
T
h

e
p

d
fT

EX
u

se
r

m
an

u
al

%PDF-1.2

3 0 obj <<

/Length 4 0 R

>>

stream

1 0 0 1 91.925 759.924 cm

BT

/F51 9.963 Tf 0 0 Td[(W)80(elcome)-250(to)

-250(pdfT)]TJ 67.818 -2.241 Td[(E)]TJ 4.842

2.241 Td[(X!)]TJ 138.923 -654.744 Td[(1)]TJ

ET

endstream

endobj

4 0 obj

162

endobj

1 0 obj <<

/Font << /F51 5 0 R >>

/ProcSet [/PDF /Text]

>> endobj

2 0 obj <<

/Type /Page

/Contents 3 0 R

/Resources 1 0 R

/MediaBox [0 0 595.273 841.887]

/Parent 6 0 R

>> endobj

7 0 obj <<

/Type /Encoding

/Differences [0/.nothdef 5/dotaccent

/hungarumlaut/ogonek 8/.notdef 9/fraction

10/.notdef 11/ff/fi/fl/ffi/ffl/dotlessi

/dotlessj/grave/acute/caron/breve/macron

/ring/cedilla/germandbls/ae/oe/oslash/AE

/OE/Oslash/space/exclam/quotedbl/numbersign

/dollar/percent/ampersand/quoteright

/parenleft/parenright/asterisk/plus/comma

/hyphen/period/slash/zero/one/two/three/four

/five/six/seven/eight/nine/colon/semicolon

/less/equal/greater/question/at/A/B/C/D/E/F

/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z

/bracketleft/backslash/bracketright

/circumflex/underscore/quoteleft/a/b/c/d/e

/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z

/braceleft/bar/braceright/tilde/dieresis

/Lslash/quotesingle/quotesinglbase/florin

/quotedblbase/ellipsis/dagger/daggerdbl

/circumflex/perthousand/Scaron/guilsinglleft

/OE/Zcaron/asciicircum/minus/lslash/quoteleft

/quoteright/quotedblleft/quotedblright/bullet

/endash/emdash/tilde/trademark/scaron

/guilsinglright/oe/zcaron/asciitilde

/Ydieresis/space/exclamdown/cent/sterling

/currency/yen/brokenbar/section/dieresis

/copyright/ordfeminine/guillemotleft

/logicalnot/hyphen/registered/macron/degree

/plusminus/twosuperior/threesuperior/acute

/mu/paragraph/periodcentered/cedilla

/onesuperior/ordmasculine/guillemotright

/onequarter/onehalf/threequarters

/questiondown/Agrave/Aacute/Acircumflex

/Atilde/Adieresis/Aring/AE/Ccedilla/Egrave

/Eacute/Ecircumflex/Edieresis/Igrave/Iacute

/Icircumflex/Idieresis/Eth/Ntilde/Ograve

/Oacute/Ocircumflex/Otilde/Odieresis/multiply

/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis

/Yacute/Thorn/germandbls/agrave/aacute

/acircumflex/atilde/adieresis/aring/ae

/ccedilla/egrave/eacute/ecircumflex/edieresis

/igrave/iacute/icircumflex/idieresis/eth

/ntilde/ograve/oacute/ocircumflex/otilde

/odieresis/divide/oslash/ugrave/uacute

/ucircumflex/udieresis/yacute/thorn

/ydieresis]

>> endobj

5 0 obj <<

/Type /Font

/Subtype /Type1

/Encoding 7 0 R

/BaseFont /Times-Roman

>> endobj

6 0 obj <<

/Type /Pages

/Count 1

/Kids [2 0 R]

>> endobj

8 0 obj <<

/Type /Catalog

/Pages 6 0 R

>> endobj

9 0 obj <<

/Creator (TeX)

/Producer (pdfTeX-0.12r)

/CreationDate (D:19981205172300)

>> endobj

xref

0 10

0000000000 65535 f

0000000242 00000 n

0000000308 00000 n

0000000009 00000 n

0000000223 00000 n

0000002238 00000 n

0000002326 00000 n

0000000420 00000 n

0000002383 00000 n

0000002432 00000 n

trailer

<<

/Size 10

/Root 8 0 R

/Info 9 0 R

>>

startxref

2526

%%EOF

Hàn Thế Thành

Sebastian Rahtz

Hans Hagen

January 21, 2000

The pdfTEX manual

thanh@informatics.muni.cz — Hàn Thế Thành

s.rahtz@elsevier.co.uk — Sebastian Rahtz

pragma@wxs.nl — Hans Hagen

January 21, 2000

The title page of this manual

represents the plain TEX coded

text “Welcome to pdfTEX!”

\pdfoutput=1

\pdfcompresslevel=0

\font=tir

\tenrm

Welcome to pdfTEX!

\end

mailto:thanh@informatics.muni.cz
mailto:s.rahtz@elsevier.co.uk
mailto:pragma@wxs.nl

The pdfTEX user manual

1

Contents

1 Introduction . 1

2 About PDF . 1

3 Getting started . 3

4 Macro packages supporting PDFTEX 9

5 Setting up fonts . 10

6 Formal syntax specification 15

7 New primitives . 17

8 Graphics and color 26

Abbreviations . 27

1 Introduction
The main purpose of the pdfTEX project was to create an extension of TEX that can create pdf directly

from TEX source files and improve/enhance the result of TEX typesetting with the help of pdf. When

pdf output is not selected, pdfTEX produces normal dvi output, otherwise it produces pdf output

that looks identical to the dvi output. An important aspect of this project is to investigate alternative

justification algorithms, optionally making use of multiple master fonts.

pdfTEX is based on the original TEX sources and Web2c, and has been successfully compiled on Unix,

Win32 and MSDos systems. It is still under beta development and all features are liable to change.

Despite its β--state, pdfTEX produces excellent pdf code.

As pdfTEX evolves, this manual will evolve and more background information will be added. Be

patient with the authors.

This manual is typeset in ConTEXt. One can generate an A4 version from the source code by saying:

texexec pdftex-t

An letter size variant is also supported:

texexec --mode=letter pdftex-t

Given that the A4 version is typeset, one can generate a booklet by saying:

texexec --pdfarrange --paper=a5a4 --print=up --addempty=1,2 pdftex-t

This also demonstrates that pdfTEX can be used for page imposition purposes (given that pdfTEX

and the fonts are set up all right).

We thank all readers who send us corrections and suggestions. We also wish to express the hope

that pdfTEX will be of as much use to you as it is to us. Since pdfTEX is still being improved and

extended, we suggest you keep track of updates.

2 About PDF
The cover of this manual shows a simple pdf file. Unless compression and/or encryption is applied,

such a file is rather verbose and readable. The first line specifies the version used; currently pdfTEX

produces level 1.2 output. Viewers are supposed to silently skip over all elements they cannot handle.

A pdf file consist of objects. These objects can be recognized by their number and keywords:

8 0 obj << /Type /Catalog /Pages 6 0 R >> endobj

Here 8 0 obj ... endobj is the object capsule. The first number is the object number. Later we

will see that pdfTEX gives access to this number. One can for instance create an object by using

\pdfobj after which \pdflastobj returns the number. So

The pdfTEX user manual

2

\pdfobj{/Type /Catalog /Pages 6 0 R}

inserts an object into the file, while \pdflastobj returns the number pdfTEX assigned to this object.

The sequence 6 0 R is an object reference, a pointer to another object. The second number (here a

zero) is currently not used in pdfTEX; it is the version number of the object. It is for instance used

by pdf editors, when they replace objects by new ones.

In general this rather direct way of pushing objects in the files is rather useless and only makes sense

when implementing for instance fill--in field support or annotation content reuse. We will come to

that later. Unless such direct objects are part of something larger, they will end up as isolated entities,

not doing any harm but not doing any good either.

When a viewer opens a pdf file, it first goes to the end of the file. There it finds the keyword

startxref, the signal where to look for the so called ‘object cross reference table’. This table pro-

vides fast access to the objects that make up the file. The actual starting point of the file is defined

after the trailer. The /Root entry points to the catalog. In this catalog the viewer can find the page

list. In our example we have only one page. The trailer also holds an /Info entry, which tells a bit

more about the document. Just follow the thread:

/Root −→ object 8 −→ /Pages −→ object 6 −→ /Kids −→ object 2 −→ page content

As soon as we add annotations, a fancy word for hyperlinks and alike, some more entries are present

in the catalog. We invite users to take a look at the pdf code of this file to get an impression of that.

The page content is a stream of drawing operations. Such a stream can be compressed, where the

level of compression can be set with \pdfcompresslevel. Let’s take a closer look at this stream.

First there is a transformation matrix, six numbers followed by cm. As in PostScript, the operator

comes after the operands. Between BT and ET comes the text. A font switch can be recognized as

/F... The actual text goes between () so that it creates a PostScript string. When one analyzes a file

produced by a less sophisticated typesetting engine, whole sequences of words can be recognized.

In TEX however, the text comes out rather fragmented, mainly because a lot of kerning takes place.

Because viewers can search in these streams, one can imagine that the average TEX produced files

becomes more difficult as soon as the typesetting engine does a better job; TEX cannot do less.

