definition〉)

18

Now we come to the definitions of the individual entries. The four simple
ones are for ivalue, fvalue, mvalue and penalty, which are as follows: The
instructions for defining entries are:

(
IVALUEVAL 〈integer〉)(
FVALUEVAL 〈real〉)(
MVALUEVAL 〈real〉)(
PENALTYVAL 〈integer〉)

with some examples:

(IVALUEVAL H 42)
(PENALTYVAL D 1000)
(FVALUEVAL R 42.0)
(MVALUEVAL R 42.0)

which define an integer value of hex-42, a penalty value of 1000, a fix-word value
of 42.0, and a magnifiable fix-word value of 42.0.
A 〈rule-definition〉 contains three components, each defaulting to 0:

(
RULEWD 〈real 〉)(
RULEHT 〈real 〉)(
RULEDP 〈real 〉)

The most complex entries are for glue, which can take several instructions.
The first few instructions should be clear:

(
GLUEWD 〈real〉)(
GLUESTRETCH 〈real〉)(
GLUESHRINK 〈real〉)(
GLUESTRETCHORDER 〈order 〉)(
GLUESHRINKORDER 〈order 〉)

where 〈order 〉 is one of UNIT, FI, FIL, FILL, FILLL.
Now, glue can either be blank, or consist of a leader:

(
GLUETYPE 〈kind〉)

where 〈kind〉 is one of NORMAL, ALEADERS, CLEADERS, XLEADERS. If a leader is
chosen, then one of the following alternatives can be given:

(
GLUERULE 〈integer 〉)(
GLUECHAR 〈integer 〉)

We give below the tables for an initial test with East Asian fonts:

(FONTIVALUE H 0
(IVALUE H 0
(IVALUEVAL H 0)
)

(IVALUE H 1

19

(IVALUEVAL H 1)
)

(IVALUE H 2
(IVALUEVAL H 2)
)

(IVALUE H 3
(IVALUEVAL H 3)
)

)
(FONTGLUE H 0
(GLUE H 0
(GLUETYPE H 0)
(GLUESTRETCHORDER NORMAL)
(GLUESHRINKORDER NORMAL)
(GLUEWD R 0.0)
(GLUESTRETCH R 0.0)
(GLUESCHRINK R 0.0)

)
(GLUE H 1
(GLUETYPE H 0)
(GLUESTRETCHORDER NORMAL)
(GLUESHRINKORDER NORMAL)
(GLUEWD R 1.2333
(GLUESTRETCH R 4.5555)
(GLUESCHRINK R 2.3444)

)
(FONTPENALTY H 0
(PENALTY H 0

(PENALTYVAL H 0)
)

(PENALTY H 1
(PENALTYVAL H 122A)
)

)

The extra tables can appear in any order, but they must all appear before
the first character entry has appeared, since the character parameters can refer
to these tables.
When defining the character entries, the standard entries (width, height,

depth and italic correction) all exist. One can also add parameters to the char-
acters by referring to the above tables. The syntax for an entry resembles

(CHARIVALUE H 0 H 2)

For this character, it is entry 2 in ivalue table 0 that is relevant. All entries

20

are similar:
(
CHARIVALUE 〈integer〉 〈integer〉)(
CHARFVALUE 〈integer〉 〈integer〉)(
CHARMVALUE 〈integer〉 〈integer〉)(
CHARRULE 〈integer〉 〈integer〉)(
CHARGLUE 〈integer〉 〈integer〉)(
CHARPENALTY 〈integer〉 〈integer〉)

There is a special use for the 0-th integer table, which defines the equivalence
class of the character for the lig-kern table:

(
CHARIVALUE H 0 〈integer〉)

The idea is that characters that act similarly with respect to their neighbor-
ing characters should have the same lig-kern entry, allowing for the dramatic
reduction in size of the lig-kern table. More later.
Also to save space, it is possible to state that several characters use the same

information. This is done with the charrepeat instruction:
(
CHARREPEAT H 34 H 42 〈character-definition〉)

states that characters 0x34 through to 0x76 (0x34+0x42) all use the same
information. This clustering is done automatically by the ovp2ovf program.
The lig-kern table uses four new instructions for the automatic insertion of

kern, glue and penalties between characters. For example,

(CKRN H 3 H 2)

states that if we encounter this instruction, and the next character has 3 in its
0-th ivalue table, then the 2-nd entry in the 0-th mvalue table is inserted into
the stream. Similarly,

