
TransFig: Portable Figures for LaTEX

Version 2.1.5

Micah Beck
Department of Computer Science

Ayers Hall, University of Tennessee
Knoxville, TN 37996

TransFig is a mechanism for integrating figures into LaTEX documents.
Several “graphics languages” exist which achieve such integration, but none is
widely enough used to be called a standard. TransFig’s goal is to maintain the
portability of LaTEX documents across printers and operating environments.
The central mechanism in TransFig is Fig code, the graphics description
format of the Fig interactive graphics editor. TransFig provides an automatic
and uniform way to Trans late Fig code into various graphics languages and
to integrate that code into a LaTEX document.

1 TransFig

The TransFig package consists of the fig2dev program, which translates
between Fig code and other graphics languages, and the transfig command
which can be used to invoke it. The available translations are illustrated in
Figure 1 (which was included using TransFig). Fig2dev can be used directly
to translate from Fig code to the various graphics languages. However each
graphics language requires the user to load a particular set of TeX macros
and use particular commands to include the figure. TransFig allows these
differences to be hidden.

When the graphics language is specified to the transfig command, it
creates a macro file and a makefile. The macro file loads any appropriate
TeX macros, and the makefile specifies the appropriate commands to create
LaTEX files which load the figures. The user simply \input the macro file and
the names of the files for loading the figures. To switch graphics languages,
it is necessary only to rerun transfig, and then make. Make can also be used
to keep the translated code up to date when figures change.

1 Dec 1991 Version 2.1.5 page 1

XXXXXXXXXXz

?

����������9

PPPPPPPPPPPq

������

HHHHHj

?

?

?

�����������)

HHHHHHHj

��������

�

J
J
Ĵ

xapgraphgnuplot plot2fig

fig2dev

Fig code

tpic
specials

PIC

tpic

fig pic2fig

PiCTeX
macros Script

Post (E)EPIC
commands

LaTeX
commands commands

IBM-GL

Figure 1: Fig Code Translations

1 Dec 1991 Version 2.1.5 page 2

\documentstyle{article}
\input{transfig} TransFig macro file
\begin{document}

...
\begin{figure}

\begin{center}
\input{figurei} i’th TransFig figure

\end{center}
\end{figure}

...

Figure 2: Layout of a TransFig LaTEX Document

1.1 File Name Conventions

Suppose that a document is to include a set of figures which are stored in
Fig code form. These should be in files with the name suffix .fig, for in-
stance figure1.fig, figure2.fig,. . . figuren.fig. TransFig will create
files figure1.tex, figure2.tex,. . . figuren.tex for \input to the LaTEX
document, and in some cases will create files with other suffixes. Addition-
ally, TransFig creates a file named transfig.tex which must be \input at
the start of the document.

1.2 Transfig LaTEX Documents

In order to use TransFig, a LaTEX file must follow the format shown in
Figure 2. The the file transfig.tex must be \input before any TransFig
figure is encountered. At the point where the ith figure figurei is to be
inserted, the file figurei.tex is \input.

1 Dec 1991 Version 2.1.5 page 3

1.3 Using TransFig

The transfig command has the form

transfig [option]. . . [[control]. . . filename]. . .

Where option is one of the following:

-L language to translate into the specified language (default pictex).

-M makefile to name the output makefile makefile (default Makefile).

-T texfile to name the output LaTEX macro file texfile (default
transfig.tex).

The language specifiers epic, eepic, eepicemu, ibmgl, latex, pictex,

ps,

psfig, pstex, textyl and tpic, indicate translation into (e)epic macros,
LaTEX picture environment, PiCTEX macros, PostScript, TEXtylspecials, or
tpic specials. See section 2 for further details about these languages. The
special language specifier box causes the figures to be replaced by empty
boxes of the appropriate size.

A control specifier sets a parameter which governs the translation of all
files to its left in the argument list, until it is overridden. A control specifier
must be one of the following:

-m magnification to scale figures by magnification (default 1.0).

-f font to set the default font family (default cmr).

-s size to set the default font size (default 12 ∗ magnification).