This one page example uses an Adobe Times Roman font. This is one of the 14 fonts that is always

present in the viewer application, and is called a base font. However, when we use for instance

Computer Modern Roman, we have to make sure that this font is available, and the best way to

do this is to embed it in the file. Just let your eyes follow the object thread and see how a font is

described. The only thing missing in this example is the (partially) embedded glyph description file,

which for the base fonts is not needed.

In this simple file, we don’t specify in what way the file should be opened, for instance full screen or

clipped. A closer look at the page object (/Type /Page) shows that a mediabox is part of the page

description. A mediabox acts like the bounding box in a PostScript file. pdfTEX users have access

to this object by \pdfpageattr.

Although in most cases macro packages will shield users from these internals, pdfTEX provides access

to many of the entries described here, either automatically by translating the TEX data structures into

pdf ones, or manually by pushing entries to the catalog, page, info or self created objects. Those

who, after this introduction, feel uncomfortable in how to proceed, are advised to read on but skip

section 7. Before we come to that section, we will describe how to get started with pdfTEX.

The pdfTEX user manual

3

3 Getting started
This section describes the steps needed to get pdfTEX running on a system where pdfTEX is not

yet installed. Some TEX distributions have pdfTEX as a component, like teTEX, fpTEX, MikTeX and

CMacTEX, so when you use one of them, you don’t need to bother with the pdfTEX installation. Note

that the installation description in this manual is Web2c--specific.

For some years there has been a ‘moderate’ successor to TEX available, called e-TEX. Because the main

stream macro packages start supporting this welcome extension, pdfTEX also is available as pdfe-TEX.

Although in this document we will speak of pdfTEX, we advise users to use pdfe-TEX when available.

That way they get the best of all worlds and are ready for the future.

3.1 Getting sources and binaries

The latest sources of pdfTEX are distributed together with precompiled binaries of pdfTEX for some

platforms, including Linux1 , SGI IRIX, Sun SPARC Solaris and MSDos (djgpp).2 The primary location

where one can fetch the source code (by version) is:

ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest

Thomas Esser’s teTEX distribution comes with precompiled versions for many Unix systems. More

information can be found at: http://www.tug.org/teTeX. For Win32 systems (Windows 95, Win-

dows NT) there are two packages that contain pdfTEX, both in ctan:systems/win32: fpTEX, main-

tained by Fabrice Popineau, popineau@ese-metz.fr, and MikTeX by Christian Schenk, cschenk@

berlin.snafu.de.

3.2 Compiling

If there is no precompiled binary of pdfTEX for your system, you need to build pdfTEX from sources.

The compilation is expected to be easy on Unix--like systems and can be described best by example.

Assuming that all needed files are downloaded to $HOME/pdftex, on a Unix system the following

steps are needed to compile pdfTEX:

cd $HOME/pdftex

gunzip < web-7.3.tar.gz | tar xvf -

gunzip < web2c-7.3.tar.gz | tar xvf -

gunzip < pdftex.tar.gz | tar xvf -

mv pdftexdir web2c-7.3/web2c

cd web2c-7.3

./configure

cd web2c

make pdftex

If you happen to have a previously configured source tree and just install a new version of pdfTEX,

you can avoid running configure from the top--level directory. It’s quicker to run config.status,

which will just regenerate the Makefile’s based on config.cache:

The Linux binary is compiled for the new libc-6 (gnu glibc-2.0), which will not run for users of older Linux installations1

still based on libc-5.

The djgpp version is built by djgpp 2.0 cross--compiler on Linux.2

ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
ctan:systems/win32
ctan:systems/win32
ctan:systems/win32
popineau@ese-metz.fr
popineau@ese-metz.fr
popineau@ese-metz.fr
cschenk@berlin.snafu.de
cschenk@berlin.snafu.de
cschenk@berlin.snafu.de
cschenk@berlin.snafu.de

The pdfTEX user manual

4

cd web2c-7.3/web2c

sh config.status

make pdftex

For Unix users the savest way to generate binaries is to get the latest teTEX and follow the instructions

that come with it.

Apart from the binary of pdfTEX the compilation also produces several other files which are needed

for running pdfTEX:

pdftex.pool The pool file, needed for creating formats, located in web2c-7.3/web2c

texmf.cnf Web2c run--time configuration file, located in web2c-7.3/kpathsea

ttf2afm An external program to generate afm files from TrueType fonts, located in web2c-7.3

/web2c/pdftexdir

Precompiled binaries are included in the zip archive pdftex.zip.

3.3 Getting PDFTEX--specific platform--independent files

Apart from the above--mentioned files, there is another zip archive (pdftexlib.zip) in the pdfTEX

distribution which contains platform--independent files required for running pdfTEX:

• configuration file: pdftex.cfg

• encoding vectors: *.enc

• map files: *.map

• macros: *.tex

Unpacking this archive —don’t forget the -d option when using pkunzip— will create a texmf tree

containing pdfTEX--specific files.

3.4 Placing files

The next step is to place the binaries somewhere in PATH. If you want to use LATEX, you also need to

make a copy (or symbolic link) of pdftex and name it pdflatex. The files texmf.cnf and pdftex.

pool and the directory texmf, created by unpacking the file pdftexlib.zip, should be moved to

the ‘appropriate’ place (see below).

3.5 Setting search paths

Web2c--based programs, including pdfTEX, use the Web2c run--time configuration file called texmf.

cnf. This file can be found via the user--set environment variable TEXMFCNF or via the compile--time

default value if the former is not set. It is strongly recommended to use the first option. Next you

need to edit texmf.cnf so pdfTEX can find all necessary files. Usually one has to edit TEXMFS and

maybe some of the next variables. When running pdfTEX, some extra search paths are used beyond

those normally requested by TEX itself:

The pdfTEX user manual

5

used for format texmf.cnf

virtual fonts kpse vf format VFFONTS

type1 fonts kpse type1 format T1FONTS

truetype fonts kpse truetype format TTFONTS

pgc fonts kpse miscfonts format MISCFONTS

pdftex.cfg kpse tex format TEXINPUTS

images kpse tex format TEXINPUTS

map files kpse tex ps header format TEXPSHEADERS

encoding files kpse tex ps header format TEXPSHEADERS

Table 1 The Web2c variables.

VFFONTS Virtual fonts are fonts made up of others and vf files play an important role in this

process. Because pdfTEX produces the final output code, it must consult those

files.

T1FONTS Outline (vector) fonts are to be prefered over bitmap pk fonts. In most cases

Type 1 fonts are used and this variable tells pdfTEX where to find them.

TTFONTS Like Type 1 fonts, TrueType fonts are also outlines.

MISCFONTS pdfTEX is able to read so called pdf glyph container files. These contain fonts

descriptions in pdf format. (A separate manual will be made available soon.)

PKFONTS Unfortunately bitmap fonts are displayed poorly by pdf viewers, so when possible

one should use outline fonts. When no outline is available, pdfTEX tries to locate

a suitable pk font (or invoke a process that generates them).

TEXINPUTS This variable specifies where pdfTEX finds its configuration file and input files.

Being a postprocessor too, image files are considered input files and searched for

along this path.

TEXPSHEADERS This is the path where pdfTEX looks for the font mapping files (*.map) and en-

coding files (*.enc). Both types provide pdfTEX the information needed for em-

bedding font encoding vectors and font resources.

3.6 The PDFTEX configuration file

One has to keep in mind that, opposed to dvi output, there is no postprocessing stage. This has

several rather fundamental consequences, like one--pass graphic and font inclusion. When TEX builds

a page, the macro package used quite certain has a concept of page dimensions, which is not the

same as paper dimensions. The reference point of the page is the top--left corner.

Most dvi postprocessors enable the user to specify the paper size, which often defaults to ‘A4’ or

‘letter’. In most cases it does not harm that much to mix the two, because one will seldom put too

small paper in the printer. And, if one does, one will certainly not do that a second time. In pdf

the paper size is part of the definition. This means that everything that is off page, is clipped off,

it simply disappears. Even worse, just like in a PostScript file, the reference point is in the lower

corner, which is opposite to dvi’s reference point.

The pdfTEX user manual

6

And so, we’ve found one of the main reasons why pdfTEX explicitly needs to know the paper dimen-

sions. These dimensions can either be passed using the so called configuration file, or by using the

primitives provided for this purpose. In this respect, the pdfTEX configuration file can be compared

to configuration files that come with dvi postprocessors and/or command line options. Both contain

information on the paper used, the fonts to be included and optimizations to be applied.

When pdfTEX is run in ini--mode, which is normally the case when we generate a format file, the

configuration file is not read at all, and all configuration parameters are set to 0 by default for both

integer and dimension parameters.

When pdfTEX is launched in non--ini mode, it reads the Web2c configuration file as well as the pdfTEX

configuration file called pdftex.cfg, searched for in the TEXINPUTS path. As Web2c systems com-

monly specify a ‘private’ tree for pdfTEX where configuration and map files are located, this allows

individual users or projects to maintain customized versions of the configuration file. The configu-

ration file must exist when pdfTEX is run (except when generating a format).

The integer configuration parameters replace the corresponding internal ones just before pdfTEX

starts reading the input file. At this moment the format is already loaded, so any former settings

during creating formats will be overwritten by the values from config file. So, unless the macro

package used resets \pdfoutput, pdfTEX will produce pdf output! Macros (packages) that adapt

themselves to either dvi (using specials) or pdf (dedicated primitives) should be aware of this.