(CGLUE H 3 H 2)

states that if we encounter this instruction, and the next character has 3 in its
0-th ivalue table, then the 2-nd entry in the 0-th glue table is inserted into
the stream. Once again,

(CPENALTY H 3 H 2)

does the same thing, except that it inserts the 2-nd entry in the 0-th penalty
table into the stream. The other one is

(CPENGLUE H 3 H 2 H 4)

which inserts the 2-nd entry in the 0-th penalty table, then the 4-th entry in
the 0-th glue table.
The label instruction used in PL files has a variant called clabel, which

means that several characters are using the same lig-kern entry. It is this tech-
nique that allows ovp2ovf to cluster the characters with similar properties,
otherwise each would point to a different lig-kern entry.

21

Our example shows how East Asian fonts might be coded. The equivalence
class of a character has three possible values: 1 for ‘left’ characters (opening
parenthesis, opening quote, etc.), 2 for ‘middle’ or ordinary characters, and
3 for ‘right’ characters (closing parenthesis, closing quote, period, etc.). Here is
the lig-kern table.

(LIGTABLE
(CLABEL H 1)
(CPENGLUE H 1 H 0 H 0)
(CPENGLUE H 2 H 0 H 0)
(CPENGLUE H 3 H 0 H 0)
(STOP)
(CLABEL H 2)
(CGLUE H 1 H 0)
(CGLUE H 2 H 0)
(CPENGLUE H 3 H 0 H 0)
(STOP)
(CLABEL H 2)
(CGLUE H 1 H 0)
(CGLUE H 2 H 0)
(CPENGLUE H 3 H 0 H 0)
(STOP)

Glue is inserted between all pairs of characters that are of category 1, 2, or 3.
In addition, a penalty is added in front of characters of category 3 (‘right’
characters), preventing a linebreak just prior to such characters. At the same
time, a penalty is added after all occurrences of characters of category 1 (‘left’
characters).
Another possibility is to completely replace the lig-kern table, with the in-

struction
(
LIGTABLEOCP 〈ocp-file-name〉)

Here the ΩCP 〈ocp-file-name〉 will be used instead of the lig-kern table.

7.7 Level-1 ΩVF files

The level-1 ΩVF files are indistinguishable from level-0 ΩVF files.

7.8 Level-1 ΩVP files

The level-1 ΩVP files are similar to level-1 ΩPL files for the description of the
tables. For the actual character layout stuff, there is no difference with level-0
ΩVP files.

22

8 Ω Translation Processes

The changes described above are very useful, and allow the resolution of several
problems. However, they do not radically alter the structure of TEX. This is not
the case for the Ω Translation Processes, which allow text to be passed through
any number of finite state automata, in order to impose the required effects.
These processes are necessary for translating one character set to another.

They are also used to choose the various forms of letters in Arabic, or to create
consonental clusters in Khmer, or to rearrange letter order in Indic scripts. They
could also offer alternative means of changing texts to upper or lower case or to
hyphenate texts.
Each translation process is placed in a file with the suffix .otp. Its syntax is

similar but not identical to a lex or flex file on Unix. Examples of translation
processes can be found in the texmf/omega/otp directory.
An .otp file defines a finite state automaton that transforms an input char-

acter stream into an output character stream. It consists of six parts:
Input
Output
Tables
States
Aliases
Expressions

where the Expressions actually state what translations take place and in what
situation.
In what follows, n refers to a positive integer between 0 and 224 − 1. It

can be given in decimal form, octal form (preceded by @’) or hexadecimal form
(preceded by @"). Hexadecimal numbers can use both minuscule and majuscule
letters to express the digits a–f. Numbers can also be given in character form:
a printable ascii character, when placed inside a pair of quotes, generates the
ascii code for that character. For example, ‘a’ is equivalent to @"61.
The Input part states how many octets are in each input character. If the

section is empty, then the default value is 2, since we hope that Unicode will
become the standard means of communication in the future. If the section is
not empty, it must be of the form

input: in;

where in states how many octets are in each input character.
The Output part states how many octets are in each output character. If