Each file name specifies a Fig file, either with or without the .fig suffix.
TransFig creates a file called Makefile to apply fig2dev with the appropri-
ate arguments to the named files, and creates an appropriate transfig.tex

file. Thus, to create a Makefile which will translate all figures in a directory
to LaTEX picture environment, with Computer Modern Bold as the default
font family, the command would be

transfig -L latex -f cmb *.fig

1 Dec 1991 Version 2.1.5 page 4

After running transfig, simply run make to create the appropriate LaTEX
files. Make should be rerun whenever a Fig file is changed to recreate the
corresponding LaTEX file. To change between graphics languages, simply
run make clean to remove the files created by transfig, and then rerun
transfig.

The transfig command can also be used to include figures described in
Brian Kernighan’s pic graphics language or in PostScript. These graphics
formats are distinguished by the file name suffix .pic and .ps respectively.
Translation from pic is accomplished by invoking pic2fig program (see sec-
tion 2.3).

1.4 Text in Figures and Portability

In order to be translatable into different graphics languages, Fig code in
TransFig documents should use only those features which are supported by
all of them. In particular, some graphics languages support more sophisti-
cated processing of text which is part of the figure than others. PiCTEX, for
example, allows full use of LaTEX commands in text strings, while PostScript
does not.

The standard way to use text in TransFig figures is to use only straight
text with no LaTEX commands. However, if a text object is flagged as “spe-
cial,” then it is understood to include formatting commands which are inter-
preted by the graphics language. A document with special text will not be
portable to all output languages.

The standard font specifiers are a small set of generic font types. However,
if a text object is flagged as “PS Font,” then its font field specifies a specific
PostScript font. When translating such text into PostScript, the named font
is used. However, translations into other graphics languages will use some
approximation to the PS font This approximation may be quite different
from the named font.

1 Dec 1991 Version 2.1.5 page 5

2 Fig Code and Graphics Languages

TransFig’s goal is to provide a framework for including graphics which main-
tains the portability of LaTEX documents across printers and operating en-
vironments. The central mechanism in TransFig is Fig code, a graphics
description format which is produced by the Fig interactive graphics editor.
If this code is widely used as an intermediate form for figures, the builders
of other graphics tools may be attracted to produce compatible output. The
reference guide in appendix A describes Fig code in more detail.

2.1 Translations From Fig

TransFig currently translates Fig code into these graphics languages: (e)epic,
LaTEX picture environment, PiCTEX, PostScript, pic, and TEXtylspecials.
The program which accomplishes these translations is fig2dev, which re-
places the now-obsolete programs fig2tex, fig2ps, fig2latex, and
fig2epic. The transfig command supports the translation of Fig code
into tpic specials (see below) using tpic, which is not part of the TransFig
package. Each language may be appropriate in different operating environ-
ments or for different applications. A short description of each language is
given below:

PiCTEX is a set of TEX macros which implement simple graph-
ics objects directly in TEX. PiCTEX makes no use of pre-
or post-processors; the dvi files it generates are completely
standard, and can be printed or previewed in any environ-
ment where TEX is used. This result is achieved by using
TEX integer arithmetic to do all plotting calculations, and by
drawing the figure using the period character as a “brush”.
As a result PiCTEX is quite slow and requires a large internal
TEX memory.

PostScript (ps) is a powerful graphics language which is gain-
ing acceptance as a standard. In an environment where dvi
code is translated into ps before being printed, it is usually
possible to insert a separately generated PostScript file into
a document, using the TEX \special command. However,
the resulting ps file can only be previewed using a ps pre-

1 Dec 1991 Version 2.1.5 page 6

viewer, and must be printed on a ps printer, such as the
Apple LaserWriter.

Various options are available for integration of ps with LaTEX.
The psfig macro automatically scans the ps file for bound-
ing box information and generates appropriate TeX spacing
and inclusion commands. One limitation of ps output is
the lack of LaTEX formatting for special objects. The pstex
language specifier to the transfig command uses special
fig2dev output drivers which separate the figure in text
and non-text portions, rendering the former in ps and the
latter in LaTEX. The pstex option uses psfig to generate the
ps inclusion commands.

LaTEX picture environment is a restricted graphics facility imple-
mented within LaTEX. It is a standard part of every version
of LaTEX, is processed quickly, and does not require a large
internal TEX memory. However, not every graphics object
which can be described with Fig code can be drawn using
the LaTEX picture environment. Restrictions include a lim-
ited set of slopes at which lines can be drawn, and no ability
to drawn splines.

epic is an enhanced version of the LaTEX picture environment
which removes many restrictions. It uses no facilities outside
of those needed for the LaTEX picture environment.

eepic is a further enhancement of epic which uses tpic specials
to implement general graphics objects. It is subject to the
same software requirements as tpic.