When at the moment the first page is shipped out \pdfoutput has positive value, the configuation

parameters that are dimension overwrite only the corresponding internal ones that are 0. The value

of \pdfoutput cannot be changed after the first page has been shipped out.

Most parameters in the configuration file have a corresponding internal register. When not set during

the TEX run, pdfTEX uses the values as specified in the configuration file.

internal name parameters type

\pdfoutput output format integer

\pdfadjustspacing adjust spacing level integer

\pdfcompresslevel compress level integer

\pdfdecimaldigits decimal digits integer

\pdfmovechars move chars integer

\pdfimageresolution image resolution integer

\pdfpkresolution pk resolution integer

\pdfhorigin horigin dimension

\pdfvorigin vorigin dimension

\pdfpageheight page height dimension

\pdfpagewidth page width dimension

\pdflinkmargin link margin dimension

\pdfthreadmargin thread margin dimension

Figure 1 The configuration parameters.

Apart from the above described parameters, the configuration file can have another entry named map.

This entry specifies the font mapping files, which is similar to those used by many dvi to PostScript

drivers. More than one map file can be specified, using multiple map lines. If the name of the map

The pdfTEX user manual

7

file is prefixed with a +, its values are appended to the existing set, otherwise they replace it. If no

map files are given, the default value psfonts.map is used.

A typical pdftex.cfg file looks like this, setting up output for A4 paper size and the standard TEX

offset of 1 inch, and loading two map files for fonts:

output_format 1 % the implicit output will be PDF

compress_level 1 % use the fastest level of compression

decimal_digits 3 % max. 3 digits after the decimal point

image_resolution 300 % when not specified, embed images at 300 DPI

pk_resolution 600 % use PK fonts at 600 DPI

move_chars 1 % move chars in 0..31 to higher area

page_width 210 true mm % A4 paper width

page_height 297 true mm % A4 paper height

horigin 1 true in % horizontal origin offset

vorigin 1 true in % vertical origin offset

map pdftex.map % standard map file

map +misc.map % map file for extra fonts

The configuration file sets default values for these parameters, and apart from the map entry, they all

can be over--ridden in the TEX source file. Dimensions can be specified as true, which makes them

immune for magnification (when set).

output format This integer parameter specifies whether the output format should be dvi or pdf.

A positive value means pdf output, otherwise we get dvi output.

compress level This integer parameter specifies the level of text and in--line graphics compression.

pdfTEX uses zip compression as provided by zlib. A value of 0 means no compression, 1 means

fastest, 9 means best, 2..8 means something in between. Just set this value to 9, unless there is a

good reason to do otherwise — 0 is great for testing macros that use \pdfliteral.

decimal digits This integer specifies the preciseness of real numbers in pdf page descriptions. It

gives the maximal number of decimal digits after the decimal point of real numbers. Valid values

are in range 0..5. A higher value means more precise output, but also results in a much larger file

size and more time to display or print. In most cases the optimal value is 2. This parameter does

not influence the precision of numbers used in raw pdf code, like that used in \pdfliteral and

annotation action specifications.

image resolution When pdfTEX is not able to determine the natural dimensions of an image, it

assumes a resolution of type 72 dots per inch. Use this variable to change this default value.

pk resolution One can use this entry to specify the resolution for bitmap fonts. Nowadays most

printers are capable to print at least 600 dots per inch, so this is a reasonable default.

move chars Although pdf output is claimed to be portable, especially when all font information

is included in the file, problems with printing and viewing have a persistent nature. Moving the

characters in range 0-31 sometimes helps a lot. When set to 1, characters are only moved when a

font has less than 128 glyphs, when set to 2 higher slots are used too.

page width & page height These two dimension parameters specify the output medium dimensions

(the paper, screen or whatever the page is put on). If they are not specified, the page width is

The pdfTEX user manual

8

calculated as wbox being shipped out + 2 × (horigin + \hoffset). The page height is calculated in a similar

way.

horigin & vorigin These dimension parameters can be used to set the offset of the TEX output box

from the top left corner of the ‘paper’.

map This entry specifies the font mapping file, which is similar to those used by many dvi to

PostScript drivers. More than one map file can be specified, using multiple map lines. If the name

of the map file is prefixed with a +, its values are appended to the existing set, otherwise they replace

it. If no map files are given, the default value psfonts.map is used.

3.7 Creating formats

Formats for pdfTEX are created in the same way as for TEX. For plain TEX and LATEX it looks like:

pdftex -ini -fmt=pdftex plain \dump

pdftex -ini -fmt=pdflatex latex.ltx

In ConTEXt the generation depends on the interface used. A format using the english user interface

is generated with

pdftex -ini -fmt=cont-en cont-en

When properly set up, one can also use the ConTEXt command line interface TEXexec to generate

one or more formats, like:

texexec --make en

for an english format, or

texexec --make --tex=pdfetex en de

for an english and german one, using pdfe-TEX. Indeed, if there is pdfTEX as well as pdfe-TEX, use it!

Whatever macro package used, the formats should be placed in the TEXFORMATS path. We strongly

recommend to use pdfe-TEX, if only because the main stream macro packages (will) use it.

3.8 Testing the installation

When everything is set up, you can test the installation. In the distribution there is a plain TEX test

file example.tex. Process this file by saying:

pdftex example

If the installation is ok, this run should produce a file called example.pdf. The file example.tex is

also a good place to look for how to use pdfTEX’s new primitives.

3.9 Common problems

The most common problem with installations is that pdfTEX complains that something cannot

be found. In such cases make sure that TEXMFCNF is set correctly, so pdfTEX can find texmf.

cnf. The next best place to look/edit is the file texmf.cnf. When still in deep trouble, set

KPATHSEA_DEBUG=255 before running pdfTEX or run pdfTEX with option -k 255. This will cause

pdfTEX to write a lot of debugging information that can be useful to trace problems. More options

can be found in the Web2c documentation.

The pdfTEX user manual

9

Variables in texmf.cnf can be overwritten by environment variables. Here are some of the most

common problems you can encounter when getting started:

• I can’t read pdftex.pool; bad path?

TEXMFCNF is not set correctly and so pdfTEX cannot find texmf.cnf, or TEXPOOL in texmf.cnf

doesn’t contain a path to the pool file pdftex.pool or pdfetex.pool when you use pdfe-TEX.

• You have to increase POOLSIZE.

pdfTEX cannot find texmf.cnf, or the value of pool_size specified in texmf.cnf is not large

enough and must be increased. If pool_size is not specified in texmf.cnf then you can add

something like

pool_size = 500000

• I can’t find the format file ‘pdftex.fmt’!

I can’t find the format file ‘pdflatex.fmt’!

Format is not created (see above how to do that) or is not properly placed. Make sure that TEX-

FORMATS in texmf.cnf contains the path to pdftex.fmt or pdflatex.fmt.

• Fatal format file error; I’m stymied.

This appears if you forgot to regenerate the .fmt files after installing a new version of the pdfTEX

binary and pdftex.pool.

• TEX.POOL doesn’t match; TANGLE me again!

TEX.POOL doesn’t match; TANGLE me again (or fix the path).

This might appear if you forgot to install the proper pdftex.pool when installing a new version

of the pdfTEX binary.

• pdfTEX cannot find the configuration file pdftex.cfg, one or more map files (*.map), encoding

vectors (*.enc), virtual fonts, Type 1 fonts, TrueType fonts or some image file.

Make sure that the required file exists and the corresponding variable in texmf.cnf contains a

path to the file. See above which variables pdfTEX needs apart from the ones TEX uses.

Normally the page content takes one object. This means that one seldom finds more than a few

hundred objects in a simple file. This document for instance uses about 300 objects. In demanding

applications this number can grow quite rapidly, especially when one uses a lot of widget annotations,

shared annotations or other shared things. In these situations in texmf.cnf one can enlarge pdfTEX’s

internal object table by adding a line in texmf.cfg, for instance:

obj_tab_size = 400000

4 Macro packages supporting PDFTEX
When producing dvi output, for which one can use pdfTEX as well as any other TEX, part of the job

is delegated to the dvi postprocessor, either by directly providing this program with commands, or

by means of \specials. Because pdfTEX directly produces the final format, it has to do everything

itself, from handling color, graphics, hyperlink support, font--inclusion, upto page imposition and

page manipulation.

The pdfTEX user manual

10

As a direct result, when one uses a high level macro package, the macros that take care of these

features have to be set up properly. Specials for instance make no sense at all. Actually being a

comment understood by dvi postprocessors —given that the macro package speaks the specific

language of this postprocessor— a \special would end up as just a comment in the pdf file, which

is of no use. Therefore, \special issues a warning when pdfTEX is in pdf mode.

When one wants to get some insight to what extend pdfTEX specific support is needed, one can start

a file by saying:

\pdfoutput=1 \let\special\message

or, if this leads to confusion,

\pdfoutput=1 \def\special#1{\write16{special: #1}}

And see what happens. As soon as one ‘special’ message turns up, one knows for sure that some

kind of pdfTEX specific support is needed, and often the message itself gives a indication of what is

needed.

Currently all main stream macro packages offer pdfTEX support in one way or the other. When using

such a package, it makes sense to turn on this support in the appropriate way, otherwise one cannot

be sure if things are set up right. Remember that for instance the page and paper dimensions have

to be taken care of, and only the macro package knows the details.