the section is empty, then the default value is 2, since we hope that Unicode
will become the standard means of communication in the future. If the section
is not empty, it must be of the form

output: out;

where out states how many octets are in each output character.
The Tables part is used for defining tables that will be referred to later in

the expressions. Often, translations from one character set to another are most

23

efficiently presented through table lookup. This section can be empty, in which
case no tables have been defined. If it is not empty, it is of the form

tables: table+

where each table is of the form

id[n] = {n+};

where the numbers in n+ are comma-separated.
The States part is used to separate out the expressions. Not all expressions

will necessarily be applicable in all situations. To do this, the user can name
states and identify expressions with state names, in order to express what ex-
pressions apply when. This section can be empty, in which case there is only
one state. If it is not empty, it is of the form

states: id+;

where the identifiers in id+ are comma-separated.
The Aliases part is used to simplify the definition of the left hand sides of

the expressions. Each expression consists of a left-hand side, in the form of a
simplified regular expression, and of a right-hand side, which states what should
be done with a recognized string. To simplify the definitions of the left-hand
sides, aliases can be used. This section can be empty, in which case there are
no aliases. If it is not empty, it is of the form

aliases: alias+

where each alias is of the form

id = left;

and left is defined below.
The Expressions part is the very reason for an .otp file. It states what

translations must take place, and when. It cannot be empty, and its syntax is

expressions: expr+

Each expr is of the form

leftState totalLeft right pushBack rightState;

where leftState defines the state for which this expression is applicable, totalLeft
defines the left-hand-side regular expression, right defines the characters to be
output, pushBack states what characters must be added to the input stream
and rightState gives the new state.
Intuitively, if the automaton is in macro-state leftState and the regular ex-

pression totalLeft corresponds to a prefix of the current input stream, then
(1) the input stream is advanced to the end of the recognized prefix, (2) the
characters generated by the right expression are put onto the output stream,

24

(3) the characters generated by the pushBack stream are placed at the begin-
ning of the input stream and (4) the system changes to the macro-state defined
by rightState.
The leftState field can be empty. If it is not, its syntax is

<id>

The syntax for totalLeft is

beg:? left+ end:?

The beg:, if present, will only match the string if it is at the beginning of the
input. The end:, if present, will only match the string if it is at the end of the
input.
The syntax for left is given by

left ::= n

| n-n

| .

| (left+)

| ^(left+)

| {id}
| left <n,n?>

where the left+ means a series of left separated by vertical bars. Therefore, n
means a single number, n-n is a range, . is a wildcard character, (left+) is
a choice, ^(left+) is the negation of a choice, {id} is the use of an alias and
left<n,n?> means between n and n′ occurrences of left. Should there be no n′,
then the expression means at least n occurrences.
The syntax for right is

=> stringExpr+

while that for pushBack, if it is not empty, is

<= stringExpr+

The right expression corresponds to the characters that are to be output. The
pushBack expression corresponds to the characters that are put back onto the
input stream.
A stringExpr defines a string of characters, using the characters in the rec-

ognized input stream as arguments. It is of the form

25

s
| n
| \n
| \$
| \($-n)
| *
| \(*-n)
| \(*+n)
| \(*+n-n′)
| #arithExpr

where s is an ascii character string enclosed in double quotation marks. The
\n means the n-th character (starting from 1) in the recognized prefix; the \$
means the last character in the prefix; \($-n) the n-th, counting from the end.
The * means the entire recognized prefix; \(*-n) the prefix without the last
n characters; \(*+n) without the first n characters; \(*+n-n′) removes the
first n and last n′ characters.
For example, Indic scripts are encoded with vowels at the end of a syllable,

but the vowel is actually printed first on the page. Up to six consonants can
precede a vowel, yielding the following transliteration:

{consonant}<1,6> {vowel} => \$ \(*-1);

The arithExpr entry allows for calculations to actually be effected on the
characters in the prefix. Their syntax is as follows:

n
| \n
| \$
| \($-n)
| arithExpr + arithExpr
| arithExpr - arithExpr
| arithExpr * arithExpr
| arithExpr div: arithExpr
| arithExpr mod: arithExpr
| id[arithExpr]
| (arithExpr)

where id[arithExpr] means a table lookup: the id must be a table defined in
the Tables section. The other operations should be clear.
The following example shows the use of tables.