TEXtyl specials are a set of \special commands which produce
graphics instructions in the dvi file produced by TEX. The
resulting dvi file must be postprocessed using the TEXtyl
program, which transforms it into a standard dvi file which
uses its own line drawing fonts.

tpic specials are a set of \special commands which produce
graphics instructions in the dvi file produced by TEX. How-
ever, the graphics in the resulting dvi file can only be pre-
viewed or printed using software which understands these

1 Dec 1991 Version 2.1.5 page 7

commands.

IBM-GL IBM-GL (International Business Machines Graphics
Language) and HP-GL (Hewlett-Packard Graphics Language)
are compatible languages which drive a variety of IBM and
HP pen plotters.

When LaTEX processes the file transfig.tex, it will print the message
“TransFig: figures in language” indicating which graphics language is
in use.

2.2 The Fig Graphics Editor

The interpretation of Fig code was originally defined by the Fig graphics
editor and the program f2p, which translates Fig code into the pic graphics
language. The most recent version is V2.1; it is implemented by Version 2.1
of the Fig graphics editor, which runs under SunView, and by Version 2.1 of
XFig.

Previous versions of Fig code which have been widely used are 1.4-tfx,
and V2.0. The V2.1 format is in effect a unification of the features of these
incompatible formats, and superseds both of them. TransFig continues to
support Fig code formats V1.3, V1.4, V these formats. as well as the older
1.3 and 1.4 formats.

2.3 Other Fig Compatible Programs

The following programs use Fig code as a graphics description format, and
thus are compatible with TransFig:

• The numerical plotting program gnuplot can optionally produce out-
put in Fig code format.

• The pic-to-Fig translator pic2fig translates pic, the language of Brian
Kernighan’s graphics preprocessor for Troff, into Fig code. This allows
users to create figures without employing a graphics editor.

• The Plot-to-Fig translator plot2fig translates the Unix plot file for-
mat to Fig code.

1 Dec 1991 Version 2.1.5 page 8

The Fig code produced by these programs can be viewed and edited using
the Fig graphics editor.

1 Dec 1991 Version 2.1.5 page 9

3 Related Software

Software availability is subject to change, and this list may not be completely
up to date.

epic is an enhancement of the LaTEX picture environment which removes
many restrictions. It uses only the facilities which implement the LaTEX
picture environment. epic was developed by Sunil Podar at the State
University of New York at Stonybrook, and is available via anonymous
FTP from SUN.SOE.CLARKSON.EDU.

eepic is a further enhancement of epic which uses tpic specials (see below)
to implement general graphics objects. It is subject to the same soft-
ware requirements as tpic, although there is an “emulation package”
which will implement most of eepic using the same facilities as epic.
eepic was developed by Conrad Kwok at the University of California at
Davis, and is available via anonymous FTP from SUN.SOE.CLARKSON.EDU

Fig is an interactive graphics editor in the style of MacDraw which runs
under the Suntools/SunView windowing system. It produces interme-
diate code which can be translated into a variety of graphics languages,
including pic, Postscript, and PiCTEX.

Fig was developed by Supoj Sutanthavibul at the University of Texas
at Austin, (supoj@SALLY.UTEXAS.EDU), and is available via anonymous
FTP from SALLY.

Fig 2.1 is a version of Fig which implements various enhancements to the
user interface, and uses Fig code V2.1 Fig 2.1 was developed by various
contributors. It is available via anonymous FTP from FTP.CS.CORNELL.EDU.

Fig2dev translates from Fig code to PiCTEX macros, Postscript, LaTEX
picture environment commands, (e)epic macros, TEXtyl, and the pic
graphics language. It is part of the TransFig package, and supports
Fig code V2.1.

Fig2tex, Fig2ps, Fig2latex, Fig2epic, Fig2pic are Fig code translation
programs which were distributed as part of earlier versions of the Trans-
Fig package. They have been replaced by fig2dev (see above).

1 Dec 1991 Version 2.1.5 page 10

F2p, F2ps are the original Fig code translation programs. These programs
are out of date and have been subsumed by fig2dev (see above).