• For LATEX users, Sebastian Rahtz’ hyperref package has substantial support for pdfTEX, and pro-

vides access to most of its features. In the simplest case, the user merely needs to load hyperref

with a pdftex option, and all cross--references will be converted to pdf hypertext links. pdf out-

put is automatically selected, compression is turned on, and the page size is set up correctly.

Bookmarks are created to match the table of contents.

• The standard LATEX graphics and color packages have pdftex options, which allow use of normal

color, text rotation, and graphics inclusion commands.

• The ConTEXt macro package by Hans Hagen (pragma@wxs.nl) has very full support for pdfTEX in

its generalized hypertext features. Support for pdfTEX is implemented as a special driver, and is

invoked by saying \setupoutput[pdftex] or feeding TEXexec with the --pdf option.

• Hypertexted pdf from texinfo documents can be created with pdftexinfo.tex, which is a slight

modification of the standard texinfo macros. This file is part of the pdfTEX distribution.

• A similar modification of webmac.tex, called pdfwebmac.tex, allows production of hypertext’d

pdf versions of programs written in web. This is also part of the pdfTEX distribution.

Some nice samples of pdfTEX output can be found on the tug web server, at http://www.tug.org

/applications/pdftex and http://www.ntg.nl/context.

5 Setting up fonts
pdfTEX can work with Type 1 and TrueType fonts, but a source must be available for all fonts used

in the document, except for the 14 base fonts supplied by Acrobat Reader (Times, Helvetica, Courier,

Symbol and Dingbats). It is possible to use METAFONT--generated fonts in pdfTEX— but it is strongly

recommended not to use METAFONT--fonts if an equivalent is available in Type 1 or TrueType format,

if only because bitmap Type 3 fonts render very poorly in Acrobat Reader. Given the free availability

mailto:pragma@wxs.nl
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.ntg.nl/context/
http://www.ntg.nl/context/
http://www.ntg.nl/context/
http://www.ntg.nl/context/
http://www.ntg.nl/context/
http://www.ntg.nl/context/

The pdfTEX user manual

11

of Type 1 versions of all the Computer Modern fonts, and the ability to use standard PostScript

fonts, most TEX users should be able to experiment with pdfTEX.

5.1 Map files

pdfTEX reads the map files, specified in the configuration file, see section 3.6, in which reencoding

and partial downloading for each font are specified. Every font needed must be listed, each on a

separate line, except pk fonts. The syntax of each line is similar to dvips map files3 and can contain

up to the following (some are optional) fields: texname, basename, fontflags, fontfile, encodingfile

and special. The only mandatory is texname and must be the first field. The rest is optional, but

if basename is given, it must be the second field. Similarly if fontflags is given it must be the third

field (if basename is present) or the second field (if basename is left out). It is possible to mix the

positions of fontfile, encodingfile and special, however the first three fields must be given in fixed

order.

texname sets the name of the tfm file. This name must be given for each font.

basename sets the base (PostScript) font name. If not given then it will be taken from the font file.

Specifying a name that doesn’t match the name in the font file will cause pdfTEX to write a warning,

so it is best not to have this field specified if the font resource is available, which is the most common

case. This option is primarily intended for use of base fonts and for compatibility with dvips map

files.

fontflags specify some characteristics of the font. The next description of these flags are taken,

with a slight modification, from the pdf Reference Manual (the section on Font Descriptor Flags).

The value of the flags key in a font descriptor is a 32--bit integer that contains a collection

of boolean attributes. These attributes are true if the corresponding bit is set to 1. Table 2

specifies the meanings of the bits, with bit 1 being the least significant. Reserved bits must be

set to zero.

bit position semantics

1 Fixed--width font

2 Serif font

3 Symbolic font

4 Script font

5 Reserved

6 Uses the Adobe Standard Roman Character Set

7 Italic

8–16 Reserved

17 All--cap font

18 Small--cap font

19 Force bold at small text sizes

20–32 Reserved

Table 2 The meaning of flags in the font descriptor.

dvips map files can be used with pdfTEX without problems.3

The pdfTEX user manual

12

All characters in a fixed--width font have the same width, while characters in a proportional

font have different widths. Characters in a serif font have short strokes drawn at an angle

on the top and bottom of character stems, while sans serif fonts do not have such strokes. A

symbolic font contains symbols rather than letters and numbers. Characters in a script font

resemble cursive handwriting. An all--cap font, which is typically used for display purposes

such as titles or headlines, contains no lowercase letters. It differs from a small--cap font in

that characters in the latter, while also capital letters, have been sized and their proportions

adjusted so that they have the same size and stroke weight as lowercase characters in the same

typeface family.

Bit 6 in the flags field indicates that the font’s character set conforms the Adobe Standard

Roman Character Set, or a subset of that, and that it uses the standard names for those char-

acters.

Finally, bit 19 is used to determine whether or not bold characters are drawn with extra pixels

even at very small text sizes. Typically, when characters are drawn at small sizes on very low

resolution devices such as display screens, features of bold characters may appear only one

pixel wide. Because this is the minimum feature width on a pixel--based device, ordinary non--

bold characters also appear with one--pixel wide features, and cannot be distinguished from

bold characters. If bit 19 is set, features of bold characters may be thickened at small text

sizes.

If the font flags are not given, pdfTEX treats it as being 4, a symbolic font. If you do not know the

correct value, it would be best not to specify it, as specifying a bad value of font flags may cause

troubles in viewers. On the other hand this option is not absolutely useless because it provides

backward compatibility with older map files (see the fontfile description below).

fontfile sets the name of the font source file. This must be a Type 1 or TrueType font file. The font

file name can be preceded by one or two special characters, which says how the font file should be

handled.

• If it is preceded by a < the font file will be partly downloaded, which means that only used glyphs

(characters) are embedded to the font. This is the most common use and is strongly recommended

for any font, as it ensures the portability and reduces the size of the pdf output. Partial fonts are

included in such a way that name and cache clashes are minimalized.

• In case the font file name is preceded by a double <<, the font file will be included entirely — all

glyphs of the font are embedded, including the ones that are not used in the document. Apart

from causing large size pdf output, this option may cause troubles with TrueType fonts too, so

it is not recommended. It might be useful in case the font is untypical and can not be subsetted

well by pdfTEX. Beware: some font vendors forbid full font inclusion.

• In case nothing preceded the font file name, the font file is read but nothing is embedded, only the

font parameters are extracted to generate the so--called font descriptor, which is used by Acrobat

Reader to simulate the font if needed. This option is useful only when you do not want to embed

the font (i.e. to reduce the output size), but wish to use the font metrics and let Acrobat Reader

generate instances that look close to the used font in case the font resource is not installed on the

system where the pdf output will be viewed or printed. To use this feature the font flags must be

specified, and it must have the bit 6 set on, which means that only fonts with the Adobe Standard

The pdfTEX user manual

13

Roman Character Set can be simulated. The only exception is in case of Symbolic font, which is

not very useful.

• If the font file name is preceded by a !, the font is not read at all, and is assumed to be available

on the system. This option can be used to create pdf files which do not contain embedded fonts.

The pdf output then works only on systems where the resource of the used font is available. It’s

not very useful for document exchange, as the pdf is not ‘portable’ at all. On the other hand it is

very useful when you wish to speed up running of pdfTEX during interactive work, and only in a

final version embed all used fonts. Don’t over--estimate gain in speed and when distributing files,

always embed the fonts! This feature requires Acrobat Reader to have access to installed fonts

on the system. This has been tested on Win95 and Unix (Solaris).

Note that the standard 14 fonts are never downloaded, even when they are specified to be downloaded

in map files. When one suffers from invalid lookups, for instance when pdfTEX tries to open a .pfa

file instead of a .pfb one, one can add the suffix to the filename. In this respect, pdfTEX completely

relies on the kpathsea libraries.

encoding specifies the name of the file containing the external encoding vector to be used for the

font. The file name may be preceded by a <, but the effect is the same. The format of the encoding

vector is identical to that used by dvips. If no encoding is specified, the font’s built--in default

encoding is used. It may be omitted if you are sure that the font resource has the correct built--in

encoding. In general this option is highly preferred and is required when subsetting a TrueType font.

special instructions can be used to manipulate fonts similar to the way dvips does. Currently only

the keyword SlantFont is interpreted, other instructions are just ignored.

If a used font is not present in the map files, first pdfTEX will look for a source with suffix .pgc,

which is a so--called pgc source (pdf Glyph Container)4 . If no pgc source is available, pdfTEX will try

to use pk fonts in a normal way as dvi drivers do, on--the--fly creating pk fonts if needed.

Lines containing nothing apart from texname stand for scalable Type 3 fonts. For scalable fonts as

Type 1, TrueType and scalable Type 3 font, all the fonts loaded from a tfm at various sizes will be

included only once in the pdf output. Thus if a font, let’s say csr10, is described in one of the map

files, then it will be treated as scalable. As a result the font source for csr10 will be included only

once for csr10, csr10 at 12pt etc. So pdfTEX tries to do its best to avoid multiple downloading of

identical font sources. Thus vector pgc fonts should be specified as scalable Type 3 in map files like:

csr10

It doesn’t hurt much if a scalable Type 3 font is not given in map files, except that the font source

will be downloaded multiple times for various sizes, which causes a much larger pdf output. On the

other hand if a font is in the map files is defined as scalable Type 3 font and its pgc source is not

scalable or not available, pdfTEX will use pk font instead; the pdf output is still valid but some fonts

may look ugly because of the scaled bitmap.