% File inbig5.otp
% Conversion to Unicode from Chinese Big 5 (HKU)
% Copyright (c) 1995 John Plaice and Yannis Haralambous
% This file is part of the Omega project.
%
% This file was derived from data in the tcs program
% ftp://plan9.att.com/plan9/unixsrc/tcs.shar.Z, 16 November 1994
%

26

input: 1;
output: 2;

tables:

in_big5_a1[@"9d] = {
@"20, @"2c, @"2ce, @"2e, @"2219, @"2219, @"3b, @"3a,
...
@"2199, @"2198, @"2225, @"2223, @"2215
};

in_big5[@"3695] = {
@"3000, @"ff0c, @"3001, @"3002, @"ff0e, @"30fb, @"ff1b, @"ff1a,
...
@"fffd, @"fffd, @"fffd, @"fffd, @"fffd
};

expressions:

@"1a => @"0a;
@"00-@"a0 => \1;
@"a1(@"40-@"7e) => #(in_big5_a1[\2-@"40]);
@"a1(@"a1-@"fe) => #(in_big5_a1[\2-@"62]);
(@"a2-@"fe)(@"40-@"7e) => #(in_big5[(\1-@"a2)*@"9d + \2-@"40]);
(@"a2-@"fe)(@"a1-@"fe) => #(in_big5[(\1-@"a2)*@"9d + \2-@"62]);
. . => @"fffd;

In the future, more operations may well be added. Research is still under
way for such things as providing means for defining functions, local variables,
error handling and other functionality.
The pushBack part, which serves to put characters back onto the input

stream, uses the same syntax as the right part. When characters are placed
back onto the input stream, they will be looked at upon the next iteration of
the automaton.
Finally, the rightState can be empty or one of the following three forms:

<id>
| <push: id>
| <pop:>

If it is empty, the automaton stays in the same state. If it is of the form <id>,
then the automaton changes to state id. The <push: id> means change to
state id, but remembering the current state. The <pop:> means return to the
previously saved state.
Several .otp files are in the omega/texmf/otp directory. The char2uni

directory contains ΩTPs that convert national character sets to Unicode, while
the omega directory contains ΩTPs designed to work with the Ω fonts.

27

9 Compiled Translation Processes.

Ω does not know anything about Ω Translation Processes. It actually reads a
compiled form of these filters, known as Compiled Translation Processes (file
suffix .ocp). Essentially, the ΩCPs can be considered to be portable assembler
programs, and Ω includes an interpreter for the generated instructions.
The command for reading in a ΩCP file is similar to a font declaration. The

example

\ocp\TexUni=TeXArabicToUnicode

means that the file TeXArabicToUnicode.ocp is read in by Ω and that internally
the translation process is referred to as \TeXUni.
The ΩCPs consist of a sequence of 4-octet words. The first seven words have

the following form:
lf length of the entire file, in words;
in number of octets in an input character;
ot number of octets in an output character;
nt number of tables;
lt number of words allocated for tables;
ns number of states;
ls number of words allocated for states;

The header words are followed by four arrays:

table_length : array [0..nt − 1] of word
tables : array [0..lt − 1] of word

state_length : array [0..ns − 1] of word
tables : array [0..ls − 1] of word

The table_length array states how many words are used for each of the tables
in the ΩCP. For the GB→ Unicode example on page 26, the table_length would
have two entries: hex values 9d and 3695.
The tables array is simply the concatenation of the tables in the ΩTP file.
The state_length array states how many words are used for each of the states

in the ΩCP. For the GB→ Unicode example on page 26, the state_length would
have one entry.
The states array is simply the concatenation of the sequence of instructions

for each state in the ΩTP file. Each instruction takes one or two 4-octet words.
Zero- and one-argument instructions use one word. If the instruction consists of
one word, then the actual instruction is in the first two octets and the argument
is in the last two octets. If the instruction consists of two words, then the actual
instruction is in the first two octets, the first argument is in the next two octets
and the last argument is in the last two octets. The instructions are as follows:

1 OTP_RIGHT_OUTPUT 0 arguments
2 OTP_RIGHT_NUM 1 argument
3 OTP_RIGHT_CHAR 1 argument

28

4 OTP_RIGHT_LCHAR 1 argument
5 OTP_RIGHT_SOME 2 arguments

6 OTP_PBACK_OUTPUT 0 arguments
7 OTP_PBACK_NUM 1 argument
8 OTP_PBACK_CHAR 1 argument
9 OTP_PBACK_LCHAR 1 argument
10 OTP_PBACK_SOME 2 arguments

11 OTP_ADD 0 arguments
12 OTP_SUB 0 arguments
13 OTP_MULT 0 arguments
14 OTP_DIV 0 arguments
15 OTP_MOD 0 arguments
16 OTP_LOOKUP 0 arguments
17 OTP_PUSH_NUM 1 argument
18 OTP_PUSH_CHAR 1 argument
19 OTP_PUSH_LCHAR 1 argument

20 OTP_STATE_CHANGE 1 argument
21 OTP_STATE_PUSH 1 argument
22 OTP_STATE_POP 1 argument

23 OTP_LEFT_START 0 arguments
24 OTP_LEFT_RETURN 0 arguments
25 OTP_LEFT_BACKUP 0 arguments

26 OTP_GOTO 1 argument
27 OTP_GOTO_NE 2 arguments
28 OTP_GOTO_EQ 2 arguments
29 OTP_GOTO_LT 2 arguments
30 OTP_GOTO_LE 2 arguments
31 OTP_GOTO_GT 2 arguments
32 OTP_GOTO_GE 2 arguments
33 OTP_GOTO_NO_ADVANCE 1 argument
34 OTP_GOTO_BEG 1 argument
35 OTP_GOTO_END 1 argument
36 OTP_STOP 0 arguments

The OTP_LEFT, OTP_GOTO and OTP_STOP instructions are used for recogniz-
ing prefixes in an input stream. The OTP_RIGHT instructions place characters
on the output stream, while the OTP_PBACK instructions place characters back
onto the input stream. The instructions OTP_ADD through to OTP_PUSH_LCHAR
are used for internal computations in preparation for OTP_RIGHT or OTP_PBACK
instructions. Finally, the OTP_STATE instructions are for changing macro-states.

29

The system that reads from the input stream uses two pointers, which we
will call first and last. The first value points to the beginning of the input prefix
that is currently being identified. The last value points to the end of the input
prefix that has been read. When a prefix has been recognized, then first points
to \1 and last points to \$.
The OTP_LEFT_START instruction, called at the beginning of the parsing of

a prefix, advances first to last + 1; OTP_LEFT_RETURN resets the last value to
first − 1 (it is called when a particular left pattern does not correspond to the
prefix); OTP_LEFT_BACKUP backs up the last pointer by 1.
Internally, a ΩCP program uses a program counter (PC), which is simply

an index into the appropriate state array. Like for all assembler programs,
this counter is normally incremented by 1 or 2, depending on the size of the
instruction, but it can be abruptly changed through an OTP_GOTO instruction.
The argument in single-argument OTP_GOTO instructions is the new PC. For

the two-argument instructions, the first is the comparand and the second is
the new PC should the test succeed. The OTP_GOTO instruction itself is an
unconditional branch; OTP_GOTO_NO_ADVANCE advances last by 1, and branches
if has reached the end of input; OTP_GOTO_BEG branches at the beginning of
input and OTP_GOTO_END branches at the end of input. As for OTP_GOTO_cond,
it succeeds if the character pointed to by last (we’ll call it *last) satisfies the
test cond(*last, firstArg).
The OTP_STOP instruction stops processing of the currently recognized prefix.

Normally the automaton will be restarted with an OTP_LEFT_START instruction.
When computations are undertaken for the OTP_RIGHT and OTP_PBACK in-

structions, a computation stack is used. This stack is accessed through instruc-
tions OTP_ADD through to OTP_PUSH_LCHAR, as well as through the instructions
OTP_RIGHT_OUTPUT and OTP_PBACK_OUTPUT.
Since the OTP_RIGHT and OTP_PBACK instructions are analogous, only the

former are described. The OTP_RIGHT_OUTPUT instruction pops a value of the
top of the stack and outputs it; OTP_RIGHT_NUM(n) simply places n on the
output stream; OTP_RIGHT_CHAR(n) places the n-th input character on the
output stream; OTP_RIGHT_LCHAR does the same, but from the back; finally,
OTP_RIGHT_SOME places a substring onto the output stream.
Three instructions are used for placing values on the stack: OTP_PUSH_NUM(n)