GnuPlot is a numerical plotting program which can optionally produce
output in Fig code format. GnuPlot was developed by a group of
people, including Thomas Williams and Colin Kelly of Pixar Corp.
(pixar@INFO-GNUPLOT@SUN.COM), and David F. Kotz of Duke Univer-
sity (dfk@DUKE.CS.DUKE.EDU). Gnuplot is available via anonymous FTP
from DUKE.

LaTEX is a standard macro package used for describing documents in TEX.
Part of this package is the LaTEX picture environment, a restricted
graphics facility. The capabilities of this facility are described in sec-
tion 5.5 of LaTEX, A Document Preparation System by Leslie Lamport.

Pic2fig is a version of Brian Kernighan’s pic graphics preprocessor for Troff.
Pic2fig, which is a modified form of tpic (see below), has been altered
to produce Fig code.

PiCTEX is a set of macros for describing graphics in TEX documents. PiCTEX
is implemented entirely within standard TEX, and requires no pre- or
post processing programs or special fonts. The main problem in using
PiCTEX is its slow operation (all calculations are done using TEX’s in-
teger arithmetic) and large memory requirements. Many PiCTEX users
have turned to C implementations of TEX in order to obtain memory
sizes larger than are possible using the standard Web/Pascal version.

PiCTEX was developed by Michael Wichura at the University of Chicago
(wichura@GALTON.UCHICAGO.EDU), and is available via anonymous FTP
from A.CS.UIUC.EDU. It is also included as contributed software with
the Unix TEX distribution.

Plot2fig translates figures from the Unix plot file format to Fig code. Plot2fig
was developed by Richard Murphy of Rice University (rich@RICE.EDU),
and is available via anonymous FTP from QED.RICE.EDU.

TEXtyl is a dvi file postprocessor which translates \special commands
into its own set of drawing fonts. The result of this postprocessing is a
standard dvifile which can be printed using any dvi driver, as long as

1 Dec 1991 Version 2.1.5 page 11

its drawing fonts are available. TEXtylis available via anonymous FTP

from VENUS.YCC.YALE.EDU.

tpic is a version of Brian Kernighan’s pic graphics preprocessor for Troff.
tpic has been altered to produce TEX \special commands which are
understood by some dvi print drivers and previewers. For information
about distribution of tpic, contact Tim Morgan of the University of
California at Irvine (morgan@ICS.UCI.EDU).

TransFig was developed by Micah Beck with major contributions by Frank
Schmuck, now of IBM, and Conrad Kwok of UC Davis. It is available
via anonymous FTP from FTP.CS.CORNELL.EDU.

Xfig is a version of the Fig graphics editor which can be compiled for either
the Suntools or X Windows Version 11 windowing systems. Xfig is part
of the contributed software distributed with the X Windowing System,
and can be obtained by anonymous FTP from EXPO.LCS.MIT.EDU.

Xpic is a graphical editor similar to Fig which runs under X Windows Ver-
sion 11. Xpic was developed by Mark Moraes at the University of
Toronto (moraes@csri.toronto.edu) and is available via anonymous
FTP from ai.toronto.edu.

1 Dec 1991 Version 2.1.5 page 12

A Fig Code V2.1 Reference Guide

A Fig code version V2.1 file has the following structure:

#FIG 2.1

global parameters
object description
object description

...

A.1 Comment Lines

The very first line is a comment line containing the version of the Fig format.
Programs which interpret Fig code verify compatibility by checking the first
line for this comment. All other lines which contain the character # in the
first column are treated as comments and are ignored.

A.2 Global Parameters

The first non-comment line consists of two global parameters:

fig resolution coordinate system

Fields in a line of a Fig file are separated by blanks or tabs; newlines terminate
object descriptions. The fields of lines in Fig files are described throughout
this guide by tables like the one below. The fields must appear in the order
given in the table.

Type Field Units (values)

int fig resolution pixels/inch
Fig value: 80

int coordinate system 1: origin at lower left corner
2: origin at upper left corner
Fig value: 2

The Type column specifies the type of the field, and is either int(eger),
float, or string. The notation + following the type indicates that the values
0 or -1 are interpreted as default values in this field. The rightmost column

1 Dec 1991 Version 2.1.5 page 13

of this table either defines the units in which the field is expressed, or lists
the possible values which the field can take. The notation DEFAULT in this
column indicates that no value other than the default values are allowed.
It is intended that future versions of Fig will define other values for these
fields, but that the default values will remain legal, thus providing backward
compatibility.