A SlantFont is specified similarly as for dvips. A SlantFont or ExtendFont must be used with

embedding font file. Note that the base name, the PostScript name like Symbol or Times--Roman,

cannot be given, as pdfTEX never embeds a base font.

This is a text file containing a pdf Type 3 font, created by METAPOST using some utilities by Hans Hagen. In general pgc files4

can contain whatever allowed in pdf page description, which may be used to support fonts that are not available in METAFONT.

At the moment pgc fonts are not very useful, as vector Type 3 fonts are not displayed very well in Acrobat Reader, but it may

be more useful when Type 3 font handling gets better.

The pdfTEX user manual

14

psyr Symbol

psyro ".167 SlantFont" <usyr.pfb

ptmr8r Times-Roman <8r.enc

To summarize this rather confusing story, we include some sample lines. First we use a built--in font

with font--specific encoding, i.e. neither a download font nor an external encoding is given.

psyr Symbol

pzdr ZapfDingbats

Use a built--in font with an external encoding. The < preceded encoding file may be left out.

ptmr8r Times-Roman <8r.enc

ptmri8r Times-Italic <8r.enc

Use a partially downloaded font with an external encoding:

putr8r Utopia-Regular <8r.enc <putr8a.pfb

putri8r Utopia-Italic <8r.enc <putri8a.pfb

putro8r Utopia-Regular <8r.enc <putr8a.pfb ".167 SlantFont"

Use some faked font map entries:

logo8 <logo8.pfb

logo9 <logo9.pfb

logo10 <logo10.pfb

logosl8 <logo8.pfb ".25 SlantFont"

logosl9 <logo9.pfb ".25 SlantFont"

logosl10 <logosl10.pfb

logobf10 <logobf10.pfb

Use an ascii subset of OT1 and T1:

ectt1000 cmtt10 <cmtt10.map <tex256.enc

Download a font entirely without reencoding:

pgsr8r GillSans <<pgsr8a.pfb

Partially download a font without reencoding:

pgsr8r GillSans <pgsr8a.pfb

Do not read the font at all — the font is supposed to be installed on the system:

pgsr8r GillSans !pgsr8a.pfb

Entirely download a font with reencoding:

pgsr8r GillSans <<pgsr8a.pfb 8r.enc

Partially download a font with reencoding:

pgsr8r GillSans <pgsr8a.pfb 8r.enc

Sometimes we do not want to include a font, but need to extract parameters from the font file

and reencode the font as well. This only works for fonts with Adobe Standard Encoding. The font

flags specify how such a font looks like, so Acrobat Reader can generate similar instance if the font

resource is not available on the target system.

The pdfTEX user manual

15

pgsr8r GillSans 32 pgsr8a.pfb 8r.enc

A TrueType font can be used in the same way as a Type 1 font:

verdana8r Verdana <verdana.ttf 8r.enc

5.2 TrueType fonts

As mentioned above, pdfTEX can work with TrueType fonts. Defining TrueType files is similar to

Type 1 font. The only extra thing to do with TrueType is to create a tfm file. There is a program

called ttf2afm in the pdfTEX distribution which can be used to extract afm from TrueType fonts.

Usage is simple:

ttf2afm -e <encoding vector> -o <afm outputfile> <ttf input file>

A TrueType file can be recognized by its suffix ttf. The optional encoding specifies the encoding,

which is the same as the encoding vector used in map files for pdfTEX and dvips. If the encoding is

not given, all the glyphs of the afm output will be mapped to /.notdef. ttf2afm writes the output

afm to standard output. If we need to know which glyphs are available in the font, we can run

ttf2afm without encoding to get all glyph names. The resulting afm file can be used to generate a

tfm one by applying afm2tfm.

To use a new TrueType font the minimal steps may look like below. We suppose that test.map is

included in pdftex.cfg.

ttf2afm -e 8r.enc -o times.afm times.ttf

afm2tfm times.afm -T 8r.enc

echo "times TimesNewRomanPSMT <times.ttf <8r.enc" >>test.map

The PostScript font name (TimesNewRomanPSMT) is reported by afm2tfm, but from pdfTEX version

0.12l onwards it may be left out.

There are two main restrictions with TrueType fonts in comparison with Type 1 fonts:

a. The special effects SlantFont/ExtendFont cannot be used.

b. To subset a TrueType font, the font must be specified as reencoded, therefore an encoding vector

must be given.

6 Formal syntax specification
This sections formaly specifies the pdfTEX specific extensions to the TEX macro programming lan-

guage. First we present some general definitions. All 〈general text〉 is expanded immediately, like

\special in traditional TEX, unless mentioned explicitly no to.

〈general text〉 → 〈filler〉 { 〈balanced text〉 〈right brace〉
〈attr spec〉 → attr 〈general text〉
〈object type spec〉 → [〈attr spec〉] stream | [〈attr spec〉] file

〈resources spec〉 → resources 〈general text〉
〈file spec〉 → file 〈general text〉
〈page spec〉 → page 〈integer〉
〈action spec〉 → user 〈user-action spec〉 | goto 〈goto-action spec〉 |

thread 〈thread-action spec〉

The pdfTEX user manual

16

〈newwindow spec〉 → newwindow | nonewwindow

〈user-action spec〉 → user 〈general text〉
〈goto-action spec〉 → 〈numid〉 |

[〈file spec〉] 〈nameid〉 |
[〈file spec〉] 〈page spec〉 〈general text〉 |
〈file spec〉 〈nameid〉 〈newwindow spec〉 |
〈file spec〉 〈page spec〉 〈general text〉 〈newwindow spec〉

〈numid〉 → num 〈integer〉
〈nameid〉 → name 〈general text〉
〈thread-action spec〉 → [〈file spec〉] 〈numid〉 | [〈file spec〉] 〈nameid〉
〈dest spec〉 → 〈numid〉 〈dest type〉 | 〈nameid〉 〈dest type〉
〈dest type〉 → xyz [zoom 〈integer〉] |

fitbh | fitbv | fitb | fith | fitv | fitr 〈rule spec〉 | fit

〈id spec〉 → 〈numid〉 | 〈nameid〉
pdfTEX introduces the following new primitives. Each primitive is prefixed by pdf except for \efcode

and the extended font primitive.

\pdfoutput (integer)
\pdfcompresslevel (integer)
\pdfdecimaldigits (integer)
\pdfmovechars (integer)
\pdfpkresolution (integer)
\pdfpagewidth (dimension)
\pdfpageheight (dimension)
\pdfhorigin (dimension)
\pdfvorigin (dimension)
\pdfpagesattr (tokens)
\pdfpageattr (tokens)
\pdfinfo 〈general text〉
\pdfcatalog 〈general text〉 [openaction 〈action spec〉]
\pdfnames 〈general text〉
\font [〈font spec〉] [stretch 〈integer〉] [shrink 〈integer〉] [step 〈integer〉]
\pdfadjustspacing (integer)
\efcode (integer)
\pdffontname 〈font〉 (expandable)
\pdffontobjnum 〈font〉 (read--only integer)
\pdfincludechars 〈font〉 〈general text〉
\pdfxform [〈attr spec〉] [〈resources spec〉] 〈box number〉
\pdfrefxform 〈integer〉
\pdflastxform (read--only integer)
\pdfximage [〈rule spec〉] [〈attr spec〉] [〈page spec〉] 〈file spec〉
\pdfrefximage 〈integer〉
\pdflastximage (read--only integer)
\pdfimageresolution (integer)
\pdfannot [〈rule spec〉] 〈general text〉
\pdflastannot (read--only integer)

The pdfTEX user manual

17

\pdfdest 〈dest spec〉
\pdfstartlink [〈rule spec〉] [〈attr spec〉] 〈action spec〉
\pdfendlink

\pdflinkmargin (dimension)
\pdfoutline 〈action spec〉 [count 〈integer〉] 〈general text〉
\pdfthread 〈rule spec〉 [〈attr spec〉] 〈id spec〉
\pdfthreadmargin (dimension)
\pdfliteral [direct] 〈general text〉
\pdfobj [〈object type spec〉] 〈general text〉
\pdflastobj (read--only integer)
\pdfrefobj 〈integer〉
\pdftexversion (read--only integer)
\pdftexrevision (expandable)

7 New primitives
Here follows a short description of new primitives added by pdfTEX. One way to learn more about

how to use these primitives is to have a look at the file example.tex in the pdfTEX distribution. Each

pdfTEX specific primitive is prefixed by \pdf.

The parameters that are marked as default: from configuration take their value from the configura-

tion file. Note that if the output is dvi then the dimension parameters are not set to the configuration

values and not used at all. However some pdfTEX integer parameters can affect the pdf as well as

dvi output (currently \pdfoutput and \pdfadjustspacing).

7.1 Document setup

ñ \pdfoutput (integer)

This parameter specifies whether the output format should be dvi or pdf. A positive value means

pdf output, otherwise one gets dvi output. This parameter cannot be specified after shipping out

the first page. In other words, this parameter must be set before pdfTEX ships out the first page if we

want pdf output. This is the only one parameter that must be set to produce pdf output. All others

are optional. This parameter cannot be set after the first page is shipped out.