pushes n onto the stack, OTP_PUSH_CHAR(n) pushes the n-th character and
OTP_PUSH_LCHAR(n) does the same from the end.
The arithmetic operations of the form OTP_op apply the operation

stack [top − 1] := stack [top − 1] op stack [top]

where top is the stack pointer, and then decrement the stack pointer. Finally,
the OTP_LOOKUP instruction applies the operation

stack [top − 1] := stack [top − 1][stack [top]]

and then decrements the pointer.
Last, but not least, are the OTP_STATE instructions, which manipulate a

stack of macro-states. The initial state is always 0. The OTP_STATE_CHANGE(n)

30

changes the current state state n; OTP_STATE_PUSH(n) pushes the current state
onto the state stack before changing the current state; OTP_STATE_POP pops the
state at the top of the state stack into the current state.

10 Translation process lists

Translation processes can be used for a number of different purposes. Since
not all uses can be foreseen, we have decided to offer a means to dynamically
reconfigure the set of translation processes that are passing over the input text.
This is done using stacks of translation process lists.
For any single purpose, for example to process a given language, several

ΩCPs might be required. If one makes a context switch, such as processing a
different language, then one would to be able to quickly replace all of the ΩCPs
that are currently being used. This is done using ΩCP lists.
A ΩCP list is actually a list of pairs. Each pair consists of a positive scaled

value and a doubly ended queue of ΩCPs. For example,

\ocplist\ArabicOCP=[(1.0 : \TexUni,\UniUniTwo,\UniTwoFont)]

the output from Ω once the ΩCP list \ArabicOCP has been typed, shows that
that list has one element, namely the pair with the scaled value 1.0 and the
doubly ended queue with three ΩCPs, \TexUni, \UniUniTwo and \UniTwoFont.

ΩCP lists are built up using the five operators \nullctlist, \addbefore-
ocplist, \addafterocplist, \removebeforeocplist and \removeafterocp-
list. For example, the above output was generated by the following sequence
of Ω statements:

\ocp\TexUni=TeXArabicToUnicode
\ocp\UniUniTwo=UnicodeToContUnicode
\ocp\UniTwoFont=ContUnicodeToTeXArabicOut

\ocplist\ArabicOCP=
\addbeforeocplist 1 \TexUni
\addbeforeocplist 1 \UniUniTwo
\addbeforeocplist 1 \UniTwoFont
\nullocplist

The \ocplist command is similar to the \ocp command:
\ocplist listName = ocpListExpr.
All ocpListExpr are built up from either the empty ΩCP list, \nullocplist,

or from an already existing ΩCP list. In the latter case, the list is completely
copied, to ensure that the named list is not itself modified. Given a list l, the
instruction \addbeforeocplist n ocp l states that the ΩCP ocp is added at the
head of the doubly ended queue for value n in list l. If that queue does not exist,
it is created and inserted in the list so that the scaled values are all in increasing
order. The instruction \addafterocplist n ocp l does the same, except the
addition takes place at the tail of the doubly ended queue. The instruction

31

\removebeforeocplist n l removes the ΩCP at the head of the doubly ended
queue numbered n. The instruction \removeafterocplist n l does the same
at the tail of the doubly ended queue. See the next section for more examples.

11 Input Filters

Here we come to the crucial parts of Ω. What happens to the input stream as
it passes through translation processes? What is the interaction between TEX’s
macro-expansion and Ω’s translation processes?
When Ω is in horizontal mode and it encounters a token of the form letter,

other_char, char_given or char_num, that character and all the successive
characters in those categories are read into a buffer. The currently active ΩCP
is applied to the buffer, and the result is placed back onto the input, to be reread
by the standard TEX input routines, including macro expansion.
The currently active ΩCP is designated by a pair (v, i), where v is a scaled

value and i is an integer. If all the enabled ΩCPs are in a ΩCP list, then the v
designates the index into the ΩCP list and the i designates which element in
the v-queue is currently active.
Once a ΩCP has been used, the i is incremented; if it points to the end of

the current queue, then v is set to the next queue, and i is reset to 1.
When the last enabled ΩCP has been used, then the standard techniques for

treating letters and other characters are used, namely generating paragraphs,
etc.
What this means is that it is now possible to apply a filter on the text

of a file without macro-expansion, generate a new text, possibly with macros
to be expanded, macro-expand, re-apply filters, etc. All this without active
characters, and without breaking macro packages.
How are ΩCP lists enabled? ΩCP lists are placed on a stack, each numbered

queue in a given list masking the queues with the same number for the lists
below that one on the stack.
There are three commands, which all respect the grouping mechanism. The