The basic unit of position in Fig files is the pixel. While figures in a
Fig file are described at this resolution, the figure can be drawn at a higher
or lower resolution. Pixels are square, and so fig_resolution represents
position resolution in both the x and y dimensions.

Some values are expressed as symbols and their numerical values are also
listed. These symbols are defined in the header file object.h.

A.3 Object Descriptions

The rest of the file contains objects descriptions, having one of six types:

1. Ellipse.

2. Polyline, including Polygons and Boxes.

3. Spline, including Closed/Open Control/Interpolated Splines.

4. Text.

5. Circular Arc.

6. Compound object which is composed of one or more objects.

The following group of common fields appear in several object descrip-
tions, and so the are described here, and later are simply referred to by the
indicator common fields.

1 Dec 1991 Version 2.1.5 page 14

Type Field Units (values)

int line style SOLID LINE 0
DASH LINE 1
DOTTED LINE 2

int line thickness pixels
int + color DEFAULT

BLACK COLOR 0
BLUE COLOR 1
GREEN COLOR 2
CYAN COLOR 3
RED COLOR 4
MAGENTA COLOR 5
YELLOW COLOR 6
WHITE COLOR 7

int depth no units
int + pen DEFAULT

int + area fill DEFAULT

WHITE FILL 1
BLACK FILL 21

float style val pixels

• For the dashed line style, the style val specifies the length of a dash.
For dotted lines it indicates the gap between consecutive dots.

• Depth determines which filled objects will obscure other objects, with
the objects of greater depth being obscured. If two objects at the same
depth overlap, the object which occurs first in the Fig file is obscured.

• The values between WHITE FILL and BLACK FILL define a gray scale;
many graphics languages cannot fully implement area fill.

• The color field will be extended in the future to an encoding of two
three-byte RGB specifiers: one for line color and one for fill color.

Arrow lines are used to describe optional arrows at the ends of Arc,
Polyline, and Spline objects. If an object has a forward arrow, then an arrow
line describing it follows the object description. If an object has a backward

1 Dec 1991 Version 2.1.5 page 15

arrow, then an arrow line describing it follows the object description and the
forward arrow description, if there is one.

An arrow line consists of the following fields

Type Field Units (values)

int + arrow type DEFAULT

int + arrow style DEFAULT

float + arrow thickness DEFAULT

float arrow width pixels
float arrow height pixels

The pen field can only take the value DEFAULT. It is intended that future
extensions to Fig code will define other values for this field. Its intended use
is to define the shape of the pen used in drawing objects. It will also includes
the stipple pattern for line filling. The default pen is a circular pen with
black filling.

A.3.1 Ellipse Objects

Type Field Units (values)

int object code O ELLIPSE 1
int sub type T ELLIPSE BY RAD 1

T ELLIPSE BY DIA 2
T CIRCLE BY RAD 3
T CIRCLE BY DIA 4

common fields
int direction 1
float angle radians
int center x, center y pixels
int radius x, radius y pixels
int start x, start y pixels
int end x, end y pixels

The Ellipse object describes an ellipse (or circle) centered at the point
(center x, center y) with radii radius x and radius y, and whose x-axis
is rotated by angle from the horizontal. If the object describes a circle, then
radius x and radius y must be equal.

1 Dec 1991 Version 2.1.5 page 16

The fields start x, start y, end x and end y are used only by Fig,
and are not used in drawing the object. If the ellipse is specified by radius,
then (start x, start y) is (center x, center y), and (end x, end y) is a cor-
ner of a box which bounds the ellipse. If the ellipse is specified by diameter,
then (start x, start y) and (end x, end y) are the two corners of the box
which bound the ellipse.