When pdfTEX starts complaining about specials, one can be sure that the macro package is not aware

of this mode. A simple way of making macros pdfTEX aware is:

\ifx\pdfoutput\undefined \csname newcount\endcsname\pdfoutput \fi

\ifcase\pdfoutput DVI CODE \else PDF CODE \fi

However, there are better ways to handle these things.

ñ \pdfcompresslevel (integer)

This integer parameter specifies the level of text compression via zlib. Zero means no compression,

1 means fastest, 9 means best, 2..8 means something in between. A value out of this range will be

adjusted to the nearest meaningful value. This parameter is read each time pdfTEX starts a stream.

The pdfTEX user manual

18

ñ \pdfdecimaldigits (integer)

This parameter specifies the accuracy of real numbers as written to the in pdf file. It gives the

maximal number of decimal digits after the decimal point of real numbers. Valid values are in range

0..5. A higher value means a more precise output, but also results in a much larger file size and more

time to display or print. In most cases the optimal value is 2. This parameter does not influence the

precision of numbers used in raw pdf code, like that used in \pdfliteral and annotation action

specifications. This parameter is read when pdfTEX writes a real number to the pdf output.

When including huge METAPOST images using supp-pdf.tex, one can limit the accuracy to two digits

by saying: \twodigitMPoutput.

ñ \pdfmovechars (integer)

This parameter specifies whether pdfTEX should try to move characters in range 0..31 to higher slots.

When set to 1, this feature affects only to fonts that have all character codes below 128, which applies

to for instance the Computer Moderd Roman fonts. When set to 2 or higher pdfTEX will try to move

those characters to free slots in encoding array, even in case the font contains characters with code

greater than or equal to 128. This parameter is read when pdfTEX writes a character of a font to the

pdf output at which moment it has to decide whether to move the character or not.

ñ \pdfpkresolution (integer)

This integer parameter specifies the default resolution of embedded pk fonts and is read when pdfTEX

downloads a pk font during finishing the pdf output. Currently bitmap fonts are displayed poorly,

so use Type 1 fonts when available!

ñ \pdfpagewidth (dimension)

This dimension parameter specifies the page width of the pdf output, being the screen, the paper

or whatrever the page content is put on. pdfTEX reads this parameter when it starts shipping out a

page. When at this moment the value is still 0, the page width is calculated as wbox being shipped out + 2×
(horigin + \hoffset).

Like the next one, this value replaces the value set in the configuration file. When part of the page

falls of the paper or screen, you can be rather sure that this parameter is set wrong.

ñ \pdfpageheight (dimension)

Similar to the previous one, this dimension parameter specifying the page height of the pdf output.

If not given then the page height will be calculated as mentioned above.

ñ \pdfhorigin (dimension)

This parameter can be used to set the horizontal offset the output box from the top left corner of the

page. A value of 1 inch corresponds to the normal TEX offset. This parameter is read when pdfTEX

starts shippin gout a page to the pdf outout.

ñ \pdfvorigin (dimension)

This parameter is the vertical alternative of \pdfhorigin. Keep in mind that the TEX coordinate

system starts in the top left corner, while the pdf one starts at the bottom.

ñ \pdfpagesattr (tokens)

pdfTEX expands this token list when it finishes the pdf output and adds the resulting character

stream to the root Pages object. When sound, these are applied to all pages in the document.

The pdfTEX user manual

19

Some examples of attributes are /MediaBox, the rectangle specifying the natural size of the page,

/CropBox, the rectangle specifying the region of the page being displayed and printed, and /Rotate,

the number of degrees (in multiples of 90) the page should be rotated clockwise when it is displayed

or printed.

\pdfpagesattr

{ /Rotate 90 % rotate all pages by 90 degrees

/MediaBox [0 0 612 792] } % the media size of all pages (in bp)

ñ \pdfpageattr (tokens)

This is similar to \pdfpagesattr, but it takes priority to the former one. It can be used to overwrite

any attribute given by \pdfpagesattr for individual pages. The token list is expanded when pdfTEX

ships out a page. The contents are added to the attributes of the current page.

7.2 The document info and catalog

ñ \pdfinfo 〈general text〉
This primitive allows the user to add information to the document info section; if this information

is provided, it can be extracted by Acrobat Reader (version 3.1: menu option Document Information,

General). The 〈general text〉 is a collection of key--value--pairs. The key names are preceded by a

/, and the values, being strings, are given between parentheses. All keys are optional. Possible

keys are /Author, /CreationDate (defaults to current date), /ModDate, /Creator (defaults to TeX),

/Producer (defaults to pdfTeX), /Title, /Subject, and /Keywords.

/CreationDate and /ModDate are expressed in the form D:YYYYMMDDhhmmss, where YYYY is the

year, MM is the month, DD is the day, hh is the hour, mm is the minutes, and ss is the seconds.

Multiple appearances of \pdfinfo will be concatenated to only one. If a key is given more than once,

then the first appearance will take priority. An example of the use of \pdfinfo is:

\pdfinfo

{ /Title (example.pdf)

/Creator (TeX)

/Producer (pdfTeX 0.14a)

/Author (Tom and Jerry)

/CreationDate (D:19980212201000)

/ModDate (D:19980212201000)

/Subject (Example)

/Keywords (mouse,cat) }

ñ \pdfcatalog 〈general text〉 [openaction 〈action spec〉]
Similar to the document info section is the document catalog, where keys are /URI, which provides

the base url of the document, and /PageMode determines how Acrobat displays the document on

startup. The possibilities for the latter are explained in Table 3:

In full--screen mode, there is no menu bar, window controls, nor any other window present. The

default setting is /UseNone.

The 〈openaction〉 is the action provided when opening the document and is specified in the same way

as internal links, see section 7.7. Instead of using this method, one can also write the open action

directly into the catalog.

The pdfTEX user manual

20

value meaning

/UseNone neither outline nor thumbnails visible

/UseOutlines outline visible

/UseThumbs thumbnails visible

/FullScreen full--screen mode

Table 3 Supported /PageMode values.

ñ \pdfnames 〈general text〉
This primitive inserts the text to /Names array. The text must be conform to the specifications as

laid down in the pdf Reference Manual, otherwise the document can be invalid.

7.3 Fonts

ñ \font [〈font spec〉] [stretch 〈integer〉] [shrink 〈integer〉] [step 〈integer〉]
Although still in an experimental stage, and therefore subjected to changes, the next extension to

the TEX primitive font is worth mentioning.

\font\somefont=somefile at 10pt stretch 30 shrink 20 step 10

The stretch 30 shrink 20 step 5 means as much as: “hey TEX, when things are going to bad,

you may stretch the glyphs in this font as much as 3% or shrink them by 2%”. Because pdfTEX uses

internal datastructures with fixed widths, each additional width also means an additional font. For

practical reasons pdfTEX uses discrete steps, in this example a 1% one. This means that for font

somefile upto 6 differently scaled alternatives are used. When no step is specified, 0.5% steps are

used.

Roughly spoken, the trick is as follows. Consider a text typeset in triple column mode. When TEX

cannot break a line in the appropriate way, the unbreakable parts of the word will stick into the

margin. When pdfTEX notes this, it will try to scale (shrink) the glyphs in that line using fixed steps,

until the line fits. When lines are too spacy, the opposite happens: pdfTEX starts scaling (stretching)

the glyphs until the white space gaps is acceptable.

The additional fonts are named as somefile+10 or somefile-15, and tfm files with these names and

appropriate dimensions must be available. So, each scaled font must have its own tfm file! When no

tfm file can be found, pdfTEX will try to generate it by executing the script mktextfm, where available

and supported.

This mechanism is inspired on an optimization first introduced by Herman Zapf, which in itself goes

back to optimizations used in the early days of typesetting: use different glyphs to optimize the

greyness of a page. So, there are many, slightly different a’s, e’s, etc. For practical reasons pdfTEX

does not use such huge glyph collections; it uses horizontal scaling instead. This is sub--optimal, and

for many fonts, sort of offending to the design. But, when using pdf, it’s not that illogical at all: pdf

viewers use so called Multiple Master fonts when no fonts are embedded and/or can be found on the

target system. Such fonts are designed to adapt their design to the different scaling parameters. It

is up to the user to determine to what extend mixing slightly remastered fonts can be used without

violating the design. Think of an O: when simply stretched, the vertical part of the glyph becomes

thicker, and looks incompatible to an unscaled original. In a multiple master, one can decide to

stretch but keep this thickness compatible.

The pdfTEX user manual

21

ñ \pdfadjustspacing (integer)

The output that pdfTEX produces is pretty compatible with the normal TEX output: TEX’s typesetting

engine is normally unchanged, because the optimization described here is turned off by default. At

this moment there are two methods provided. When \pdfadjustspacing is set to 1, stretching is

applied after TEX’s normal paragraph breaking routines have broken the paragraph into lines. In this

case, line breaks are identical to standard TEX behaviour.

When set to 2, the width changes that are the result of stretching and shrinking are taken into account

while the paragraph is broken into lines. In this case, line breaks are likely to be different from those

of standard TEX. In fact, paragraphs may even become longer or shorter.

Both alternatives use the extended collection of tfm files that are related to the stretch and shrink

settings as described in the previous section.

ñ \efcode (integer)

We didn’t yet tell the whole story. One can imagine that some glyphs are more sensitive to scaling

than others. The \efcode primitive can be used to influence the stretchability of a glyph. The syntax

is similar to \sfcode, and defaults to 1000, meaning 100%.