\clearocplists command disables all ΩCP lists. The \pushocplist OCPlist
command pushes OCPlist onto the stack. The \popocplist command pops the
last list from the stack.
For example, consider the following purely hypothetical situations:

\ocplist\FrenchOCP = \addbeforeocplist 1 \ocpA
\addbeforeocplist 2 \ocpB
\addbeforeocplist 3 \ocpC
\nullocplist

\ocplist\GermanOCP = \addbeforeocplist 1 \ocpD
\addbeforeocplist 2 \ocpE
\addbeforeocplist 3 \ocpF
\nullocplist

32

\ocplist\ArabicOCP = \addbeforeocplist 1 \ocpG
\addbeforeocplist 2 \ocpH
\addbeforeocplist 2 \ocpI
\addbeforeocplist 3 \ocpJ
\nullocplist

\ocplist\SpecialArabicOCP =
\addafterocplist 3 \ocpK
\ArabicOCP

\ocplist\UpperCaseOCP =
\addbeforeocplist 2.5 \ocpL
\nullocplist

There are now 5 ΩCP lists defined, but none of them are enabled. The defined
lists are:

\ocplist\FrenchOCP =
[(1.0:\ocpA), (2.0:\ocpB), (3.0:\ocpC)]

\ocplist\GermanOCP =
[(1.0:\ocpD), (2.0:\ocpE), (3.0:\ocpF)]

\ocplist\ArabicOCP =
[(1.0:\ocpG), (2.0:\ocpH,\ocpI), (3.0:\ocpJ)]

\ocplist\SpecialArabicOCP =
[(1.0:\ocpG), (2.0:\ocpH,\ocpI), (3.0:\ocpJ,\ocpK)]

\ocplist\UpperCaseOCP =
[(2.5:\ocpL)]

Consider now the sequence of instructions

\clearocplists
\pushocplist\FrenchOCP
\pushocplist\UpperCaseOCP
\pushocplist\GermanOCP
\popocplist
\popocplist
\pushocplist\ArabicOCP
\pushocplist\SpecialArabicOCP
\pushocplist\GermanOCP

The effective enabled ΩCP list is, in turn:

[]
[(1.0:\ocpA), (2.0:\ocpB), (3.0:\ocpC)]
[(1.0:\ocpA), (2.0:\ocpB), (2.5:\ocpL), (3.0:\ocpC)]
[(1.0:\ocpD), (2.0:\ocpE), (2.5:\ocpL), (3.0:\ocpF)]
[(1.0:\ocpA), (2.0:\ocpB), (2.5:\ocpL), (3.0:\ocpC)]
[(1.0:\ocpA), (2.0:\ocpB), (3.0:\ocpC)]

33

[(1.0:\ocpG), (2.0:\ocpH,\ocpI), (3.0:\ocpJ)]
[(1.0:\ocpG), (2.0:\ocpH,\ocpI), (3.0:\ocpJ,\ocpK)]
[(1.0:\ocpD), (2.0:\ocpE), (3.0:\ocpF)]

The first test of the ΩCP lists was for Arabic. The text was typed in ascii,
using a Latin transliteration. This text was first transformed into Unicode, the
official 16-bit encoding for the world’s character sets. These letters were then
translated into their appropriate visual forms (isolated, initial, medial or final)
and then the text was translated into the font encoding. During the second
translation, inter-letter black spacing is inserted, since Arabic typesetting calls
for word expansion to fill out a line. Here is the input:

\font\ARfont=oar10 scaled 1728 offset 256 %% an X-font
\def\keshideh{%
\begingroup\penalty10000%
\clearocplists\xleaders\hbox{\char’767}\hskip0ptplus1fi%
\endgroup}
\ocp\TexUni=TeXArabicToUnicode
\ocp\UniUniTwo=UnicodeToContUnicode
\ocp\UniTwoFont=ContUnicodeToTeXArabicOut
\ocplist\ArabicOCP=%
\addbeforeocplist 1 \TexUni
\addbeforeocplist 1 \UniUniTwo
\addbeforeocplist 1 \UniTwoFont
\nullocplist
\def\AR#1{\begingroup\noindent\pushocplist \ArabicOCP%
\ARfont\language=255\textdir TRT #1\endgroup}

Notice that the \keshideh, which is dynamically inserted between letters by the
\UniUniTwo ΩCP, uses the fi infinity. It also disables all of the ΩCPs, within
a group.

12 Automatic detection of character sets

Most character sets belong to one of three groups:

1. 8-bit character sets (including shift character sets) that include ascii;

2. 8-bit character sets (including shift character sets) that include ebcdic;
and

3. 16-bit character sets that include ascii as the first 128 characters, such
as Unicode. These character sets can be stored in Big Endian or Little
Endian style.

In a multilingual, heterogeneous environment, it it inevitable that different
files will be written using different character sets. It is even possible that the

34

same file might have different parts that use different character sets. How is it
possible to tag these files internally so that Ω can apply the right translations?

Ω has two basic modes of input: the old TEX style, or the automatic Ω style.
The old TEX style, is turned on when the \noInputMode command is read. The
default mechanism is to use the automatic Ω style.
If the Ω style is being used, there are four modes, ascii, ebcdic, unicode

(Big Endian) and unicodeLE (Little Endian), which correspond to the four
situations above. Upon opening a file, Ω reads the first two characters. If the
first character is hex 25 (ascii %), Ω assumes that the input character set is
ascii. If the first character is hex 6c (ebcdic %), Ω assumes that the input
character set is ebcdic. If the first two characters form hex 0025 (Unicode %),
Ω assumes that the input character set is Unicode. Finally, if the first two
characters form hex 2500 (Unicode %), Ω assumes that the input character set
is Unicode, Little Endian format. If none of these four situations occurs, then
the default input mode is assumed.
Here are the instructions for specifying modes. All of these instructions

apply only after the carriage return terminating the current input line. The
\inputMode mode command, where mode is one of ascii, ebcdic, unicode or
unicodeLE, states that after the carriage return, the input mode is mode. The
\noInputMode command states that the old TEX style should be used. The
\defaultInputMode mode instruction states that the default mode — when
there is no comment character at the beginning of a file — should be mode.
As for \noDefaultInputMode, it states that there is no default mode, and that
whatever settings existed when opening the file should remain.
The default mode when the system begins is Ω style, assuming ascii. This

is sufficient for all the iso-8859 character sets, many national character sets,
and most mixed-length character sets used in East Asia.
Once the basic family of character sets has been determined, Ω can read the

files, and actually interpret control sequences. It is then possible to be more
specific and to specify exactly what translation process must be applied to the
entire file to convert the input to Unicode.
For the moment, input translations are simply single ΩCPs, which differ

from input filters in that they apply to all characters in a file, not simply the
letters and other characters in horizontal mode. For each kind of mode, there
can be a default input translation.
As for the mode instructions, each instruction only applies after the carriage

return terminating the current line. The \inputTranslation ocp command
states that after this line, all input will be passed through translation pro-
cess ocp. The \noInputTranslation states that no input will be translated.
The \defaultAsciiInputTranslation ocp, \defaultEbcdicInputTrans-

lation ocp and \defaultUnicodeInputTranslationocp commands state what
the default translations will be for each of the modes. Finally, the \noDefault-
AsciiInputTranslation, \noDefaultEbcdicInputTranslation, \noDefault-
UnicodeInputTranslation, and \noDefaultUnicodeLEInputTranslation
commands remove default translations.

35

Upon startup, there is no default translation for ascii or unicode modes,
but there is one for ebcdic, namely

\ocp\OCPebcdic=ebcdic
\defaultEbcdicInputTranslation\OCPebcdic

13 Further work

The Ω project is far from finished. Currently much of the current work is geared
towards font development. Nevertheless, new functionality is to be added in the
future. In particular, more general methods for hyphenation, as well as for text
output, using ΩTPs, are envisaged.

36