A.3.2 Polyline Objects

Type Field Units (values)

int object code O POLYLINE 2
int sub type T POLYLINE 1

T BOX 2
T POLYGON 3
T ARC BOX 4
T EPS BOX 5

common fields
int radius no units
int forward arrow, 0: no arrow

backward arrow 1: arrow

The Polyline object description has an addition points line following any
arrow lines. The line consists of a sequence of coordinate pairs followed by
the pair 9999 9999 which marks the end of the line.

x1 y1 x2 y2 . . . xn yn 9999 9999

Type Field Units (values)

int xi, yi pixels

The Polyline object describes a piecewise linear curve starting at the point
(x1, y1) and passing through each point (xi, yi) for i = 2 . . . n. If sub type is
T BOX or T POLYGON then (x1, y1) and (xn, yn) must be identical. If sub type

is T BOX, then the line segments must all be a vertically oriented rectangle. If
sub type is T ARC BOX, then the corners of the box are drawn with circular
arcs, the size of which are determined by the radius field. Many output
modes draw T ARC BOX object as simple boxes.

1 Dec 1991 Version 2.1.5 page 17

The T EPS BOX object is a simple box filled with a figure described by
an imported Encapsulated PostScript (EPS) file. In addition to the points
line, this object is followed by an EPS file specification line, consisting of a
flag indicating the vertical orientation of the figure, and the name of the EPS
file to import.

Type Field Units (values)

int flipped 0: normal orientation
1: flipped

string filename

A.3.3 Spline Objects

Type Field Units (values)

int object code O SPLINE 3
int sub type T OPEN NORMAL 0

T CLOSED NORMAL 1
T OPEN INTERPOLATED 2
T CLOSED INTERPOLATED 3

common fields
int forward arrow, 0: no arrow

backward arrow 1: arrow

The Spline object description has a points line following any arrow line which
has the same format as described above for the Polyline object description. If
the sub type of the spline is T OPEN INTERPOLATED or
T CLOSED INTERPOLATED, then an additional control points line follows the
points line. The line consists of a sequence of coordinate pairs, two coordinate
pairs for each point in the points line.

lx1 ly1 rx1 ry1 lx2 ly2 rx2 ry2 . . . lxn lyn rxn ryn

Type Field Units (values)

float lxi, lyi, rxi, ryi pixels

The interpretation of Spline objects is more complex than of other object
descriptions, and is discussed in section A.4.

1 Dec 1991 Version 2.1.5 page 18

A.3.4 Text Objects

Type Field Units (values)

int object type O TEXT 4
int sub type T LEFT JUSTIFIED 0

T CENTER JUSTIFIED 1
T RIGHT JUSTIFIED 2

int + font DEFAULT

ROMAN 1
BOLD 2
ITALICS 3
MODERN 4
TYPEWRITER 5

float + font size points
int + pen DEFAULT

int + color DEFAULT

int depth no units
float angle radians
int + text flags no units
float + height, length pixels
int x, y pixels
string string

The positioning of the string is specified by the sub type. The values
T LEFT JUSTIFIED, T CENTER JUSTIFIED, and T RIGHT JUSTIFIED specify
that (x, y) is the left end, center and right end of the baseline, respectively.
The height and length fields specify the box that the text fits into. These
specifications are accurate only for the fonts used by Fig.

The string field is an ASCII string terminated by the character ’\01’.
This terminating character is not a part of the string. Note that the string
may contain the new-line character ’\n’. Some output modes will interpret
ISO encoded European accents not found in the ASCII character set.

The text flags field is a bit vector which specifies various settable prop-
erties of the text object. Each flag corresponds to a bit position in the field;
the default value of each flag is FALSE.

1 Dec 1991 Version 2.1.5 page 19

Flag Bit mask Description
(in binary)

RIGID TEXT 0001 Font size doesn’t scale with magnification
SPECIAL TEXT 0010 Text includes formatting commands
PSFONT TEXT 0100 Font field specifies PS font
HIDDEN TEXT 1000 Fig editor should not display text

The RIGID TEXT flag is used to preserve the absolute size of text objects as
the figure is scaled. The SPECIAL TEXT flag is used to inhibit the “escaping”
of formatting commands when translating text to LaTEXor Troff, in order
to allow the user to inject such commands directly into the figure. The
PSFONT TEXT flag changes the interpretation of the font field. Rather than
selecting from the limited set of generic fonts shown in the table above, the
field is interpreted as selecting from the following table of PostScript fonts.
A text object with the PSFONT TEXT flag set may not be fully translatable
into output forms other than PostScript. Finally, the HIDDEN TEXT field is
meaningful only to graphics editors, and specifies that the full text should
not displayed on the screen. This is most useful for special text objects which
may include very long formatting command strings.