\efcode‘A=2500

\efcode‘O=0

In this example an A may stretch 2.5 times as much as normal and the O is not to be stretched at

all. The minimum and maximum stretch is however bound by the font specification, otherwise one

would end up with more fonts inclusions than comfortable.

ñ \pdffontname 〈font〉 (expandable)

In pdf files produced by pdfTEX, one can recognize a font switch by the prefix F followed by a number,

for instance /F12 or /F54. This command returns the number pdfTEX uses to name a font resource,

e.g. for a font named as /F12 this command returns number 12.

ñ \pdffontobjnum 〈font〉 (read--only integer)

This command is similar to \pdffontname, but returns the object number instead of the name of

a font. Use of \pdffontname and \pdffontobjnum allows user full access to all the font resources

used in the document.

ñ \pdfincludechars 〈font〉 〈general text〉

This command causes pdfTEX to treat the characters in 〈general text〉 as if they were used

with 〈font〉 , which means that the corresponding glyphs will be embedded into the font resources

in the pdf output. Nothing is appended to the list being built.

7.4 XObject forms

The next three primitives support a pdf feature called ‘object reuse’ in pdfTEX. The idea is first to

create a XObject form in pdf. The content of this object corresponds to the content of a TEX box,

which can also contain pictures and references to other XObject form objects as well. After that the

XObject form can be used by simply referring to its object number. This feature can be useful for

large documents with a lot of similar elements, as it can reduce the duplication of identical objects.

The pdfTEX user manual

22

These command behave similar \pdfobj, \pdflastobj and \pdfrefobj but instead of taking raw

pdf code, they take care of text typeset by TEX.

ñ \pdfxform [〈attr spec〉] [〈resources spec〉] 〈box number〉

This command creates a XObject form corresponding to the contents of the box 〈box number〉 . The

box can contain other raw objects, XObject forms or images as well. It can however not contain

annotations because they are laid out on a separate layer, are positioned absolutely, and have a

dedicated housekeeping.

When 〈attr spec〉 is given, the text will be written as additional attributes of the form.

The 〈resources spec〉 is similar, but the text will be added to the resources dictionary of the form.

The text given by 〈attr spec〉 or 〈resources spec〉 is written before other keys of the form dictionary

and/or the resources dictionary and takes priority to the further ones.

ñ \pdfrefxform 〈integer〉

The form is kept in memory and will be written to the pdf output only when its number is refered to

by \pdfrefxform or \pdfxform is preceded by \immediate. Nothing is appended to the list being

built. The number of the most recently created XObject form is accessible via \pdflastxform.

When issued, \pdfrefxform appends a whatsit node to the list being built. When the whatsit node

is searched at shipping time, pdfTEX will write the form with number 〈integer〉 to the pdf output if

it is not written yet.

ñ \pdflastxform (read--only integer)

The number of the most recently created XObject form is accessible via \pdflastxform.

As said, this feature can be used for reusing information. This mechanism also plays a role in

typesetting fill--in form. Such widgets sometimes depends on visuals that show up on user request,

but are hidden otherwise.

7.5 Graphics inclusion

pdf provides a mechanism for embedding graphic and textual objects: XObject forms. In pdfTEX

this mechanism is accessed by means of \pdfxform, \pdflastxform and \pdfrefxform. A special

kind of XObjects are bitmap graphics and for manipulating them similar commands are provided.

ñ \pdfximage [〈rule spec〉] [〈attr spec〉] [〈page spec〉] 〈file spec〉

This command creates an image object. The dimensions of the image can be controlled

via 〈rule spec〉 . The default values are zero for depth and ‘running’ for height and width. If all

of them are given, the image will be scaled to fit the specified values. If some of them (but not all)

are given, the rest will be set to a value corresponding to the remaining ones so as to make the image

size to yield the same proportion of width : (height + depth) as the original image size, where

depth is treated as zero. If none of them is given then the image will take its natural size.

An image inserted at its natural size often has a resolution of \pdfimageresolution (see below)

given in dots per inch in the output file, but some images may contain data specifying the image

resolution, and in such a case the image will be scaled to the correct resolution. The dimension of

the image can be accessed by enclosing the \pdfrefximage command to a box and checking the

dimensions of the box:

The pdfTEX user manual

23

\setbox0=\hbox{\pdfximage{somefile.png}\pdfrefximage\pdflastximage}

Now we can use \wd0 and \ht0 to question the natural size of the image as determined by pdfTEX.

When dimensions are specified before the {somefile.pdf}, the graphic is scaled to fit these. Oppo-

site to for instance the \input primitive, the filename is supplied between braces.

The image type is specified by the extension of the given file name, so .png stands for png image,

tif for tiff, and .pdf for pdf file. Otherwise the image is treated as pdf (pdf).

Similarly to \pdfxform, the optional text given by 〈attr spec〉 will be written as additional attributes

of the image before other keys of the image dictionary.

ñ \pdfrefximage 〈integer〉

The image is kept in memory and will be written to the pdf output only when its number is refered

to by \pdfrefximage or \pdfximage is preceded by \immediate. Nothing is appended to the list

being built.

\pdfrefximage appends a whatsit node to the list being built. When the whatsit node is searched

at shipping time, pdfTEX will write the image with number 〈integer〉 to the pdf output if it has not

been written yet.

ñ \pdflastximage (read--only integer)

The number of the most recently created XObject image is accessible via \pdflastximage.

ñ \pdfimageresolution (integer)

This parameter specifies the default resolution of included bitmap images (png, tiff, and jpeg). This

parameter is read when pdfTEX creates an image via \pdfximage. When not given or set to 0 pdfTEX

treates it as 72.

7.6 Annotations

pdf level 1.2 provides four basic kinds of annotations:

• hyperlinks, general navigation

• text clips (notes)

• movies

• sound fragments

The first type differs from the other three in that there is a designated area involved on which one

can click, or when moved over some action occurs. pdfTEX is able to calculate this area, as we will

see later. All annotations can be supported using the next two general annotation primitives.

ñ \pdfannot [〈rule spec〉] 〈general text〉

This command appends a whatsit node corresponding to an annotation to the the list being built.

The dimensions of the annotation can be controlled via Something rule spec. The default values are

running for all width, height and depth. When an annotation is written out, running dimensions will

take the corresponding values from the box containing the whatsit node representing the annotation.

The 〈general text〉 is inserted as raw pdf code to the contents of annotation. The annotation is written

out only if the corresponding whatsit node is searched at the shipping time.

The pdfTEX user manual

24

ñ \pdflastannot (read--only integer)

This primitive returns the object number of the last annotation created by \pdfannot. These two

primitives allow users to create any annotation that cannot be created by \pdfstartlink (see below).

7.7 Destinations and links

The first type of annotation mentioned before, is implemented by three primitives. The first one

is used to define a specific location as being referred to. This location is tied to the page, not the

exact location on the page. The main reason for this is that pdf maintains a dedicated list of these

annotations —and some more when optimized— for the sole purpose of speed.

ñ \pdfdest 〈dest spec〉

This primitive appends a whatsit node which establishes a destination for links and bookmark out-

lines; the link is identified by either a number or a symbolic name, and the way the viewer is to

display the page must be specified in 〈dest type〉 , which must be one of those mentioned in table 4.

keyword meaning

fit fit the page in the window

fith fit the width of the page

fitv fit the height of the page

fitb fit the ‘Bounding Box’ of the page

fitbh fit the width of ‘Bounding Box’ of the page

fitbv fit the height of ‘Bounding Box’ of the page

xyz goto the current position (see below)

Table 4 The outline and destination appearances.

The specification xyz can optionally be followed by zoom 〈integer〉 to provide a fixed zoom--

in. The Something integer is like TEX magnification, i.e. 1000 is the ‘normal’ page view.

When zoom 〈integer〉 is given the zoom factor changes to number, otherwise the current zoom factor

is kept unchange.d

The destination is written out only the corresponding whatsit node is searched at the shipping time.

ñ \pdfstartlink [〈rule spec〉] [〈attr spec〉] 〈action spec〉

This primitive is used along with \pdfendlink and appends a whatsit node corresponding to the start

of a hyperlink. The whatsit node representing the end of the hyperlink is created by \pdfendlink.

The dimensions of the link are handled in the similar way as in \pdfannot. Both \pdfstartlink

and \pdfendlink must be in the same level of box nesting. A hyperlink with running width can be

multi--line or even multi--page, in which case all horizontal boxes with the same nesting level as the

boxes containing \pdfstartlink and \pdfendlink will be treated as part of the hyperlink. The

hyperlink is written out only if the corresponding whatsit node is searched at the shipping time.

Additional attributes, which are explained in great detail in the pdf Reference Manual, can be given

via 〈attr spec〉 . Typically, the attributes specify the color and thickness of any border around the

link. Thus /C [0.9 0 0] /Border [0 0 2] specifies a color (in rgb) of dark red, and a border

thickness of 2 points.

The pdfTEX user manual

25

While all graphics and text in a pdf document have relative positions, annotations have internally

hard--coded absolute positions. Again we’re dealing with a speed optimization. The main disadvan-

tage is that these annotations do not obey transformations issued by \pdfliteral’s.

The 〈action spec〉 specifies the action that should be perfomed when the hyperlink is activated while

the 〈user-action spec〉 performs a user--defined action. A typical use of the latter is to specify a url,

like /S /URI /URI (http://www.tug.org/), or a named action like /S /Named /N /NextPage.

A 〈goto-action spec〉 performs a GoTo action. Here 〈numid〉 and 〈nameid〉 specify the destination

identifier (see below). The 〈page spec〉 specifies the page number of the destination, in this case

the zoom factor is given by 〈general text〉 . A destination can be performed in another pdf file by

specifying 〈file spec〉 , in which case 〈newwindow spec〉 specifies whether the file should be opened

in a new window. A 〈file spec〉 can be either a (string) or a dictionary. The default behaviour of

the 〈newwindow spec〉 depends on the browser setting.

A 〈thread-action spec〉 performs an article thread reading. The thread identifier is similar to the

destination identifier. A thread can be performed in another pdf file by specifying a 〈file spec〉 .

ñ \pdfendlink

This primitive ends a link started with \pdfstartlink. All text between \pdfstartlink and

\pdfendlink will be treated as part of this link. pdfTEX may break the result across lines (or pages),

in which case it will make several links with the same content.

ñ \pdflinkmargin (dimension)

This dimension parameter specifies the margin of the box representing a hyperlink and is read when

a page containing hyperlinks is shipped out.

7.8 Bookmarks

ñ \pdfoutline 〈action spec〉 [count 〈integer〉] 〈general text〉

This primitive creates an outline (or bookmark) entry. The first parameter specifies the action to

be taken, and is the same as that allowed for \pdfstartlink. The 〈count〉 specifies the number of

direct subentries under this entry; specify 0 or omit it if this entry has no subentries. If the number

is negative, then all subentries will be closed and the absolute value of this number specifies the

number of subentries. The 〈text〉 is what will be shown in the outline window. Note that this is

limited to characters in the pdf Document Encoding vector. The outline is written to the pdf output

immediately.

7.9 Article threads

ñ \pdfthread 〈rule spec〉 [〈attr spec〉] 〈id spec〉

Defined an article thread. Treads with same identifiers (spread across the document) will be joined

together.

ñ \pdfthreadmargin (dimension)

Specifies a margin to be added to the thread dimensions.

The pdfTEX user manual

26

7.10 Miscellaneous

ñ \pdfliteral [direct] 〈general text〉

Like \special in normal TEX, this command inserts raw pdf code into the output. This allows support

of color and text transformation. This primitive is heavily used in the METAPOST inclusion macros.

Normally pdfTEX ends a text section in the pdf output and resets the transformation matrix before

inserting 〈general text〉 , however it can be turned off by giving the optional keyword direct . This

command appends a whatsit node to the list being built. 〈general text〉 is expanded when the whatsit

node is created and not when it is shipped out, so this primitive behaves like \special.

ñ \pdfobj [〈object type spec〉] 〈general text〉

This command creates a raw pdf object that ends op in the pdf file as 1 0 obj << . . . >> endobj.

When 〈object type spec〉 is not given, a dictionary object with contents 〈general text〉 is created.

When however 〈object type spec〉 is given as 〈attr spec〉 stream , the object will be created as a

stream with contents 〈general text〉 and additional attributes in 〈attr spec〉 .

When 〈object type spec〉 is given as 〈attr spec〉 file , then the 〈general text〉 will be treated as a file

name and its contents will be copied into the stream contents.

The object is kept in memory and will be written to the pdf output only when its number is refered

to by \pdfrefobj or when \pdfobj is preceded by \immediate. Nothing is appended to the list

being built. The number of the most recently created object is accessible via \pdflastobj.

ñ \pdflastobj (read--only integer)

This command returns the object number of the last object created by \pdfobj.

ñ \pdfrefobj 〈integer〉

This command appends a whatsit node to the list being built. When the whatsit node is searched at

shipping time, pdfTEX will write the object with number 〈integer〉 to the pdf output if it has not been

written yet.

ñ \pdftexversion

Returns the version of pdfTEX multiplied by 100, e.g. for version 0.13x it returns 13. This document

is typeset with version 14.e.

ñ \pdftexrevision

Returns the revision of pdfTEX, e.g. for version 0.14a it returns a.

8 Graphics and color
pdfTEX supports inclusion of pictures in png, jpeg, tiff and pdf format. The most common technique

—the inclusion of eps figures— is replaced by pdf inclusion. eps files can be converted to pdf by

GhostScript, Acrobat Distiller or other PostScript--to--pdf convertors. The BoundingBox of a pdf file

is taken from CropBox if available, otherwise from the MediaBox. To get the right BoundingBox from

a eps file, before converting to pdf, it is necessary to transform the eps file so that the start point

is at the (0,0) coordinate and the page size is set exactly corresponding to the BoundingBox. A Perl

script (epstopdf) for this purpose has been written by Sebastian Rahtz. The TEXutil utility script

The pdfTEX user manual

27

that comes with ConTEXt can so a similar job. (Concerning this conversion, it handles complete

directories, removes some garbage from files, takes precautions against duplicate conversion, etc.)

Other alternatives for graphics in pdfTEX are:

LATEX picture mode Since this is implemented simply in terms of font characters, it works in exactly

the same way as usual.

Xy--pic If the PostScript back--end is not requested, Xy-pic uses its own Type 1 fonts, and needs

no special attention.

tpic The ‘tpic’ \special commands (used in some macro packages) can be redefined to produce

literal pdf, using some macros written by Hans Hagen.

METAPOST Although the output of METAPOST is PostScript, it is in a highly simplified form, and a

METAPOST to pdf conversion (written by Hans Hagen and Tanmoy Bhattacharya) is implemented as

a set of macros which reads METAPOST output and supports all of its features.

pdf It is possible to insert arbitrary one--page--only pdf files, with their own fonts and graphics,

into a document. The front page of this document is an example of such an insert, it is an one page

document generated by pdfTEX.

For new work, the METAPOST route is highly recommended. For the future, Adobe has announced

that they will define a specification for ‘encapsulated pdf’, and this should solve some of the present

difficulties.

The inclusion of raw PostScript commands —a technique utilized by for instance the pstricks

package— cannot be supported. Although pdf is a direct descendant of PostScript, it lacks any

programming language commands, and cannot deal with arbitrary PostScript.

Abbreviations
In this document we used a few abbreviations. For convenience we mention their meaning here.

afm Adobe Font Metrics

ascii American Standard Code for Information Interchange

CMacTEX MacIntosh Web2c distribution

ConTEXt general purpose macro package

djgpp DJ Delorie’s gnu Programming Platform

dvi natural TEX Device Independ fileformat

eps Encapsulated PostScript

epstopdf eps to pdf conversion tool

e-TEX an extension to TEX

fpTEX Win32 Web2c distribution

gnu GNU’s Not Unix

jpeg Joined Photographic Expert Group

LATEX general purpose macro package

METAFONT graphic programming environment, bitmap output

METAPOST graphic programming environment, vector output

MikTeX Win32 distribution

MSDos Microsoft DOS platform (Intel)

The pdfTEX user manual

28

pdf Portable Document Format

pdfe-TEX e-TEX extension producing pdf output

pdfTEX TEX extension producing pdf output

Perl Perl programming environment

pgc pdf glyph container

pk Packed Bitmap Font

png Portable Network Graphics

PostScript PostScript

rgb Red Green Blue color specification

teTEX Unix Web2c distribution

TEX typographic language and program

TEXexec ConTEXt command line interface

TEXutil ConTEXt utility tool

tfm TEX Font Metrics

tiff Tagged Interchange File Format

tug TEX Users Group

Unix Unix platform

url Uniform Resource Locator

web literate programming environment

Web2c official multi--platform web environment

Win32 Microsoft Windows platform

zip compressed file format

	Introduction
	About PDF
	Getting started
	Getting sources and binaries
	Compiling
	Getting PDFTEX-specific platform-independent files
	Placing files
	Setting search paths
	The PDFTEX configuration file
	Creating formats
	Testing the installation
	Common problems

	Macro packages supporting PDFTEX
	Setting up fonts
	Map files
	TrueType fonts

	Formal syntax specification
	New primitives
	Document setup
	\pdfoutput
	\pdfcompresslevel
	\pdfdecimaldigits
	\pdfmovechars
	\pdfpkresolution
	\pdfpagewidth
	\pdfpageheight
	\pdfhorigin
	\pdfvorigin
	\pdfpagesattr
	\pdfpageattr

	The document info and catalog
	\pdfinfo
	\pdfcatalog
	\pdfnames

	Fonts
	\font
	\pdfadjustspacing
	\efcode
	\pdffontname
	\pdffontobjnum
	\pdfincludechars

	XObject forms
	\pdfxform
	\pdfrefxform
	\pdflastxform

	Graphics inclusion
	\pdfximage
	\pdfrefximage
	\pdflastximage
	\pdfimageresolution

	Annotations
	\pdfannot
	\pdflastannot

	Destinations and links
	\pdfdest
	\pdfstartlink
	\pdfendlink
	\pdflinkmargin

	Bookmarks
	\pdfoutline

	Article threads
	\pdfthread
	\pdfthreadmargin

	Miscellaneous
	\pdfliteral
	\pdfobj
	\pdflastobj
	\pdfrefobj
	\pdftexversion
	\pdftexrevision unskip unskip unskip kern .25em{$(hbox {expandable})$}kern .25emignorespaces

	Graphics and color
	Abbreviations