1 Dec 1991 Version 2.1.5 page 20

PS Font Value

Times-Roman 1
Times-Italic 2
Times-Bold 3
Times-BoldItalic 4
AvantGarde 5
AvantGarde-BookOblique 6
AvantGarde-Demi 7
AvantGarde-DemiOblique 8
Bookman-Light 9
Bookman-LightItalic 10
Bookman-Demi 11
Bookman-DemiItalic 12
Courier 13
Courier-Oblique 14
Courier-Bold 15
Courier-BoldItalic 16
Helvetica 17
Helvetica-Oblique 18
Helvetica-Bold 19
Helvetica-BoldOblique 20
Helvetica-Narrow 21
Helvetica-Narrow-Oblique 22
Helvetica-Narrow-Bold 23
Helvetica-Narrow-BoldOblique 24
NewCenturySchlbk-Roman 25
NewCenturySchlbk-Italic 26
NewCenturySchlbk-Bold 27
NewCenturySchlbk-BoldItalic 28
Palatino-Roman 29
Palatino-Italic 30
Palatino-Bold 31
Palatino-BoldItalic 32
Symbol 33
ZapfChancery-MediumItalic 34
ZapfDingbats 35

1 Dec 1991 Version 2.1.5 page 21

A.3.5 Arc Objects

Type Field Units (values)

int object code O ARC 5
int sub type T 3 POINT ARC 1

common fields
int direction 0: clockwise

1: counter
int forward arrow, 0: no arrow

backward arrow 1: arrow
float center x, center y pixels
int x1, y1, x2, y2, x3, y3 pixels

The Arc object describes a circular arc centered at the point
(center x, center y), starting at (x1, y1), passing through (x2, y2), and end-
ing at (x3, y3). It is drawn either clockwise of counter-clockwise as specified
by direction. Note that this description is quite overdetermined, as the
center and direction of the arc can be deduced from the three points of the
arc which are specified.

A.3.6 Compound Objects

Type Field Units (values)

int object type O COMPOUND 6
int upperright corner x pixels
int upperright corner y

int lowerleft corner x

int lowerleft corner y

The Compound object description describes a compound object bounded
by the rectangle determined by the points

(upperright corner x, upperright corner y)
(lowerleft corner x, lowerleft corner y)

It consists of all the objects following it until an object whose object type

field is O END COMPOUND (-6) is encountered. Compound objects may be
nested.

1 Dec 1991 Version 2.1.5 page 22

A.4 Splines

Specifying the interpretation of a Spline object description is more prob-
lematic than other graphics objects. A graphics object description can be
viewed as having two parts: an abstract description of the locus of points
which make up the object; and a set of appearance parameters which specify
how the abstract object is to be represented. For example, a circular arc has
a very precise and well understood abstract definition, independent of the
width of the line used to draw it. Unfortunately, the abstract specification
of splines is more complex. The following descriptions come at second hand;
the author of this guide is not versed in spline algorithms, and so may have
garbled them. Hopefully, they will give the knowledgeable reader some idea
of the intended meaning of Spline objects.

Fig splines come in two major varieties: B-splines and Interpolated splines.
Each of these is available in open or closed versions. If the sub type field has
the values T OPEN NORMAL or T CLOSED NORMAL then it describes a B-spline.
In these cases, the points line which follows contains the control points for
the spline. The spline does not actually pass through these points, but they
determine where it will pass, which is generally quite close to the control
points. B-splines are quite smooth.

If the sub type field has the values T OPEN INTERPOLATED or
T CLOSED INTERPOLATED then it describes an interpolated spline. In these
cases, the points line which follows contains the interpolation points through
which the spline will pass. In addition, a control points line follows the points
line, which specifies two control points (lxi, lyi) and (rxi, ryi) for each inter-
polation point. The i’th section of the interpolated spline is drawn using the
Bezier cubic with the four points (xi, yi),
(rxi, rxi), (lxi+1, lyi+1), and (xi+1, yi+1). Interpolated splines are not as
smooth as B-splines.

For either type of closed splines, the first and last points on the point line
(x1, y1) and (xn, yn) are identical. For closed interpolated splines, the last
pair of control points on the control points line, (lxn, lyn) and (rxn, ryn) are
the same as (lx1, ly1) and (rx1, ry1) respectively.

1 Dec 1991 Version 2.1.5 page 23

